Glasnik Matematicki, Vol. 40, No.2 (2005), 207-233.

ALTERNATE PROOFS OF SOME BASIC THEOREMS OF FINITE GROUP THEORY

Yakov Berkovich

Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel
e-mail: berkov@math.haifa.ac.il


Abstract.   In this note alternate proofs of some basic results of finite group theory are presented.

2000 Mathematics Subject Classification.   20C15.

Key words and phrases.   Sylow p-subgroup, solvable group, Hall subgroup, Carter subgroup.


Full text (PDF) (free access)

DOI: 10.3336/gm.40.2.03


References:

  1. R. Baer, Supersoluble immersion, Can. J. Math. 11 (1959), 353-369.

  2. R. Bercov and L. Moser, On abelian permutation groups, Canad. Math. Bull. 8 (1965), 627-630.

  3. Y. Berkovich, A corollary of Frobenius' normal p-complement theorem, Proc. Amer. Math. Soc. 127 (1999), 2505-2509.
    CrossRef

  4. Y. Berkovich, A generalization of theorems of Carter and Wielandt, Soviet Math. Dokl. 7 (1966), 1525-1529.

  5. Y. Berkovich, On p-groups of finite order, Siberian Math. Zh. 9 (1968), 1284-1306 (Russian).

  6. Y. Berkovich, A necessary and sufficient condition for the simplicity of a finite group, Algebra and number theory, Nal'chik (1979), 17-21 (Russian).

  7. Y. Berkovich, On abelian subgroups of p-groups, J. Algebra 199 (1998), 262-280.
    CrossRef

  8. Y. Berkovich, Groups of Prime Power Order, Part I, in preparation.

  9. Y. Berkovich and Z. Janko, Groups of Prime Power Order, Part III, in preparation.

  10. Y. Berkovich and L. Kazarin, Indices of elements and normal structure of finite groups, J. Algebra 283 (2005), 564-583.

  11. N. Blackburn, Groups of prime-power order having an abelian centralizer of type (r,1), Mh. Math. 99 (1985), 1-18.
    CrossRef

  12. Z. Bozikov and Z. Janko, On a question of N. Blackburn about finite 2-groups, Israel J. Math., to appear.

  13. W. Burnside, The Theory of Groups of Finite Order, Dover, NY, 1955.

  14. R. Carter, Nilpotent self-normalizing subgroups of soluble groups, Math. Z. 75 (1961), 136-139.
    CrossRef

  15. S. A. Chunikhin, On solvable groups, Izv. NIIMM of TomskUniv. 2 (1938), 220-223.

  16. W. Gaschütz, Lectures on Subgroups of Sylow Type in Finite Solvable Groups, Australian Nat. Univ., 1979.

  17. P. Hall, A note on a soluble groups, J. London Math. Soc. 3 (1928), 98-105.
    CrossRef

  18. P. Hall, A characteristic property of soluble groups, J. London Math. Soc. 12 (1937), 198-200.

  19. P. Hall, On a theorem of Frobenius, Proc. London Math. Soc. 2, 40 (1936), 468-501.
    CrossRef

  20. B. Huppert, Endliche Gruppen, Bd. I, Springer, Berlin, 1967.

  21. I. M. Isaacs, Algebra. A Graduate Course, Brooks/Cole, Pacific Grove, 1994.

  22. I. M. Isaacs, Character Theory of Finite Groups, Academic Press, NY, 1976.

  23. Z. Janko, Finite 2-groups with small centralizer of an involution, J. Algebra 241 (2001), 818-826.
    CrossRef

  24. Z. Janko, Finite 2-groups with small centralizer of an involution, 2, J. Algebra 245 (2001), 413-429.
    CrossRef

  25. Z. Janko, Finite 2-groups with no normal elementary abelian subgroups of order 8, J. Algebra 246 (2001), 951-961.
    CrossRef

  26. Z. Janko, Finite 2-groups with three involutions, J. Algebra, to appear.

  27. Z. Janko, Finite p-groups with uniqueness condition for nonnormal subgroups, manuscript.

  28. O. H. Kegel, Produkte nilpotenter Gruppen, Arch. Math. 12 (1961), 90-93.
    CrossRef

  29. A. Kulakoff, Über die Anzahl der eigentlichen Untergruppen und die Elemente von gegebener Ordnung in p-Gruppen, Math. Ann. 104 (1931), 779-793.

  30. O. Ore, Contributions to the theory of groups of finite order, Duke Math. J. 5 (1938), 431-460.

  31. M. Suzuki, Group Theory II, Springer, New York, 1986.

  32. B. A. F. Wehrfritz, Finite Groups, World Scientific, Singapore, 1999.

  33. H. Wielandt, Sylowgruppen and Kompositionsstruktur, Abhandl. Math. Seminar Univ. Hamburg 22 (1958), 215-228.

  34. H. Wielandt, Über Produkte von nilpotenten Gruppen, Illinois J. Math. 2 (1958), 611-618.

Glasnik Matematicki Home Page