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REAL SYMMETRIC BANACH *-ALGEBRAS

J. Vukman, lvlaribor

Abstract. In this paper new resu Its in the thcory of real symmetric Banach
--algebras are presented. The main resu Its characterizc such algebras among all
real Banach *-algebras.

Introduction

All algebras in this paper will be supposed to possess identity
elements. The identity element will be denoted by e and we sha11
assume that Il el! ~ 1. A real Banach algebra A is called real Banach
*-algebra if there exists an involution (linear anti-isomorphisrn of period
two) x 1--+ x* on A. An element he A is said to be herrnitian if h* "-' h
and skew-hermitian if h* = - h. An element u E A is said to be uni-
tary if u=u = uu" = e. An element X E A is said to be normal if x*x =
= xx*. The sets of all herrnitian, skew-herrnitian, unitary and normal
elements of A will be denoted by H (A), SH (11), U (A) and N (A),
respectively. It is easy to see that cach element x E A has a unique
decomposition x=h+k with hEH(A), kESH(A). An element xEA
is normal if and only if h and k commute. In the study of real Banach
*-algebras it is very useful that any real Banach *-algehra can he iso-
metrically and isomorphically emhedded in a certain complex Banach
*-algebra. This can be done as follows, Let A be a real Banach *-algebra.
Denote by Ac the cartesian product A x A. Then Ac becomes a com-
plex *-algebra if we definc operations and the involution as follows

(X,y) + (u, v) = (x + u,y + v), (a + f3i) (x,y) =
= (ax - f3y, ay + f3x), (x, y) (u, v) = (xu - yv, xv + yu),

(X,y)* = (x*, -y*).

The mapping x 1--+ (x, O) is an isomorphism of A into Ac' It is possible
to introduce a norm in Ac, such that Ac bccomes a complex Banach
--algebra and the isomorphism X 1--+ (x, O) an isometry (see [6, p. 5]
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for details), The Banach --algebra Ac is calIed the complexification
of A. We shalI write x + iy for an element (x, y) E Ac' The spectrum
SPA (x) of x E A is defined to be equal to the spectrum of x as an ele-
ment of the cornplexification Ac of A. We shall usually write sp (x)
for SPA (x). We shall write r (x) for the spcctral radius of X E A, and
p ex) for l' (X*X)1/2. An element Iz E H (A) is said to be positive, h > °
if sp (h) > 0, and nonnegative, h ;> ° if sp (h) ;> O. The radical of
A will be denoted by rad (A).

In the first section of this paper we are investigating real symmetric
Banach *-algebras. The main attention is devoted to positive hermitian
functionals on such algebras, and to characterizations of symmetric
Banach *-algebras. V. Ptak proved in [S] that the inequality r (x) <;
< p (x) characterizes complex symmetric Banach *-algebras among
all complex Banach --algebras. In the real case the inequality r (x) <;
< p (x) does not guarantee the symmetry of a Banach *-algebra, although
this incquality holds also in real syrnmetric Banach ==algebras. For
characterizations of real symmetric Banach --algebras in terms of spec-
tral radius stronger assumptions are necessary. \X'e pr ove, for example,
that a real Banach --algebra A is symmetric if and only if l' (X)2 <
<; l' (x*x + y*y) holds for all pairs x, y E A. All results are proved
without the assumption that involution in continuous 01' localIy conti-
nuous.

In the second section we prave same characterizations of real
hermitian B*algebra~ and same charactcrizations of real hermitian
Banach --elgebras with an equivalent B* norm. Some of those results
were proved by L. Ingelstam [2] and T. W. Palmer [4] by different
methods.

In this paper wc use methods from the complex case, especially
those presented in V. Ptak's paper [S].

1. Real syrnrnetr ic Banach *-algebras

A lcmma of J. W. M. Ford [1] makes it possible to develop much
of the theory of complex Banach *-algebras without the assumption
that the involution is continuous ar 10ca11ycontinuous. Ford's square
root lemma can be proved also for real Banach *-algebras (see the
proof of Lernma 1 in [4]).

LEMMA 1 (J. W. M. Ford, T. W. Palmer). Let A be a real
Banach «-algebra. Let Iz E H (A), and suppose that r (e - Iz) < 1. Then
there exists UE H (A), such thai u C011111luteswith h and u2 = Iz. More-
over, ii sp (h) is positive, then so is sp (u).

