Glasnik Matematicki, Vol. 40, No.1 (2005), 103-120.
GLOBAL IN TIME ESTIMATES FOR ONE-DIMENSIONAL
COMPRESSIBLE VISCOUS MICROPOLAR FLUID MODEL
Nermina Mujakovic
Department of Mathematics, Faculty of Philosophy,
University of Rijeka, Omladinska 14, 51 000 Rijeka, Croatia
e-mail: mujakovic@inet.hr
Abstract. An initial-boundary value problem for
one-dimensional flow of a compressible viscous heat-conducting
micropolar fluid is considered. It is assumed that the fluid is
thermodynamically perfect and polytropic.
A problem has a unique strong solution on
]0,1[ × ]0,T[,
for each T > 0.
Using this result we obtain a priori estimates for the solution
independent of T.
2000 Mathematics Subject Classification.
35Q55, 35Q35, 76N10.
Key words and phrases. Micropolar fluid,
strong solution, a priori estimates.
Full text (PDF) (free access)
DOI: 10.3336/gm.40.1.10
References:
- S. N. Antontsev, A. V. Kazhykhov, V. N. Monakhov,
Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, 1990.
- H. Brezis,
Analyse fonctionnelle, Masson, Paris, 1983.
- C. A. Eringen,
Theory of micropolar fluids,
J. Math. Mech. 16 (1966), 1-16.
- Ya. I. Kanel,
On Cauchy problem for gas dynamics equations with
viscosity,
Sibirsk. Math. Zh. 20 (1979), 293-306 (in Russian).
- J. L. Lions, E. Magenes,
Non-Homogeneous Boundary Value Problems and Applications, Vol.1,
Springer-Verlag, Berlin, 1972.
- G. Lukaszewicz,
Microplar fluids: theory and applications, Birkhäuser, Boston, 1999.
- A. Matsumura, T. Nishida,
The initial value problem for the equations of motion of viscous and heat-conductive gases,
J. Math. Kyoto Univ. 20 (1980), 67-104.
- N. Mujakovic,
One-dimensional flow of a compressible
viscous micropolar fluid: a local existence theorem,
Glasnik matematički 33(53) (1998), 71-91.
- N. Mujakovic,
One-dimensional flow of a compressible
viscous micropolar fluid: a global existence theorem,
Glasnik matematički 33(53) (1998), 199-208.
- N. Mujaković,
One-dimensional flow of a compressible viscous micropolar
fluid: The Cauchy problem, preprint.
Glasnik Matematicki Home Page