Glasnik Matematicki, Vol. 40, No.2 (2005), 333-337.

D-COUNTINUUM X ADMITS A WHITNEY MAP FOR C(X) IF AND ONLY IF IT IS METRIZABLE

Ivan Lončar

Faculty of Organizations and Informatics Varaždin, University of Zagreb, Croatia
e-mail: ivan.loncar1@vz.htnet.hr
e-mail: ivan.loncar@foi.hr


Abstract.   The main purpose of this paper is to prove:
a) a D-continuum X admits a Whitney map for C(X) if and only if it is metrizable,
b) a continuum X admits a Whitney map for C2(X) if and only if it is metrizable.

2000 Mathematics Subject Classification.   54F15, 54C30.

Key words and phrases.   D-continuum, Whitney map.


Full text (PDF) (free access)

DOI: 10.3336/gm.40.2.13


References:

  1. J. J. Charatonik and W. J. Charatonik, Whitney maps - a non-metric case, Colloq. Math. 83 (2000), 305-307.

  2. R. Engelking, General Topology, PWN, Warszawa, 1977.

  3. A. Illanes and S.B. Nadler, Jr., Hyperspaces: Fundamentals and Recent advances, Marcel Dekker, New York-Basel, 1999.

  4. I. Loncar, A fan X admits a Whitney map for C(X) iff it is metrizable, Glas. Mat. Ser. III 38(58) (2003), 395-411.

  5. I. Loncar, Arc-smooth continuum admits X admits a Whitney map for C(X) iff it is metrizable, JP J. Geom. Topol. 4 (2004), 13-21.

  6. I. Loncar, Whitney map for hyperspaces of continua with the property of Kelley, JP J. Geom. Topol. 4 (2004), 147-156.

  7. M. M. McWaters, Arcs, semigroups, and hyperspace, Canad. J. Math. 20 (1968), 1207-1210.

  8. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.
    CrossRef http://dx.doi.org/10.2307/1990864

  9. S. B. Nadler, Hyperspaces of sets, Marcel Dekker, Inc., New York, 1978.

  10. S. B. Nadler, Continuum theory, Marcel Dekker, Inc., New York, 1992.

Glasnik Matematicki Home Page