Glasnik Matematicki, Vol. 39, No.1 (2004), 155-170.
ON RECTANGULAR INVERSE SYSTEMS OF TOPOLOGICAL
SPACES
Sibe Mardešić
Department of Mathematics, University of Zagreb,
Bijenička cesta 30, 10002 Zagreb, P.O. Box 335, Croatia
e-mail: smardes@math.hr
Abstract. For every cofinite inverse system of compact
Hausdorff spaces
X =
(Xλ,
pλλ', Λ),
there exists a
cofinite inverse system of compact polyhedra
Z =
(Zλτ,
rλλ'ττ',
Λ × T)
and there are mappings
uλτ :
Xλ
→
Zλτ,
(λ, τ) ∈
Λ × T,
such that
uλτ
pλλ' =
rλλ'ττ'
uλ'τ,
for τ ≤ τ'.
Moreover, for every
λ ∈ Λ,
the mapping
uλ :
Xλ →
Zλ =
(Zλτ,
rλλ'ττ', T),
given by the mappings
uλ'τ,
τ ∈ T,
is a limit of
Zλ. If mappings
pλ : X →
Xλ
form a limit
p : X
→
X, then the mappings
vλτ =
uλτ
pλ :
X →
Zλτ
form a limit v : X
→
Z. An analogous result holds for cofinite inverse
systems of topological spaces and ANR-resolutions (polyhedral
resolutions).
2000 Mathematics Subject Classification.
54B35.
Key words and phrases. Inverse system, rectangular
inverse system, inverse limit, iterated inverse limit, compact
Hausdorff space, compact metric space, polyhedron, ANR.
Full text (PDF) (free access)
Glasnik Matematicki Home Page