Glasnik Matematicki, Vol. 41, No.1 (2006), 77-88.
A NOTE ON REDUCTION OF DIMENSION FOR LINEAR
ELLIPTIC EQUATIONS
Ibrahim Aganović, Josip Tambača and Zvonimir Tutek
Department of Mathematics, University of Zagreb,
Bijenička 30, 10000 Zagreb, Croatia
e-mail: aga@math.hr
e-mail: tambaca@math.hr
e-mail: tutek@math.hr
Abstract. In this paper we consider the linear elliptic equation of the
second order in domains in Rn thin in
n - k directions,
0 < k < n. We apply the Ansatz of the formal expansion method (with
respect to the small parameter (thickness)) which implies the
scaling of the loads in the equation that allows the reduction of
the problem from dimension n to dimension k. Appropriate
convergence result together with correctors is derived.
2000 Mathematics Subject Classification.
34E05, 35J25.
Key words and phrases. Reduction dimension, elliptic equation,
formal expansion method, Ansatz
Full text (PDF) (free access)
DOI: 10.3336/gm.41.1.08
References:
- I. Aganovic, Z. Tutek,
On the lower--dimensional approximations of the mixed problem for Laplace equation,
Glasnik Mat. 20 (1985), 355-361.
MathSciNet
- A. Bermudez, J. M. Viano,
A justification of thermoelastic equations for variable-section beams by asymptotic
methods,
RAIRO Anal. Numér. 18 (1984), 347-376.
MathSciNet
- P. G. Ciarlet,
Mathematical elasticity. Vol. II. Theory of
plates. North-Holland Publishing Co., Amsterdam, 1997.
MathSciNet
- P. G. Ciarlet,
Plates and junctions in
elastic multistructures. An asymptotic analysis, Masson, Paris, 1990.
MathSciNet
- P. G. Ciarlet, P. Destuynder,
A justification of the two
dimensional linear plate model,
J. Mécanique 18 (1979) 315-344.
MathSciNet
- P. Courilleau and J. Mossino,
Compensated compactness for
nonlinear homogenization and reduction of dimension,
Calc. Var. Partial Differential Equations 20 (2004), 65-91.
MathSciNet
CrossRef
- B. Gustafsson and J. Mossino,
Non-periodic explicit
homogenization and reduction of dimension: the linear case,
IMA J. Appl. Math. 68 (2003), 269-298.
MathSciNet
CrossRef
- H. Le Dret,
Problèmes variationnels dans les multi-domains,
Masson, Paris, 1991.
MathSciNet
- B. Miara,
Justification of the asymptotic analysis of
elastic plates. I. The linear case,
Asymptotic Anal. 9 (1994), 47-60.
MathSciNet
- Z. Tutek, I. Aganovic,
A justification of the
one-dimensional linear model of elastic beam,
Math. Methods Appl. Sci. 8 (1986) 502-515.
MathSciNet
CrossRef
Glasnik Matematicki Home Page