Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
e-mail: pandzic@math.mit.edu
Abstract. Let G0 be a connected real
semisimple Lie group with finite center. Let K0 be a
maximal compact subgroup of G0. Denote by
the complexification of the Lie algebra of G0
and by K the complexification of K0.
Let T be a complex torus in K
and
its Lie algebra. We can consider the categories
(,K) and
(,T)
of Harish-Chandra modules for the pairs
(,K) and
(,T).
Clearly, (,T)
is a full subcategory of
()
and (,K)
is a full subcategory of
(,T).
The natural forgetful functors have right adjoints
T,
K and
K,T.
These adjoints are called the Zuckerman functors.
Zuckerman functors are left exact and have finite right cohomological
dimension. Therefore, one can consider their right derived functors.
They are related by the obvious Grothendieck spectral sequence
Rp
K,T
(Rq
T(V))
Rp+q
K(V),
The authors first show that a bounded complex (satisfying certain finiteness conditions) is isomorphic to the direct sum of its cohomologies if and only if its endomorphism algebra has maximal possible dimension. Next, they analyze the derived functors of the right adjoint to a forgetful functor. In the final section, they prove a decomposition formula for derived Zuckerman functors for tori, which then leads to their main results.
1991 Mathematics Subject Classification. 22E46.