DEFINITION 2. Let A be a real Banach »<algebra. We say that
A is hermitian ii sp (h) is real for eacli Il E H (A), skezo-hermitian if
sp Ck) is imaginary for eacli k E SH (A), and symmetric ii Ce + x*x) - 1

exists for each x E A.
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It is obvious that a complex Banach *-algebra is hermitian if
and only if it is skew-hermitian. It is routine to prove that any complex
symmetric Banach *-algebra is hermitian. Conversely, any complex
hermitian Banach »-algebra is symmetric. This result was first proved
by S. Shirali and J. W. M. Ford [7]. T. \,\1. Palmer (Lemma 1 in [4])
show ed that the methods developed in [7] can be used also for the real
case and proved the following

LEMMA 3 (S. Shirali, J. W. M. Ford, T. W. Palmer). A real
hermitian and skeio-hermitian Banach «-algebra is symmetric.

In the theorem below results presented by V. Ptak [5] coneerning
complex symmetric Banach .•-algebras are extendcd to the real casc,

THEOREM 4. Let A be a real symmetric Banach «-algehra. Then
the [ollotoing statements are valid.

l° To each positive hE H (A) there corresponds positiue ti E H (A),
such that h = u'";

2° r (x) 4; p (x) for each X E A;

3° l' (uv).;; r (u) T (v) for eacli pair ti, v E H (A);

4° P (xy).;; p (x) p (y) for each pair x, y E A;

5° X E rad (A)~· P (x) = O;

6° If UE H (A) and v E H (A) are nonnegative, then so is u + V;

'l" r (u + v) <; r (u) + r (v) for each pair ti, V E H (A);

8° r (t (x ± x*) <; p (x) for each X E A;

9° P (x + y) <; p (x) + p (y) for eacli pair x,y E A.

Prooj. l° A simple consequenee of Lemma 1. 2° It is possible to
use the proof from the eomplex case (see the proof of Theorem (5,2)
in [5] for details). 3° The proof is based on the inequality r (x) <; p (x)
and the faet that in any Banaeh algebra r (xy) = r (yx) (see the proof
of (5,3) in [5]). 4° A simple eonsequenee of 3°. 5° If x E rad (A) then
x*x E rad (A), and by Theorem (2.3.4.) in [6, p. 56] r (x*x) = O. Con-
versely, if p (x) = O the n for eaeh y E A we have l' (YX) <.;; p (yx) <;
<; p (y) p (x) = O. Since r (yx) === O for eaeh y E A, we have y E rad (A).
6° Let u and v be nonnegative. We have to prave that u + v is also

nonnegative. Let t be an arbitrary positivc real number. Then ~ e + u,

~ e + v are positive. It follows from the first statement of this theorem,

that +e + u = h2, + e + v = P for same positive h and k. We have

u + v + te = h2 + P = h Ce+ h-1Ph-1)h = h (e + (kh-1)*(kh-1»h.
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Here h is regular, and so is e + (kh-1)* (kh-1), sinee A is symmetrie.
Therefore - t rf sp (u + vj. T" A simple eonsequenee of 6°. 8° Let
x ccc u + v, UE H (A), v E SH (A) be an arbitrary veetor. Then x*x +
+ xx* = 2 (u2 - v2). Obviously r (u2 - v2) e - (u2 - v2) > O. Since
_.- v2 :> 0, u2 :> 0, and the sum of nonnegative elements is nonnega-
tive, we obtain r (u2 - v2) e - u2 :> 0, r (u2 - v2) e + v2 :> O. There-
fore r (u2) < r (u2 - v2), r (v2) < r (u2 - v2). Hence r G (x + X*))2 =

= r (U)2 < t r (x*x + xx*), r et (x - X*))2 = r (V)2 < t r (x*x + xx*).
Using the subaditivity of the speetral radius on H (A), we obtain
r (t (x ::+: X*))2 < .~.r (x*x -+ xx*) <Ii (1' (x*x) -+ r (xx*)) = P (X)2, 9°
The subaditivity of the function p fo11owsfrom the subaditivity of the
spectral radius on H (A), the staternent 8°, and the submultiplicativity
of the function p. (See the proof of (5,8) in [5] for details.) The proof
of the theorem is complete.

