Glasnik Matematicki, Vol. 39, No.1 (2004), 155-170.

ON RECTANGULAR INVERSE SYSTEMS OF TOPOLOGICAL SPACES

Sibe Mardešić

Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10002 Zagreb, P.O. Box 335, Croatia
e-mail: smardes@math.hr


Abstract.   For every cofinite inverse system of compact Hausdorff spaces X = (Xλ, pλλ', Λ), there exists a cofinite inverse system of compact polyhedra Z = (Zλτ, rλλ'ττ', Λ × T) and there are mappings uλτ : Xλ Zλτ, (λ, τ) Λ × T, such that uλτ pλλ' = rλλ'ττ' uλ'τ, for τ ≤ τ'. Moreover, for every λ Λ, the mapping uλ : Xλ Zλ = (Zλτ, rλλ'ττ', T), given by the mappings uλ'τ, τ T, is a limit of Zλ. If mappings pλ : X Xλ form a limit p : X X, then the mappings vλτ = uλτ pλ : X Zλτ form a limit v : X Z. An analogous result holds for cofinite inverse systems of topological spaces and ANR-resolutions (polyhedral resolutions).

2000 Mathematics Subject Classification.   54B35.

Key words and phrases.   Inverse system, rectangular inverse system, inverse limit, iterated inverse limit, compact Hausdorff space, compact metric space, polyhedron, ANR.


Full text (PDF) (free access)
Glasnik Matematicki Home Page