Glasnik Matematicki, Vol. 41, No.1 (2006), 31-49.

2-RANG DU GROUPE DES CLASSES ET COURBES ELLIPTIQUES

Aïni Laoudi

Équipe de Théorie des Nombres, Institut de Mathématiques de Jussieu, Université Paris 6, 175 rue du Chevaleret, 75013 Paris, France

Université des Sciences et de la Technologie Houari Boumediene, Faculté de Mathéematiques, B.P. 32, El Allia, Bab Ezzouar-16111-Alger, Algérie

e-mail: laoudi@math.jussieu.fr
e-mail: laoudia@yahoo.fr


Abstract.   We study the relationship between the 2-rank of class groups of a family of cubic fields and the rank of a family of elliptic curves.

Résumé.   Dans cet article, nous étudions la relation qui existe entre le 2-rang du groupe des classes d'une famille de corps cubiques et le rang d'une famille de courbes elliptiques.

2000 Mathematics Subject Classification.   14H52, 14G05, 11R29.

Key words and phrases.   Elliptic curves, rank, class groups.


Full text (PDF) (free access)

DOI: 10.3336/gm.41.1.03


References:

  1. E. Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55 (1990), 355-380.
    MathSciNet     CrossRef

  2. G. Billing, Beiträge zur arithmetischen Theorie der ebenen Kubischen Kurven vom Geschlecht eins, Nova Acta Regiae Soc. Sci. Upsaliensis 4 11 (1938), No.1, Diss. 165.
    Jahrbuch

  3. J. Buchmann, A subexponential algorithm for the determination of class groups and regulators of algebraic number fields, Sé:minaire de Théorie des Nombres, Paris, 1988-89, 27-41.
    MathSciNet

  4. G. Campbell, Finding Elliptic Curves and Families of Elliptic Curves over Q of Large Rank, Dissertation, Rutgers, 1999.

  5. H. Cohen, F. Diaz y Diaz and M. Olivier, Subexponential algorithms for class group and unit computations, J. Symbolic Comput. 24 (1997), 433-441.
    MathSciNet     CrossRef

  6. J. Cremona, mwrank.
    http://www.maths.nottingham.ac.uk/personal/jec/ftp/progs/ (2002).

  7. A. Dujella, High rank elliptic curves with prescribed torsion,
    http://www.math.hr/~duje/tors/tors.html

  8. A. Dujella, An example of elliptic curve over Q with rank equal to 15, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), 109-111.
    MathSciNet

  9. J. L. Hafner, K. S. McCurley, A rigorous subexponential algorithm for computation of class groups, J. Amer. Math. Soc. 2 (1989), 837-850.
    MathSciNet     CrossRef

  10. M. Kawachi and S. Nakano, The 2-class groups of cubic fields and 2-descents on elliptic curves, Tohoku Math. J. (2) 44 (1992), 557-565.
    MathSciNet

  11. A. Laoudi and O. Lecacheux, Surfaces elliptiques modulaires associés au groupe Γ0(9) ∩ Γ1(3), preprint.

  12. O. Lecacheux, Units in number fields and elliptic curves. Advances in number theory. (Kingston, ON, 1991). Oxford Univ. Press, New York, 1993, 293-301.
    MathSciNet

  13. O. Lecacheux, Rang de courbes elliptiques avec groupe de torsion non trivial, J. Théor. Nombres Bordeaux 15 (2003), 231-247.
    MathSciNet

  14. J. F. Mestre, Construction d'une courbe elliptique de rang ≥ 12, C. R. Acad. Sci. Paris Ser. I 295 (1982), 643-644.
    MathSciNet

  15. K. Nagao, An example of elliptic curve over Q with rank ≥ 20, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 291-293.
    MathSciNet

  16. PARI/GP, version 2.1.5, Bordeaux, 2004,
    http://pari.math.u-bordeaux.fr/.

  17. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag New York, 1986.
    MathSciNet

  18. D. Simon, Computing the rank of elliptic curves over number fields, LMS J. Comput. Math. 5 (2002), 7-17.
    MathSciNet

  19. K. Uchida, Class numbers of cubic cyclic fields, J. Math. Soc. Japan 26 (1974), 447-453.
    MathSciNet

  20. L. C. Washington, A family of cubic fields and zeros of $3$-adic L-functions, J. Number Theory 63 (1997), 408-417.
    MathSciNet     CrossRef

  21. L. C. Washington, Class numbers of the simplest cubic fields, Math. Comp. 48 (1987), 371-384.
    MathSciNet     CrossRef

  22. L. C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, New York-Heidelberg-Berlin, 1982.
    MathSciNet

Glasnik Matematicki Home Page