V. Ptak proved that the inequality r (x) < p (x) characterizes com-
plex symmetric Banach --ulgebras among all complex Banaeh *-al-
gebras. \'Ve proved in the theorem above that this inequality holds
also in real symmetric Banach *-algebras. The converse is not true.
There exist real Danach =algebras which are not symmetric, although
the inequality l' (x) < p (x) holds. In the theorem below we shall prave
that the inequality r (x) < p (x) implies symmetry of real Banach
*-algebra if we assume that the algebra is hermitian. Similar1y, other
charactcrizations of complex symmetric Banach *-algebras, included
in Theorem (5,10) [5], are extended to the real ease.

THEORElv1 5. Let A be a real Banach =algebra. Then the follo-
wing statements are equivalent.

]o A is symmetric.

2° A is hermitian and l' (x) < p (x) for all x E A.

3° A is hermitian and r (x) < p (x) for all x E N (A).

4° A is hermitian and l' (x) = p (x) for all x E N (A).

5° A is hermitian and l' (t (x ± x*)) < p (x) for all x E A.

6° A is hermitian and p (x + y) < p (x) -+ p (y) for all x, y E A.

7° A is hermitian and r (u) = 1 for all li E U (A).

8° A is hermitian and l' (u) < 1 for all ti E U (A).

9° A is hermitian and r (u) < a for all u E U (A) and some a > O.

10° A is hermitian and skeui-hermitian.

Proof. The implication 10° => 10 is contained in Lemma 3. The
implication lO=> 2° follows from the fact that each real symmetric
Banach *-algebra is hermitian and from Theorem 4. The implications
2° => 3° and 3° => 4° are trivial. Assume 4° and prave 10°. \'Ve have to
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prove that the spectrum of each skew-hermitian element is imaginary.
Suppose, on the contrary, there exists akE SH (A) such that a +
+ (Ji E sp (k), a i= O. Then for each real number t the element te + k
is normal and t + a + (Ji E sp (te + k). Using condition 4° we obtain
(t + a)2 + (J2 <; r (te + kr = r «te -+ k)* (te + k) = r (t2e - k2) <;
<; [2 + r (k)2. Therefore 2at + a2 + (J2 <; r (k)2. Since t is an arbi-
trary real number, the contradiction is obvious. The implication l° =!>

=!> 5° is contained in Theorem 4. Assume 6° and prove 5°. Since x +
+ x* is hermitian and x - x* skew-hermitian, we have r (x ± x*) =
= p (x ± x*). Therefore r et (x ± x*)) = p (} (x ± x*)) .:, ~ p (x) +
+ -~p (x*) = p (x). Assume 5° and prove 3°. Let x = h + k, Iz E H (/1),
k E SH (/1) be a normal element. Then, since h and k comrnute, we
have r (x) <; r (h) + r (k). Using 5° we obtain r (x) < r (h) + r (k) <;
<; p (x) + p (x) = 2p (x). Therefore r (x) <; 2p (x) for each x E N (A).
Since x E N (A) implies x" E N (A) it follows that

r (x") <; 2p (x"), x E N (A). (5.1.)

It is easy to obtain p (x") c-= p (x)". Substituting this in (5.J.) we obtain
r (x)" = r (x") < 2p (X)", hence r (x) <; 21/np (x) for each intcger n.
The proof of the implication 5° => 3° is cornplete. The implications
T" =!> 8° => 9° are trivial. Let us. prove the implication 9° => 8°. If UE

E U (A) then also un E U (A) for each integer n, so that r (u) = r (u")!/n <;
<; al/II. Therefore r (u) <; L The implication 8° =!> 7° is a consequcnce
of the fact that u E U (A) implies u- 1 E U (A). Let us prove that 7°
implies 10°. We have tO prove that A is skew-hermitian. Let k, r (k) <
< 1 be a skew-hermitian element. \Ve shalI consider k as an element
of Ac' Let C be a maximal commutative *-subalgebra of Ac containing
k. Then spc (k) = SPAc (k). Since r Ce - (e -I- k2») = r (k2) < 1, there
exists h e H (A) n C such that e + P = h2. The element u -= 12 + k
is unitary. Let f be an arbitrary multiplicative 1inear functional on C.
Since r (u) = I we have

f (h) + f (k) = f (u) = exp (ai),
(5.2.)

f (h) - f (k) = f (u*) = exp «(Ji).

