Glasnik Matematicki, Vol. 40, No.1 (2005), 13-20.
ON SHIFTED PRODUCTS WHICH ARE POWERS
Florian Luca
Instituto de Matematicas, Universidad Nacional Autonoma de
Mexico, C.P. 58180, Morelia, Michoacan, Mexico
e-mail: fluca@matmor.unam.mx
Abstract. In this note, we improve upon results
of Bugeaud, Gyarmati, Sarkozy and Stewart concerning the size of a
subset A of {1,...,N} such
that the product of any two distinct elements
of A plus 1 is a perfect power. We also show that the
cardinality of such a set is uniformly bounded assuming the
ABC-conjecture, thus improving upon a result of
Dietmann, Elsholtz, Gyarmati and Simonovits.
2000 Mathematics Subject Classification.
11B75, 11D99.
Key words and phrases. Shifted products, perfect powers.
Full text (PDF) (free access)
DOI: 10.3336/gm.40.1.02
References:
- A. Baker and G. Wüstholz,
Logarithmic forms and group varieties,
J. Reine Angew. Math. 442 (1993), 19-62.
- Y. Bugeaud and A. Dujella,
On a problem of Diophantus for higher powers,
Math. Proc. Cambridge Philos. Soc. 135 (2003), 1-10.
CrossRef
- Y. Bugeaud and K. Gyarmati,
On generalizations of a problem of Diophantus,
Illinois J. Math. 48 (2004), 1105-1115.
- R. Dietmann, C. Elsholtz, K. Gyarmati and M. Simonovits,
Shifted products that are coprime pure powers,
J. Comb. Theor. A, to appear.
- A. Dujella,
An absolute bound for the size of Diophantine m-tuples,
J. Number Theory 89 (2001), 126-150.
CrossRef
- A. Dujella,
There are only finitely many Diophantine quintuples,
J. Reine Angew. Math. 566 (2004), 183-214.
- R. L. Graham, B. L. Rothschild, J. H. Spencer,
Ramsey Theory, John Wiley & Suns, 1980.
- K. Gyarmati,
On a problem of Diophantus,
Acta Arith. 97 (2001), 53-65.
- K. Gyarmati, A. Sárközy and C. L. Stewart,
On shifted products which are powers,
Mathematika 49 (2002), 227-230.
- P. Kövari, V. Sós and P. Túran,
On a problem of K. Zarankiewicz,
Colloq. Math. 3 (1954), 50-57.
- P. Túran,
On an extremal problem in graph theory (in Hungarian),
Mat. Fiz. Lapok 48 (1941), 436-452.
Glasnik Matematicki Home Page