Glasnik Matematicki, Vol. 41, No.1 (2006), 9-30.

ON A CERTAIN FAMILY OF QUARTIC EQUATIONS WITH THREE PARAMETERS

Volker Ziegler

Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria
e-mail: ziegler@finanz.math.tugraz.at


Abstract.   We consider the parameterized Thue equation

X4 - 4sX3Y - (2ab + 4(a + b)s)X2Y2 - 4absXY3 + a2b2Y4 = ± 1,

with a, b in 1/4 Z such that ab in Z. By the hypergeometric method and a method of Tzanakis we find all solutions, if s is large with respect to |a| and |b|.

2000 Mathematics Subject Classification.   11D59, 11D25, 11D09.

Key words and phrases.   Diophantine equations, parameterized Thue equations, norm form equations, simultaneous Pellian equations.


Full text (PDF) (free access)

DOI: 10.3336/gm.41.1.02


References:

  1. A. Baker, Linear forms in the logarithms of algebraic numbers I, II, III, Mathematika 13 (1966), 204-216; ibid. 14 (1967), 102-107; ibid. 14 (1967), 220-228.
    MathSciNet    

  2. A. Baker, Contributions to the theory of Diophantine equations I. On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A 263 (1967/1968), 173-191.
    MathSciNet    

  3. A. Baker, Linear forms in the logarithms of algebraic numbers IV, Mathematika 15 (1968), 204-216.
    MathSciNet    

  4. A. Baker and H. Davenport, The equations x2-2=y2 and 8x2-7=z2, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
    MathSciNet    

  5. M. A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math. 498 (1998), 173-199.
    MathSciNet     CrossRef

  6. Yu. Bilu and G. Hanrot, Solving Thue equations of high degree, J. Number Theory 60 (1996), 373-392.
    MathSciNet     CrossRef

  7. Y. Bugeaud and K. Györy, Bounds for the solutions of Thue-Mahler equations and norm form equations, Acta Arith. 74 (1996), 273-292.
    MathSciNet    

  8. G. V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math. (2) 117 (1983), 325-382.
    MathSciNet    

  9. A. Dujella and B. Jadrijevic, A parametric family of quartic Thue equations, Acta Arith. 101 (2002), 159-170.
    MathSciNet    

  10. A. Dujella and B. Jadrijevic, A family of quartic Thue inequalities, Acta Arith. 111 (2004), 61-76.
    MathSciNet    

  11. S. Lang, Algebra, Springer-Verlag, New York, 2002.
    MathSciNet    

  12. K. Mahler, Zur Approximation algebraischer Zahlen (I), Math. Ann. 107 (1933), 691-730.
    MathSciNet     CrossRef

  13. L. J. Mordell, Diophantine equations, Academic Press, London, 1969.
    MathSciNet    

  14. E. Thomas, Complete solutions to a family of cubic Diophantine equations, J. Number Theory 34 (1990), 235-250.
    MathSciNet     CrossRef

  15. A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine und Angew. Math. 135 (1909), 284-305.
    Jahrbuch

  16. A. Thue, Berechnung aller Lösungen gewisser Gleichungen von der Form axr - byr = f, Vid. Skrivter I Mat.- Naturv. Klasse 4 (1918), 1-9.
    Jahrbuch

  17. N. Tzanakis, Explicit solution of a class of quartic Thue equations, Acta Arith. 64 (1993), 271-283.
    MathSciNet    

  18. N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page