Glasnik Matematicki, Vol. 40, No.2 (2005), 323-331.

EQUIVARIANT FIBRANT SPACES

Alexander Bykov and Marcelino Texis

Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas, Av. San Claudio y Rio Verde, Ciudad Universitaria, Colonia San Manuel, CP 72570, Puebla, Pue., Mexico
e-mail: abykov@fcfm.buap.mx


Abstract.   In this paper the concept of a G-fibrant space is introduced. It is shown that any compact metrizable group G is a G-fibrant.

2000 Mathematics Subject Classification.   54C55, 54C56, 54H15, 54B15.

Key words and phrases.   Fibration, fibrant space, G-ANR.


Full text (PDF) (free access)

DOI: 10.3336/gm.40.2.12


References:

  1. S. A. Antonyan, Preservation of k-connectedness by a symmetric n-th power functor, Moscow Univ. Math. Bull. 49 (1994) 22-25.

  2. S. A. Antonyan, Extensorial properties of orbit spaces of proper group actions, Topology and Appl. 98 (1999) 35-46.
    CrossRef

  3. S. A. Antonyan, S. Mardesic, Equivariant Shape, Fund. Math. 127 (1987), 213-224.

  4. G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972.

  5. A. I. Bykov and L. G. Zerkalov, Cotelescopes and approximate lifting properties in shape theory, Topology and Appl. 73 (1996), 197-212.
    CrossRef

  6. F. Cathey, Strong shape theory, in: Shape Theory and Geometric Topology, Lecture Notes in Math. 870, Springer, Berlin, 1981, 216-239.

  7. R. S. Palais, The classification of G-spaces, Memoirs AMS, 36, 1960.

  8. L. S. Pontrjagin, Topological groups, Princeton Univ. Press, 1939.

  9. D. G. Quillen, Homotopical algebra, Lecture Notes in Math. 43, Springer, 1967.

Glasnik Matematicki Home Page