Glasnik Matematicki, Vol. 35, No.1 (2000), 75-87.

OPERATOR REPRESENTATIONS OF N+-FUNCTIONS IN A MODEL KREIN SPACE Lσ²

Andreas Fleige

Am Suedwestfriedhof 27, 44137 Dortmund, Germany
e-mail: fleige@feat.mathematik.uni-essen.de


Abstract.   We introduce the class N+ of all complex functions Q such that Q+(z) := z · Q(z) is a Nevalinna function. If 0 ∈ D(Q) and limy → ∞ Q(iy) = 0 we prove an integral representation Q(z) = -∞ 1/(t-z) dσ(t) with a nonmonotonic function σ. If in particular Q+ is an R1-function we obtain an operator representation Q(z) = [(A - z) -1 F-, F-]σ with a selfadjoint, nonnegative and boundedly invertible multiplication operator A in the model Krein space (Lσ², [.,.]σ) and an element F-Lσ². The nonsingularity of the critical point infinity of A makes this representation unique up to a Krein space isomorphism.

1991 Mathematics Subject Classification.   47B50, 30E20, 46C20, 47B38.


Full text (PDF) (free access)
Glasnik Matematicki Home Page