Glasnik Matematicki, Vol. 40, No.1 (2005), 87-102.

APPROXIMATION IN SMIRNOV-ORLICZ CLASSES

Daniyal M. Israfilov, Burcin Oktay and Ramazan Akgun

Department of Mathematics, Faculty of Arts and Sciences, Balikesir University, 10100 Balikesir, Turkey
e-mail: mdaniyal@balikesir.edu.tr
e-mail: burcin@balikesir.edu.tr
e-mail: rakgun@balikesir.edu.tr


Abstract.   We use the approximation properties of the Faber polynomials to obtain some direct theorems of the polynomial approximation in Smirnov-Orlicz classes.

2000 Mathematics Subject Classification.   30E10, 41A10, 41A20, 41A25, 46E30.

Key words and phrases.   Dini-smooth curve, Smirnov-Orlicz classes, polynomial approximation, Faber polynomials, maximal convergence.


Full text (PDF) (free access)

DOI: 10.3336/gm.40.1.09


References:

  1. S. Ya. Alper, Approximation in the Mean of Analytic Functions of class Ep(G), Gosudarstv. Izdat. Fiz-Mat. Lit., Moscow, 1960, 273-286 (in Russian).

  2. J. E. Andersson, On the degree of polynomial approximation in Ep(D), J. Approximation theory 19 (1977), 61-68.
    CrossRef

  3. N. K. Bary, A Treatise on Trigonometric Series, Volume I, Pergamon Press, Oxford-London-New York-Paris-Frankfurt, 1964.

  4. A. Cavus and D.M. Israfilov, Approximation by Faber-Laurent rational functions in the mean of functions of class Lp(Γ) with 1 < p < ∞, Approximation Theory Appl. 11 1(1995), 105-118.

  5. E. M. Dyn'kin, The rate of polynomial approximation in the complex domain, in: Complex analysis and spectral theory, Semin. Leningrad, 1979/80, Lect. Notes Math. 864 (1981), Springer, Berlin, 90-142.

  6. R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.

  7. D. Gaier, Lectures on Complex Approximation, Birkhäuser, Boston, Basel, Stuttgart, 1987.

  8. A. Guven and D.M. Israfilov, Polynomial approximation in Smirnov-Orlicz classes, Computational Methods and Function Theory 2 (2002), 509-517.

  9. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Translation of Mathematical Monographs Vol.26, R. I.: AMS, Providence, 1968.

  10. I. I. Ibragimov and D. I. Mamedhanov, Constructive characterization of a certain class of functions, Sov. Math., Dokl. 16 (1975), 820-823.

  11. D. M. Israfilov, Approximate properties of generalized Faber series in an integral metric, Izv. Akad. Nauk. Az SSR, Ser. Fiz.-Tekh. Mat. Nauk 1987 (1987), 10-14 (in Russian).

  12. D. M. Israfilov, Approximation by p-Faber polynomials in the weighted Smirnov class Ep(G,ω) and the Bieberbach polynomials, Constructive Approximation 17 (2001), 335-351.

  13. A. Yu. Karlovich, Algebras of singular integral operators with piecewise continuous coefficients on reflexive Orlicz spaces, Math. Nachr. 179 (1996), 187-222.

  14. V. Kokilashvili, On analytic functions of Smirnov-Orlicz classes, Studia Mathematica 31 (1968), 43-59.

  15. V. Kokilashvili, A direct theorem on mean approximation of analytic functions by polynomials, Sov. Math., Dokl. 10 (1969), 411-414.

  16. M. A. Krasnoselskii and Ya. B. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd. Groningen, 1961.

  17. Ch. Pommerenke, Boundary Behavior of Conformal Maps, Berlin, Springer-Verlag (1992).

  18. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.

  19. V. I. Smirnov and N. A. Lebedev, Functions of Complex Variable: Constructive Theory, The M. I. T. Press, Cambridge, Mass, 1968.

  20. P. K. Suetin, Series of Faber Polynomials, Gordon and Breach, Amsterdam, 1998.

  21. S.E. Warschawski, Über das Randverhalten der Ableitung der Abbildungsfunktion bei konformer Abbildung, Math. Zeitschrift 35 (1932).

Glasnik Matematicki Home Page