Glasnik Matematicki, Vol. 40, No.1 (2005), 177-187.

HARNACK INEQUALITY FOR SOME DISCONTINUOUS MARKOV PROCESSES WITH A DIFFUSION PART

Renming Song and Zoran Vondracek

Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
e-mail: rsong@math.uiuc.edu

Department of Mathematics, University of Zagreb, 10000 Zagreb, Croatia
e-mail: vondra@math.hr


Abstract.   In this paper we establish a Harnack inequality for nonnegative harmonic functions of some discontinuous Markov processes with a diffusion part.

2000 Mathematics Subject Classification.   60J45, 60J75, 60J25.

Key words and phrases.   Harnack inequality, harmonic functions, jump diffusion.


Full text (PDF) (free access)

DOI: 10.3336/gm.40.1.15


References:

  1. R. F. Bass and M. Kassmann, Harnack inequalities for non-local operators of variable order, Trans. Amer. Math. Soc. 357 (2005), 837-850
    CrossRef

  2. R. F. Bass and D. A. Levin, Harnack inequalities for jump processes, Potential Analysis 17 (2002), 375-388.
    CrossRef

  3. R. F. Bass and D. A. Levin, Transition probabilities for symmetric jump processes, Trans. Amer. Math. Soc. 354(2002), 2933-2953.
    CrossRef

  4. K. Bogdan, A. Stos and P. Sztonyk, Potential theory for Lévy stable processes, Bull. Polish Acad. Sci. Math. 50 (2002), 361-372.

  5. Z.-Q. Chen and T. Kumagai, Heat kernel estimates for stable-like processes on d-sets, Stoch. Proc. Appl. 108 (2003), 27-62.
    CrossRef

  6. T. Komatsu, Markov Processes associated with certain integro-differential operators, Osaka J. Math. 10 (1973), 271-303.

  7. M. Rao, R. Song and Z. Vondraček, Green function estimates and Harnack inequality for subordinate Brownian motions, to appear in Potential Analysis.

  8. R. Song and Z. Vondracek, Harnack inequalities for some classes of Markov processes, Math. Z. 246 (2004), 177-202.
    CrossRef

  9. P. Sztonyk, Boundary potential theory for stable Lévy processes, Colloq. Math. 95 (2003), 191-206.

  10. D. Stroock, Diffusion processes associated with Lévy generators, Z. Wahrsch. Verw. Gebiete 32 (1975), 209-244.

  11. Z. Vondracek, Basic potential theory of certain nonsymmetric strictly α-stable processes, Glasnik Matematički 37 (2002), 193-215.

Glasnik Matematicki Home Page