Since A is hermitian f (h) is real. It follows from (5.2.) that

(5.3.)

At the same timef(h)2 -f(k)2 =f(112 - P) =f(u*u) =f(e) = L
Therefore j'{e)? =f(h)2 - 1 and (5.3.) implics thatf(k) is imaginary.
Since f was an arbitrary multiplicative linear functional on C it follows
that spc (k) = SPAc (k) is imaginary. The proof of the implication
7° => 10° is complete. Since the implication 1° => 6° is inc1uded in
Theorem 4 and the implication 40

=!> T" is obvious the proof of the theo-
rem is complete.
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No\V we shalI list same elementary results concerning positive
functionals on real Banach *-algebras.

DEFINITION 6. Let A be a real Banach +algebra. Let f be a
linear functional on A. W'e call a functional f hermitian if f (x*) = f (x)
for eacli x E A, skezo-hermiiian zf f (x*) = - f (x) for each x E A, positive
lf f (x*x) :> O for each X E A, and toeakly positive if f (h2) ;> O for each
hE H (A).

LEMMA 7. Let A be a real Banacli +algebra and f apositive
hermitian functional. Then the [ollounng statements are valid.

l° If (y*x)12 <; f (x*x) f (y*y) fOT all pairs x, y E A;

2° If (xW <: f (e)f (x*x) fOT all x E A.

Proo]. Obviously 2° follows from 1°. The proof of 1° is simi1ar
to the proof in the complex case. (See [6, p. 212] for details.)

LEMMA 8. Let A be a real Banach +algebra. Par arbitrary weakly
positive Iinear functional f the inequality If (h)1 <: f (e) l' (h) is valid for
each hE H (A). If f is positive and hermuian zoe have

1° lf(x)12 <;f(e)Z r (x*x) for each xEA;

2° f(x*xx*x) <; r (x*x)f(x*x) for each x E A.

Proof. Let h be in H (A) and 8 an arbitrary positive real number.
Denotc (1' (h) + 8)-1 h by k. Since r (e - (e - k)) < 1 there exists
UE H (A) such that e - k = UZ by Ford's square root lemma. Hence
f (e - k) = f (u2) ;> O. This imp1ies f (h) <: f (e) (1' (h) + s). There-
fore f (h) <: f (e) r (h). If we replace 17 by - h, we obtain If (17)1 <
<; f (e) l' (h).

Let f be positive and hermitian. Then using Lemma 7 and f (x*x) <
<: f (e) T (x*x) we obtain If (x)12 < f (e)2 l' (x*x). It remains to prove
2°. If f is positive and hermitian, then a routine calcu1ation shows that
so is g defined by g (x) = f (a*xa). Since g is positive and herrnitian,
we have g (xx") <: g (e) r (xx"). If we replace a by x, we obtain f (x*xx*x)
<: f(x*x) r (x*x).

It is well known that each positive functional on a unital com-
plex Banach *-algebra is bounded (see (2,6) in [5]). The same is true
for positive hermitian functionals on unita1 real Banach *-algebras.
This can be proved in the following way, Denote by f apositive her-
mitian functional acting on a real Banach *-a1gebra A, and define the
linear functional P on Ac as fo11ows P (x + iy) = f (x) + if (y), x +
+ iy E Ac' Then routine ca1culation shows that F is positive functional
on complex Banach --algebra Ac and therefore bounded. It follows that
the functional f is bounded too.
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We can say more about positive functionals on a real Banach
*-algebra if algebra is symmetric. The complex version of the fo11o-
wing resuits concerning positive functionals can be found in [5].

PROPOSITION 9. Bach weakly positive functional on a real sy-
mmetric Banacli «-algebra is positive.

Proof. Let x E A be an arbitrary element and e arbitrary positive
real number. Then ee + x*x is positive since the algebra is symmetric.
By Theorem 4 there exists ti E H (A) such that ee + x*x = uz. There-
fore f (lOe+ x*x) = f (u2) ;;. O since f is weakly positive, This implies
f(x*x);;. O.

The theorem below is similar to (6,4) in [5] proved for the corn-
plex case.

