Glasnik Matematicki, Vol. 40, No.2 (2005), 323-331.
EQUIVARIANT FIBRANT SPACES
Alexander Bykov and Marcelino Texis
Benemerita Universidad Autonoma de Puebla,
Facultad de Ciencias Fisico Matematicas,
Av. San Claudio y Rio Verde, Ciudad Universitaria, Colonia San Manuel,
CP 72570, Puebla, Pue., Mexico
e-mail: abykov@fcfm.buap.mx
Abstract. In this paper the concept of a G-fibrant space
is introduced. It is shown that any compact metrizable group G
is a G-fibrant.
2000 Mathematics Subject Classification.
54C55, 54C56, 54H15, 54B15.
Key words and phrases. Fibration, fibrant space, G-ANR.
Full text (PDF) (free access)
DOI: 10.3336/gm.40.2.12
References:
- S. A. Antonyan,
Preservation of k-connectedness by a symmetric n-th power functor,
Moscow Univ. Math. Bull. 49 (1994) 22-25.
- S. A. Antonyan,
Extensorial properties of orbit spaces of proper group actions,
Topology and Appl. 98 (1999) 35-46.
CrossRef
- S. A. Antonyan, S. Mardesic,
Equivariant Shape, Fund. Math. 127 (1987), 213-224.
- G. E. Bredon,
Introduction to Compact Transformation Groups,
Academic Press, New York, 1972.
- A. I. Bykov and L. G. Zerkalov,
Cotelescopes and approximate lifting properties in shape theory,
Topology and Appl. 73 (1996), 197-212.
CrossRef
- F. Cathey,
Strong shape theory, in: Shape Theory
and Geometric Topology, Lecture Notes in Math. 870,
Springer, Berlin, 1981, 216-239.
- R. S. Palais,
The classification of G-spaces,
Memoirs AMS, 36, 1960.
- L. S. Pontrjagin,
Topological groups, Princeton Univ. Press, 1939.
- D. G. Quillen,
Homotopical algebra, Lecture Notes in Math. 43, Springer, 1967.
Glasnik Matematicki Home Page