Glasnik Matematicki, Vol. 35, No.1 (2000), 75-87.
OPERATOR REPRESENTATIONS OF
N∞+-FUNCTIONS
IN A MODEL KREIN SPACE
Lσ²
Andreas Fleige
Am Suedwestfriedhof 27, 44137 Dortmund, Germany
e-mail: fleige@feat.mathematik.uni-essen.de
Abstract. We introduce the class
N∞+ of all complex functions
Q such that Q+(z) :=
z · Q(z) is a
Nevalinna function. If
0 ∈ D(Q)
and limy → ∞ Q(iy) = 0
we prove an integral representation Q(z) =
∫-∞∞
1/(t-z) dσ(t)
with a nonmonotonic function
σ. If in
particular Q+ is an R1-function
we obtain an operator representation Q(z) =
[(A - z) -1
F-, F-]σ
with a selfadjoint, nonnegative and boundedly invertible
multiplication operator A
in the model Krein space
(Lσ²,
[.,.]σ)
and an element F- ∈
Lσ².
The nonsingularity of the critical point infinity of
A
makes this representation unique up to a Krein space isomorphism.
1991 Mathematics Subject Classification.
47B50, 30E20, 46C20, 47B38.
Full text (PDF) (free access)
Glasnik Matematicki Home Page