THEOREM 10. Let A be a real symmetric Banach »-algebra. Let
f be a linear functional on A such that f (e) > O. Then the following eon-
ditions are equivalent.

}o f is hermitian and If (h)1 < f (e) r (h) for each h e H (A).

2° fis positive and hermitian.

3o f is weakly positive and hermitian.

4° If (x)1-< f (e) p (x) for each X E A.

5° If (x)1 -< f (e) p (x) for eacb X E N (A).

Proo]. Assume 1° and prove 2°. The proof is borrowed from the
proof of (6,3) in [5]. We may assume that f (e) = 1. Let us take hE
E H (A) and write

a = inf{I.},
). E sp eh)

p = sup {Al,
AESP eh)

Q = Ha + P), <5 = HP - c).

Since a -< sp (h) -< P we have r (h - Qe) -< O. By the hypotheses of
the theorem we have If (h) - QI = If (h - Qe)1 -< r (h - Qe) < O. The-
refore

a = e - 0-< f (h) -< e + O = (1. (10.1.)

Let X be an arbitrary element in A. Since A is symmetric, we have
sp (x*x) ;;. O. Using (10.1.) we obtain f (x*x) ;;. O. The implications
2° => 3° and 4° => 5° are trivial. The imp1ication 3° => 4° follows from
Proposition 9 and Lemma 8. It remains to prove the implication 5° =>
=> l°. Let h be hermitian. Then If (h)1 -< f (e) p (h) = f (e) r (h). There-
fore we have only to prove that the functional fis hermitian. For this
purpose let us write f in the form f = I,+ f2' Here I, is hermitian
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and f2 a skew-hermitian functional. We shall prave that f2 = O. It
suffices to prave that f2 Ck) = O for each k E SR (A). Let k be in SR (A)
and let t be an arbitrary real number. The element x = ce + k is nor-
mal. Using p (X)2 = P (x*x) and the subaditivity of p we obtain

P (X)2 < t2 + p Ck)2.

Using condition 5° and (10.2.) we obtain

(10.2.)

If (x)12 = (tf1 (e) +I, (kW < f (e)2 p ex)2 «
< t2f(e)2 + f(e)2 p (k)2.

Since f (e) = I, (e) we have finaly

2tf (e) fz (k) + f2 (k)2 « f (e)2 p (k)2

for each real number t. This implies f2 (k) = O. The proof of the
theorem is complete.

The theorem above allows us to prave two characterizations of
real symmetric Banach --algebras in terms of positive functionals.

TREOREM 11. Let A be a real Banach +algebra. The following
statements are equivalent.

1° A is symmetric.
2 ° To each proper left. ideal leA there corresponds apositive

hermitian functional f, f (e) = 1, such that f (1) = O.

3° For eacli xEA supf(x*x) = P (X)2, f apositive hermitian func-
tional such that f (e) = 1.

Proof. Let us assume l° and prave 2°. We can define a linear func-
tional f on the linear sub space X = {x + te; x E I, t real} as follows

f(x + te) = t.

It is evident that f (e) = 1, f (1) = O and that tE sp (x + te). Since A
is symmetric, we have r (x + te) < p (x + te). Us ing that inequality
and the fact that t e sp (x + te), we obtain If (x + te)1 = Itl <: r (x +
+ te) « p (x + te). The function p is subaditive since A is symmetric.
Renee by Hahn-Banach theorem f can be extended to the whole of
A satisfying the condition If (x)1 .;; p (x) for each x E A. By Theorem
10 f is positive and hermitian. The implicatian 1° => 2° is so proved.
Let us prove the implicatian 2° => 3°. Since sup f(x*x) <: p (X)2 by

