Glasnik Matematicki, Vol. 41, No.1 (2006), 31-49.
2-RANG DU GROUPE DES CLASSES ET COURBES ELLIPTIQUES
Aïni Laoudi
Équipe de Théorie des Nombres, Institut de Mathématiques de Jussieu,
Université Paris 6, 175 rue du Chevaleret, 75013 Paris, France
Université des Sciences et de la Technologie Houari Boumediene,
Faculté de Mathéematiques, B.P. 32, El Allia, Bab Ezzouar-16111-Alger, Algérie
e-mail: laoudi@math.jussieu.fr
e-mail: laoudia@yahoo.fr
Abstract. We study the relationship between the 2-rank of class
groups of a family of cubic fields and the rank of a family of
elliptic curves.
Résumé. Dans cet article, nous étudions la
relation qui existe entre le 2-rang du groupe des classes d'une
famille de corps cubiques et le rang d'une famille de courbes
elliptiques.
2000 Mathematics Subject Classification.
14H52, 14G05, 11R29.
Key words and phrases. Elliptic curves,
rank, class groups.
Full text (PDF) (free access)
DOI: 10.3336/gm.41.1.03
References:
- E. Bach,
Explicit bounds for primality testing and related problems,
Math. Comp. 55 (1990), 355-380.
MathSciNet
CrossRef
- G. Billing,
Beiträge zur arithmetischen Theorie der ebenen Kubischen Kurven vom Geschlecht eins,
Nova Acta Regiae Soc. Sci. Upsaliensis 4 11 (1938), No.1, Diss. 165.
Jahrbuch
- J. Buchmann,
A subexponential algorithm for the determination of class groups and regulators of algebraic number
fields, Sé:minaire de Théorie des Nombres, Paris, 1988-89, 27-41.
MathSciNet
- G. Campbell,
Finding Elliptic Curves and Families of Elliptic Curves over Q of Large Rank,
Dissertation, Rutgers, 1999.
- H. Cohen, F. Diaz y Diaz and M. Olivier,
Subexponential algorithms for class group and unit
computations, J. Symbolic Comput. 24 (1997), 433-441.
MathSciNet
CrossRef
- J. Cremona,
mwrank.
http://www.maths.nottingham.ac.uk/personal/jec/ftp/progs/ (2002).
- A. Dujella,
High rank elliptic curves with prescribed torsion,
http://www.math.hr/~duje/tors/tors.html
- A. Dujella,
An example of elliptic curve over Q with rank equal to 15,
Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), 109-111.
MathSciNet
- J. L. Hafner, K. S. McCurley,
A rigorous subexponential algorithm for computation of class groups,
J. Amer. Math. Soc. 2 (1989), 837-850.
MathSciNet
CrossRef
- M. Kawachi and S. Nakano,
The 2-class groups of cubic fields and 2-descents on elliptic curves,
Tohoku Math. J. (2) 44 (1992), 557-565.
MathSciNet
- A. Laoudi and O. Lecacheux,
Surfaces elliptiques modulaires associés au groupe
Γ0(9) ∩ Γ1(3), preprint.
- O. Lecacheux,
Units in number fields and elliptic
curves. Advances in number theory. (Kingston, ON, 1991). Oxford
Univ. Press, New York, 1993, 293-301.
MathSciNet
- O. Lecacheux,
Rang de courbes elliptiques avec groupe de torsion non trivial,
J. Théor. Nombres Bordeaux 15 (2003), 231-247.
MathSciNet
- J. F. Mestre,
Construction d'une courbe elliptique de rang ≥ 12,
C. R. Acad. Sci. Paris Ser. I 295 (1982), 643-644.
MathSciNet
- K. Nagao,
An example of elliptic curve over Q with rank ≥ 20,
Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 291-293.
MathSciNet
- PARI/GP, version 2.1.5, Bordeaux, 2004,
http://pari.math.u-bordeaux.fr/.
- J. H. Silverman,
The Arithmetic of Elliptic Curves, Springer-Verlag New York, 1986.
MathSciNet
- D. Simon,
Computing the rank of elliptic curves over number fields,
LMS J. Comput. Math. 5 (2002), 7-17.
MathSciNet
- K. Uchida,
Class numbers of cubic cyclic fields,
J. Math. Soc. Japan 26 (1974), 447-453.
MathSciNet
- L. C. Washington,
A family of cubic fields and zeros of $3$-adic
L-functions, J. Number Theory 63 (1997), 408-417.
MathSciNet
CrossRef
- L. C. Washington,
Class numbers of the simplest cubic fields,
Math. Comp. 48 (1987), 371-384.
MathSciNet
CrossRef
- L. C. Washington,
Introduction to Cyclotomic Fields,
Springer-Verlag, New York-Heidelberg-Berlin, 1982.
MathSciNet
Glasnik Matematicki Home Page