Glasnik Matematicki, Vol. 40, No.1 (2005), 51-58.

A PROPERTY OF GROUPS OF ORDER ≤ pp(e+1) AND EXPONENT pe

Yakov Berkovich

Department of Mathematics, University of Haifa, Haifa 31905, Israel
e-mail: berkov@mathcs2.haifa.ac.il


Abstract.   Let G be a p-group of exponent pe and order pm, where m < p(e+1) if p > 2 and m ≤ 2(e+1) if p = 2. Then, if mhoe-1(G) is irregular, then p = 2, e = 2 and mhoe-1(G) = D8 × C2, where |C2| = 2 and D8 is dihedral of order 8.

2000 Mathematics Subject Classification.   20C15.

Key words and phrases.   Pyramidal, regular, absolutely regular, irregular and metacyclic p-groups, p-groups of maximal class.


Full text (PDF) (free access)

DOI: 10.3336/gm.40.1.06


References:

  1. Y. Berkovich, Groups of Prime Power Order, Part I, in preparation.

  2. Y. Berkovich, On subgroups and epimorphic images of finite p-groups, J. Algebra 248 (2002), 472-553.

  3. Y. Berkovich, Some consequences of Maschke's theorem, Algebra Coll. 5 (1998), 143-158.

  4. Y. Berkovich, On subgroups of finite p-groups, J. Algebra 224 (2000), 198-240.
    CrossRef

  5. Z. Janko, private communication.

  6. A. Mann, The power structure of p-groups, J. Algebra 42 (1976), 121-135.
    CrossRef

  7. M. Suzuki, Group Theory II, Springer, New York, 1986.

  8. B. Wilkens, On the upper exponent of a finite p-group, J. Algebra 277 (2004), 349-363.
    CrossRef

Glasnik Matematicki Home Page