Glasnik Matematicki, Vol. 40, No.2 (2005), 207-233.
ALTERNATE PROOFS OF SOME BASIC THEOREMS OF FINITE GROUP THEORY
Yakov Berkovich
Department of Mathematics, University of Haifa,
Mount Carmel, Haifa 31905, Israel
e-mail: berkov@math.haifa.ac.il
Abstract. In this note alternate proofs of some basic
results of finite group theory are presented.
2000 Mathematics Subject Classification.
20C15.
Key words and phrases. Sylow p-subgroup, solvable group,
Hall subgroup, Carter subgroup.
Full text (PDF) (free access)
DOI: 10.3336/gm.40.2.03
References:
- R. Baer,
Supersoluble immersion,
Can. J. Math. 11 (1959), 353-369.
- R. Bercov and L. Moser,
On abelian permutation groups,
Canad. Math. Bull. 8 (1965), 627-630.
- Y. Berkovich,
A corollary of Frobenius' normal p-complement theorem,
Proc. Amer. Math. Soc. 127 (1999), 2505-2509.
CrossRef
- Y. Berkovich,
A generalization of theorems of Carter and Wielandt,
Soviet Math. Dokl. 7 (1966), 1525-1529.
- Y. Berkovich,
On p-groups of finite order,
Siberian Math. Zh. 9 (1968), 1284-1306 (Russian).
- Y. Berkovich,
A necessary and sufficient condition for the simplicity of a finite group,
Algebra and number theory, Nal'chik (1979), 17-21 (Russian).
- Y. Berkovich,
On abelian subgroups of p-groups,
J. Algebra 199 (1998), 262-280.
CrossRef
- Y. Berkovich,
Groups of Prime Power Order, Part I, in preparation.
- Y. Berkovich and Z. Janko,
Groups of Prime Power Order, Part III, in preparation.
- Y. Berkovich and L. Kazarin,
Indices of elements and normal structure of finite groups,
J. Algebra 283 (2005), 564-583.
- N. Blackburn,
Groups of prime-power order having an abelian
centralizer of type (r,1),
Mh. Math. 99 (1985), 1-18.
CrossRef
- Z. Bozikov and Z. Janko,
On a question of N. Blackburn about finite 2-groups,
Israel J. Math., to appear.
- W. Burnside,
The Theory of Groups of Finite Order, Dover, NY, 1955.
- R. Carter,
Nilpotent self-normalizing subgroups of soluble groups,
Math. Z. 75 (1961), 136-139.
CrossRef
- S. A. Chunikhin,
On solvable groups,
Izv. NIIMM of TomskUniv. 2 (1938), 220-223.
- W. Gaschütz,
Lectures on Subgroups of Sylow Type in Finite
Solvable Groups, Australian Nat. Univ., 1979.
- P. Hall,
A note on a soluble groups,
J. London Math. Soc. 3 (1928), 98-105.
CrossRef
- P. Hall,
A characteristic property of soluble groups,
J. London Math. Soc. 12 (1937), 198-200.
- P. Hall,
On a theorem of Frobenius,
Proc. London Math. Soc. 2, 40 (1936), 468-501.
CrossRef
- B. Huppert,
Endliche Gruppen, Bd. I, Springer, Berlin, 1967.
- I. M. Isaacs,
Algebra. A Graduate Course, Brooks/Cole,
Pacific Grove, 1994.
- I. M. Isaacs,
Character Theory of Finite Groups, Academic Press, NY, 1976.
- Z. Janko,
Finite 2-groups with small centralizer of an involution,
J. Algebra 241 (2001), 818-826.
CrossRef
- Z. Janko,
Finite 2-groups with small centralizer of an involution, 2,
J. Algebra 245 (2001), 413-429.
CrossRef
- Z. Janko,
Finite 2-groups with no normal elementary abelian subgroups of order 8,
J. Algebra 246 (2001), 951-961.
CrossRef
- Z. Janko,
Finite 2-groups with three involutions,
J. Algebra, to appear.
- Z. Janko,
Finite p-groups with uniqueness condition for
nonnormal subgroups, manuscript.
- O. H. Kegel,
Produkte nilpotenter Gruppen,
Arch. Math. 12 (1961), 90-93.
CrossRef
- A. Kulakoff,
Über die Anzahl der eigentlichen Untergruppen
und die Elemente von gegebener Ordnung in p-Gruppen,
Math. Ann. 104 (1931), 779-793.
- O. Ore,
Contributions to the theory of groups of finite order,
Duke Math. J. 5 (1938), 431-460.
- M. Suzuki,
Group Theory II, Springer, New York, 1986.
- B. A. F. Wehrfritz,
Finite Groups, World Scientific, Singapore, 1999.
- H. Wielandt,
Sylowgruppen and Kompositionsstruktur,
Abhandl. Math. Seminar Univ. Hamburg 22 (1958), 215-228.
- H. Wielandt,
Über Produkte von nilpotenten Gruppen,
Illinois J. Math. 2 (1958), 611-618.
Glasnik Matematicki Home Page