Glasnik Matematicki, Vol. 40, No.2 (2005), 201-206.
AN EQUATION ON OPERATOR ALGEBRAS AND SEMISIMPLE H*-ALGEBRAS
Joso Vukman
Department of Mathematics, University of Maribor,
PEF, Koroška 160, 2000 Maribor, Slovenia
e-mail: joso.vukman@uni-mb.si
Abstract. In this paper we prove the following result: Let
X be a Banach space over the real or complex field F and let
L(X) be the algebra of all bounded linear operators on X. Suppose there
exists an additive mapping T : A(X)
→ L(X), where
A(X) L(X)
is a standard operator algebra. Suppose that
T(A3) = AT(A)A
holds for all A A(X).
In this case T
is of the form T(A) =
λA for any
A A(X) and some
λ F. This result is
applied to semisimple H*-algebras.
2000 Mathematics Subject Classification.
16W10, 46K15, 39B05.
Key words and phrases. Prime ring, semiprime ring, Banach space,
standard operator algebra, H*-algebra, derivation, Jordan
derivation, left (right) centralizer, left (right) Jordan
centralizer.
Full text (PDF) (free access)
DOI: 10.3336/gm.40.2.02
References:
- W. Ambrose,
Structure theorems for a special class of
Banach algebras,
Trans. Amer. Math. Soc. 57 (1945), 364-386.
CrossRef
- K. I. Beidar, W. S. Martindale III, A. V. Mikhalev,
Rings with generalized identities, Marcel Dekker, Inc.
New York 1996.
- M. Brešar, J. Vukman,
Jordan derivations on prime rings,
Bull. Austral. Math. Soc. 37 (1988), 321-322.
- M. Brešar,
Jordan derivations on semiprime rings,
Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
CrossRef
- J. Cusak,
Jordan derivations on rings,
Proc. Amer. Math. Soc. 53 (1975), 321-324.
CrossRef
- I. N. Herstein,
Jordan derivations of prime rings,
Proc. Amer. Math. Soc. 8 (1957), 1104-1119.
CrossRef
- I. N. Herstein,
Rings with involution, Chicago Lectures
in Math., Univ. of Chicago Press, Chicago, London, 1976.
- L. Molnár,
On centralizers of an H*-algebra,
Publ. Math. Debrecen 46 (1995), 89-95.
- J. Vukman,
An identity related to centralizers in
semiprime rings,
Comment. Math. Univ. Carol. 40 (1999), 447-456.
- J. Vukman,
Centralizers of semiprime rings,
Comment. Math. Univ. Carol. 42 (2001), 237-245.
- J. Vukman and I. Kosi-Ulbl,
An equation related to centralizers
in semiprime rings,
Glasnik Mat. 38(58) (2003), 253-261.
- B. Zalar,
On centralizers of semiprime rings,
Comment. Math. Univ. Carol. 32 (1991), 609-614.
Glasnik Matematicki Home Page