Glasnik Matematicki, Vol. 40, No.2 (2005), 313-315.

THREE-DIMENSIONAL HYPERBOLIC GEOMETRY WITH PLANES AND PLANE PARALLELISM AS ONLY PRIMITIVE NOTIONS

Victor Pambuccian

Department of Integrative Studies, Arizona State University - West campus, P. O. Box 37100, Phoenix AZ 85069-7100, USA
e-mail: pamb@math.west.asu.edu


Abstract.   We show that Euclidean Möbius planes can be axiomatized in terms of circles and circle-tangency, and that 3-dimensional hyperbolic geometry can be axiomatized in terms of planes and plane-parallelism.

2000 Mathematics Subject Classification.   51M10, 51B10, 03B30.

Key words and phrases.   Hyperbolic space, Euclidean Möbius plane, axiom system.


Full text (PDF) (free access)

DOI: 10.3336/gm.40.2.10


References:

  1. W. Benz, Vorlesungen über Geometrie der Algebren, Springer-Verlag, Berlin 1973.

  2. H. S. M. Coxeter, The inversive plane and hyperbolic space, Abh. Math. Sem. Univ. Hamburg 29 (1966), 217-242 .

  3. H. S. M. Coxeter, Non-Euclidean geometry, Sixth edition, MAA Spectrum, Mathematical Association of America, Washington, DC, 1998.

  4. G. Ewald, Über den Begriff der Orthogonalität in der Kreisgeometrie, Math. Ann. 131 (1956), 463-469.

  5. H. Liebmann, Nichteuklidische Geometrie, B. G. Teubner, Leipzig, 1905.

  6. V. Pambuccian, Binary relations as single primitive notions for hyperbolic three-space and the inversive plane, Indag. Math. (N. S.) 11 (4) (2000), 587-592.
    CrossRef

  7. V. Pambuccian, Sphere tangency as single primitive notion for hyperbolic and Euclidean geometry, Forum Math. 15 (2003), 943-947.
    CrossRef

Glasnik Matematicki Home Page