f (e) = 1
Lemma 8, it suffices to prove that there exists a hermitian positive
functionalf,f (e) = 1, such thatf (x*x) = P (X)2. The element r (x*x) e-
- x*x is without Ieft inverse. Hence r (x*x) e - x*x is contained in
some proper left ideal I. By assumption there exists apositive hermitian
functional f, f (e) = 1, such that f (1) = O and therefore f (r (x*x) e -
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- x*x) = O. The implication 2° => 3° is so proved. It remains to prave
the implication 30 => l°. The pro of of this implication is borrowed
from the proof of Theorem (4.7.2l.) in [6]. Let x be given, let us wri-
te q for r (x*x) and set u = qe - x*x. For arbitrary positive hermitian
functionalf,f(e) = 1, we obtain j'{rz-') = 122 - 2ef(x*x) + f (x*xx*x).
Combining this equation with f (x*xx*x) <: ef (x*x) (see Lemma 8),
we obtain j'{e.") <: 122 -ef(x*x) <: 122, Since f was an arbitrary posi-
tive hermitian functional such that f (e) = I it follows from assumption
that r (U)2 = r (u2) = sup f (u2) <: C2. Hence r (u) <: cor r (1' (x*x) e -

I(e) ~ 1
- x*x) <: r (x*x). This inequality implies that A is symmetric. The
proof of the theorem is complete.

The cornplex version of the equivalence l° -<c> 2° was proved by
N. Namsraj [3]. The equivalence 10 <c> 3° in the complex case is a
well known result, first proved by D. A. Raikov (see Theorem 4.7.21.
in [6] and Theorem (6,5) in [5]).

We mentioned that in the real case the inequality r (x) <: p (x)
does not guarantee the symmetry of a real Banach --algebra. For cha-
racterizations of real symmetric Banach --algebras in terms of spectral
radi us stronger assumptions are necesary. In the theorem below some
results of this kind are presented.

TREOREM 12. Let A be a real Banaeh »-algebra. The following
eonditions are equivalent.

l° A is symmetric.

2° r (X)2 <: r (x*x) for all X E A and r (x*x) <: r (x*x + y*y) for
all pairs x, y E A.

3° r (X)2 <: r (x*x) for all x E N (A) and l' (x*x) < l' (x*x + y*y)
for all commuting pairs x, y E N (A).

4° r (X)2 <: r (x*x + y*y) for all x, y E A.

5° r (X)2 <: r (x*x + y*y) for all commuting pairs x, y EN (A).

Proof. Assume l° and prove 2°. Since A is symmetric we have
r (X)2 < r (x*x) for each x E A by Theorem 4. Using the result in
Theorem 11 we obtain r (x*x) = sup f (x*x) <: sup f (x*x + y*y) =

l(e)~l l(e)~l
= r (x*x + y*y). The implications 2° => 4° => 5°, 2° => 3° => 5° are ob-
vious. It remains to prove the implication 5° => l°. Let B be an arbi-
trary closed commutative *-subalgebra of A. Let x + xy E B; be unitary.
Then x*x + y*y = e. Since x and y commutc we have r (x + iy) <
< r (x) + r (y). Using the assumption we obtain r (x + iy) < l' (x) +
+ r (y) < 2r (x*x + y*y) 1/2 = 21' (e) = 2. Since we proved that l' (x +
+ xy) <: 2 for arbitrary x + xy E U CBc) it follows that B; is symmetric
(see Theorem (5,10) in [5]). Therefore B is also symmetric. We proved
that each closed commutative --subalgebra of algebra A is symmetric.
This implies that A is symmetric. The proof of the theorem is completc.
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2. Real B* algebras

DEFINITION 13. A real Banach +algebra is called a Bralgebra
if Ilx*xll = IIxl12 for each x E A.

The well known result of 1. M. Ge1fand and M. A. Naimark that
every complex B*algebra is isometrically *-isomorphic to some C*
algebra is not true in real case (see [2, p. 265]). L. Ingelstarn [2] proved
that the Gelfand-Naimark theorem holds for real B*algebras if we
assume that real B* algebra is also symmetric. Similar result was obtai-
ned by T. Palmer [4). T. Palmer considered real Banach *-algebras
with generalizcd involution. Symmetry of real B* algebra follows from
weaker assumption that B* algebra is hermitian. Using suitable charac-
terizations of real symmetric Banach *-algebras from the first scction,
this can be proved in a very simple way.

PROPOSITION 14. A real hermitian Bralgebra is symmetric.

Proo]. From Ilx*xll = IIxl12 ir follows that l' (h) = Ilhll for each
hE H (A). Then p (X)2 = I\x*xl\ = I\xV Hence p (x) is a norm and
since A is hermitian it follows from Theorem 5 that A is symmetric.

