Glasnik Matematicki, Vol. 40, No.1 (2005), 87-102.
APPROXIMATION IN SMIRNOV-ORLICZ CLASSES
Daniyal M. Israfilov, Burcin Oktay and
Ramazan Akgun
Department of Mathematics, Faculty of Arts and Sciences,
Balikesir University, 10100 Balikesir, Turkey
e-mail: mdaniyal@balikesir.edu.tr
e-mail: burcin@balikesir.edu.tr
e-mail: rakgun@balikesir.edu.tr
Abstract. We use the approximation properties of the
Faber polynomials to obtain some direct theorems of the polynomial
approximation in Smirnov-Orlicz classes.
2000 Mathematics Subject Classification.
30E10, 41A10, 41A20, 41A25, 46E30.
Key words and phrases. Dini-smooth curve, Smirnov-Orlicz
classes, polynomial approximation, Faber polynomials, maximal
convergence.
Full text (PDF) (free access)
DOI: 10.3336/gm.40.1.09
References:
- S. Ya. Alper,
Approximation in the Mean of Analytic Functions of class
Ep(G),
Gosudarstv. Izdat. Fiz-Mat. Lit., Moscow, 1960, 273-286 (in Russian).
- J. E. Andersson,
On the degree of polynomial approximation in
Ep(D),
J. Approximation theory 19 (1977), 61-68.
CrossRef
- N. K. Bary,
A Treatise on Trigonometric Series, Volume I, Pergamon Press,
Oxford-London-New York-Paris-Frankfurt, 1964.
- A. Cavus and D.M. Israfilov,
Approximation by Faber-Laurent rational
functions in the mean of functions of class
Lp(Γ)
with 1 < p < ∞,
Approximation Theory Appl. 11 1(1995), 105-118.
- E. M. Dyn'kin,
The rate of polynomial approximation in the complex
domain, in: Complex analysis and spectral theory, Semin.
Leningrad, 1979/80, Lect. Notes Math. 864 (1981), Springer, Berlin, 90-142.
- R. A. DeVore and G. G. Lorentz,
Constructive Approximation, Springer-Verlag, Berlin, 1993.
- D. Gaier,
Lectures on Complex Approximation, Birkhäuser, Boston,
Basel, Stuttgart, 1987.
- A. Guven and D.M. Israfilov,
Polynomial approximation in Smirnov-Orlicz classes,
Computational Methods and Function Theory 2 (2002), 509-517.
- G. M. Goluzin,
Geometric Theory of Functions of a Complex Variable,
Translation of Mathematical Monographs Vol.26, R. I.: AMS,
Providence, 1968.
- I. I. Ibragimov and D. I. Mamedhanov,
Constructive characterization of a
certain class of functions,
Sov. Math., Dokl. 16 (1975), 820-823.
- D. M. Israfilov,
Approximate properties of generalized Faber series in
an integral metric,
Izv. Akad. Nauk. Az SSR, Ser. Fiz.-Tekh. Mat. Nauk 1987 (1987), 10-14 (in Russian).
- D. M. Israfilov,
Approximation by p-Faber polynomials in the
weighted Smirnov class Ep(G,ω) and the
Bieberbach polynomials,
Constructive Approximation 17 (2001), 335-351.
- A. Yu. Karlovich,
Algebras of singular integral operators with piecewise
continuous coefficients on reflexive Orlicz spaces,
Math. Nachr. 179 (1996), 187-222.
- V. Kokilashvili,
On analytic functions of Smirnov-Orlicz classes,
Studia Mathematica 31 (1968), 43-59.
- V. Kokilashvili,
A direct theorem on mean approximation of analytic
functions by polynomials,
Sov. Math., Dokl. 10 (1969), 411-414.
- M. A. Krasnoselskii and Ya. B. Rutickii,
Convex Functions and Orlicz Spaces, P. Noordhoff Ltd. Groningen, 1961.
- Ch. Pommerenke,
Boundary Behavior of Conformal Maps, Berlin, Springer-Verlag (1992).
- M. M. Rao and Z. D. Ren,
Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
- V. I. Smirnov and N. A. Lebedev,
Functions of Complex Variable: Constructive Theory, The M. I. T. Press, Cambridge, Mass, 1968.
- P. K. Suetin,
Series of Faber Polynomials, Gordon and Breach, Amsterdam, 1998.
- S.E. Warschawski,
Über das Randverhalten der Ableitung der
Abbildungsfunktion bei konformer Abbildung,
Math. Zeitschrift 35 (1932).
Glasnik Matematicki Home Page