Glasnik Matematicki, Vol. 41, No.1 (2006), 77-88.

A NOTE ON REDUCTION OF DIMENSION FOR LINEAR ELLIPTIC EQUATIONS

Ibrahim Aganović, Josip Tambača and Zvonimir Tutek

Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
e-mail: aga@math.hr
e-mail: tambaca@math.hr
e-mail: tutek@math.hr


Abstract.   In this paper we consider the linear elliptic equation of the second order in domains in Rn thin in n - k directions, 0 < k < n. We apply the Ansatz of the formal expansion method (with respect to the small parameter (thickness)) which implies the scaling of the loads in the equation that allows the reduction of the problem from dimension n to dimension k. Appropriate convergence result together with correctors is derived.

2000 Mathematics Subject Classification.   34E05, 35J25.

Key words and phrases.   Reduction dimension, elliptic equation, formal expansion method, Ansatz


Full text (PDF) (free access)

DOI: 10.3336/gm.41.1.08


References:

  1. I. Aganovic, Z. Tutek, On the lower--dimensional approximations of the mixed problem for Laplace equation, Glasnik Mat. 20 (1985), 355-361.
    MathSciNet

  2. A. Bermudez, J. M. Viano, A justification of thermoelastic equations for variable-section beams by asymptotic methods, RAIRO Anal. Numér. 18 (1984), 347-376.
    MathSciNet

  3. P. G. Ciarlet, Mathematical elasticity. Vol. II. Theory of plates. North-Holland Publishing Co., Amsterdam, 1997.
    MathSciNet

  4. P. G. Ciarlet, Plates and junctions in elastic multistructures. An asymptotic analysis, Masson, Paris, 1990.
    MathSciNet

  5. P. G. Ciarlet, P. Destuynder, A justification of the two dimensional linear plate model, J. Mécanique 18 (1979) 315-344.
    MathSciNet

  6. P. Courilleau and J. Mossino, Compensated compactness for nonlinear homogenization and reduction of dimension, Calc. Var. Partial Differential Equations 20 (2004), 65-91.
    MathSciNet     CrossRef

  7. B. Gustafsson and J. Mossino, Non-periodic explicit homogenization and reduction of dimension: the linear case, IMA J. Appl. Math. 68 (2003), 269-298.
    MathSciNet     CrossRef

  8. H. Le Dret, Problèmes variationnels dans les multi-domains, Masson, Paris, 1991.
    MathSciNet

  9. B. Miara, Justification of the asymptotic analysis of elastic plates. I. The linear case, Asymptotic Anal. 9 (1994), 47-60.
    MathSciNet

  10. Z. Tutek, I. Aganovic, A justification of the one-dimensional linear model of elastic beam, Math. Methods Appl. Sci. 8 (1986) 502-515.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page