Glasnik Matematicki, Vol. 39, No.2 (2004), 199-205.
BOUNDS FOR THE SIZE OF SETS WITH THE PROPERTY D(n)
Andrej Dujella
Department of Mathematics, University of Zagreb,
Bijenicka cesta 30, 10000 Zagreb, Croatia
e-mail: duje@math.hr
Abstract. Let n be a nonzero integer and a1 <
a2
< ... < am
positive integers such that
aiaj + n
is a perfect square for all
1 ≤ i < j ≤ m.
It is known that m ≤ 5 for
n = 1.
In this paper we prove that
m ≤ 31 for
|n| ≤ 400 and
m < 15.476 log|n|
for |n| > 400.
2000 Mathematics Subject Classification.
11D45, 11D09, 11N36.
Key words and phrases. Diophantine m-tuples,
property D(n), large sieve.
Full text (PDF) (free access)
DOI: 10.3336/gm.39.2.01
References:
- A. Baker and H. Davenport,
The equations 3x2 - 2 = y2 and
8x2 - 7 = z2,
Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
- M. A. Bennett, On the number of solutions of simultaneous
Pell equations, J. Reine Angew. Math. 498 (1998), 173-199.
- E. Brown, Sets in which xy + k is always a square, Math.
Comp. 45 (1985), 613-620.
- L. E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea,
New York, 1966, pp. 513-520.
- Diophantus of Alexandria, Arithmetics and the Book of Polygonal
Numbers, (I. G. Bashmakova, Ed.), Nauka, Moscow, 1974 (in
Russian), pp. 103-104, 232.
- A. Dujella, Generalization of a problem of Diophantus, Acta
Arith. 65 (1993), 15-27.
- A. Dujella, An absolute bound for the size of Diophantine
m-tuples, J. Number Theory 89 (2001), 126-150.
- A. Dujella, On the size of Diophantine m-tuples,
Math. Proc. Cambridge Philos. Soc. 132 (2002), 23-33.
- A. Dujella, There are only finitely many Diophantine
quintuples, J. Reine Angew. Math. 566 (2004), 183-214.
- A. Dujella and A. Pethö, A generalization of a theorem of
Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49
(1998), 291-306.
- P. X. Gallagher, A larger sieve, Acta Arith. 18
(1971), 77-81.
- P. Gibbs, Some rational Diophantine sextuples, preprint,
math.NT/9902081.
- H. Gupta and K. Singh, On k-triad sequences,
Internat. J. Math. Math. Sci. 5 (1985), 799-804.
- K. Gyarmati, On a problem of Diophantus,
Acta Arith. 97 (2001), 53-65.
- S. P. Mohanty and A. M. S. Ramasamy, On Pr,k sequences,
Fibonacci Quart. 23 (1985), 36-44.
- J. B. Rosser and L. Schoenfeld, Approximate formulas for some
functions of prime numbers, Illinois J. Math. 6 (1962),
64-94.
- A. Sárközy and C. L. Stewart, On prime factors of
integers of the form ab + 1, Publ. Math. Debrecen 56
(2000), 559-573.
- I. M. Vinogradov, Elements of Number Theory, Nauka, Moscow, 1972
(in Russian).
Glasnik Matematicki Home Page