Glasnik Matematicki, Vol. 40, No.1 (2005), 103-120.

GLOBAL IN TIME ESTIMATES FOR ONE-DIMENSIONAL COMPRESSIBLE VISCOUS MICROPOLAR FLUID MODEL

Nermina Mujakovic

Department of Mathematics, Faculty of Philosophy, University of Rijeka, Omladinska 14, 51 000 Rijeka, Croatia
e-mail: mujakovic@inet.hr


Abstract.   An initial-boundary value problem for one-dimensional flow of a compressible viscous heat-conducting micropolar fluid is considered. It is assumed that the fluid is thermodynamically perfect and polytropic. A problem has a unique strong solution on ]0,1[ × ]0,T[, for each T > 0. Using this result we obtain a priori estimates for the solution independent of T.

2000 Mathematics Subject Classification.   35Q55, 35Q35, 76N10.

Key words and phrases.   Micropolar fluid, strong solution, a priori estimates.


Full text (PDF) (free access)

DOI: 10.3336/gm.40.1.10


References:

  1. S. N. Antontsev, A. V. Kazhykhov, V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, 1990.

  2. H. Brezis, Analyse fonctionnelle, Masson, Paris, 1983.

  3. C. A. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1966), 1-16.

  4. Ya. I. Kanel, On Cauchy problem for gas dynamics equations with viscosity, Sibirsk. Math. Zh. 20 (1979), 293-306 (in Russian).

  5. J. L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol.1, Springer-Verlag, Berlin, 1972.

  6. G. Lukaszewicz, Microplar fluids: theory and applications, Birkhäuser, Boston, 1999.

  7. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ. 20 (1980), 67-104.

  8. N. Mujakovic, One-dimensional flow of a compressible viscous micropolar fluid: a local existence theorem, Glasnik matematički 33(53) (1998), 71-91.

  9. N. Mujakovic, One-dimensional flow of a compressible viscous micropolar fluid: a global existence theorem, Glasnik matematički 33(53) (1998), 199-208.

  10. N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: The Cauchy problem, preprint.

Glasnik Matematicki Home Page