Glasnik Matematicki, Vol. 39, No.2 (2004), 207-211.

COPRODUCTS FOR CLIFFORD ALGEBRAS

Pavle Pandzic

Department of Mathematics, University of Zagreb, Bijenicka 30, PP 335, 10002 Zagreb, Croatia
e-mail: pandzic@math.hr


Abstract.   We define a family of graded coproducts for Clifford algebras over finite dimensional real or complex vector spaces and study their basic properties.

2000 Mathematics Subject Classification.   11E88, 15A66, 16W30.

Key words and phrases.   Clifford algebra, superalgebra, graded coproduct, coalgebra.


Full text (PDF) (free access)

DOI: 10.3336/gm.39.2.02


References:

  1. M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology 3, Suppl. 1 (1964), 3-38.

  2. M. Atiyah and W. Schmid, A geometric construction of the discrete series for semisimple Lie groups, Invent. Math. 42 (1977), 1-62.

  3. A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Second edition. Mathematical Surveys and Monographs, 67. American Mathematical Society, Providence, RI, 2000.

  4. C. Chevalley, The algebraic theory of spinors, Columbia University Press, 1954.

  5. J.-S. Huang and P. Pandzic, Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185-202.

  6. J.-S. Huang and P. Pandzic, Dirac operators in representation theory, in Representations of Real and p-Adic Groups, Lecture Notes Series vol. 2 (Tan, E.-C., Zhu, C.-B., eds.) Singapore University Press and World Scientific Publishing, 2004, 163-219.

  7. J.-S. Huang, P. Pandzic and D. Renard, Dirac operators and Lie algebra cohomology, Preprint, 2003.

  8. H. B. Lawson and M.-L. Michelsohn, Spin Geometry, Princeton Univ. Press, 1989.

  9. B. Kostant, Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the ρ-decomposition C(G) = End Vρ x C(P), and the G-module structure of wedge G, Adv. Math. 125 (1997), 275-350.

  10. S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics 82, American Mathematical Society, 1993.

  11. R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1-30.

  12. N. R. Wallach, Real Reductive Groups, Volume I, Academic Press, 1988.

Glasnik Matematicki Home Page