The characterizations of real hermitian B* algebras and characte-
rizations of real hermitian Banach *-algebras with equivalent B* norm,
presented in the theorems below, are similar to some results obtained
by L. Ingelstam [2] and T. Palmer [4]. The proofs presented here
seem to be simpler.

THEOREM 15. Let A be a real Banach «-algebra. Then the follo-
wing conditions are equioalent,

1° A is a hermitian B* algebra.

2° I\Xl\2 = I\x*xl\ for each x E A and I\Xl\2 < Ilx*x + y*yl\ for each
pair x,y E A.

3° 1\xII2 = Ilx*xll for each x E A and IIxl12 < Ilx*x + y*yll for all
cornmuting pairs x, y E N (A).

4° IJxlI2 <: IIx*x + y*yl\ for each pair x, y E A.

Proof. Assume 1° and prove 2°. Since in B* alge bra r (h) = Ilh!l,
Iz E H (A) and since by Proposition 14 hermitian B* algebra is syrnrne-
tric, we have by Theorem 12 I\x*xll = r (x*x) <: r (x*x + y*y) =
=lIx*x + y*yll. The implication l° => 2° is proved. The implications
2° => 3° and 2° => 4° are obvious. Assume 3° and prove 1°. We have to
prove that A is hermitian. Let commuting pair x, y E N (A) be given.
Since r (h) = Ilhll for each hE H (A), we have r (X)2 « Ilxl12 = Ilx*x +
+ y*'yll = l' (x*x + y*y) for all commuting pairs x, y E N (A). By Theo-
rem 12 A is symmetric. The implication 4° => 10 can be proved in a
similar way. The proof of the theorem is complete.
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TREOREM 16. Let A be a real Banaeh +algebra, Then the follo-
wing conditions are equivalent.

l° A is hcrmitian with an equiualent Brnorm.

2° A is hermitian and u IIxII 2 < I!x*x!! for each. x E A and some u>
> O.

3° A is hermitian and ulixII 2 < I!x*xll for eacli x E N (A) and same
a > O.

40 A is hermitian and Ilull <; u for eaeh u E U (A) and same a > O,
{J I!hl! .;;;r (h) for each hE R (A) and same fi > O.

So A is symmetric and alIhil.;:;; r (h) for all hermitian and skew-
hermitian elements h and some a > O.

6° alixII 2.;; IIx*x + y*yll for all pairs x,y E A and sorne a > O.

7° a IIxil2 .;;; IIx*x + y*yll for all commuting pairs x, y E N (A) and
same u> O.

Proof. The implications 1°=> 20 => 3° are trivial. Assume 30 and
prave 40

• Let h e R (A) be given. Then by assumptions a IIhil 2 <;
.;;; IIh211. This inequality implies a21!hl12 <; u !!h211 whenee u IIh\\ <;
.;;;(a IIh211)1/2. Induetively, alIhIl < (c 11111/2"11)1/2" for each integer n.
This implies a IIhil .;;;r (h). Obvious1y a IIul12 <; 1 for all li E U (A).
The implication 3° => 4° is so proved. Let us prove that 4° implies 5°.
Sinee IIuli <; a for all ti E U (A), A is syrnrnetric by condition 9° in
Theorem 5. Let k E SR (A), r (k) < 1 be given. Sinee r (e - (e + k2» <
< 1, there exists h e R (A) eommuting with k such that e + P = h2.
Therefore the element u = h + k is unitary, Since k = t (u - u*),
we obtain using the assumption IIkll « HIluli + lIu*lJ) .;;; a. Renee
Ilkll .;; ar (h) for eaeh k E SR (A) and the implieation 4° => 50 is pro-
ved. Let us prove that 50 implies 6°. Let x = h + k, h e R (A), k E
E SR (A) be given, Sinee A is symmetrie we have r (h) ..; P (x), r (k) <:
..; p (x) by eondition go in Theorem 4. Using that and the assumption

we obtain alIxii .;; a (IIhIl + likII) <; r (h) + r (k) ..; 2p (x). By condi-
tion 20 in Theorem 12 p (X)2 < r (x*x + y*y) for all pairs x, y E A.
Renee u211xll2 <; 4p (X)2 .;; 4r (x*x + y*y) .;; 4l1x*x + y*yll for all pa-
irs x, y E A. The imp1ieation 50 => 60 is proved. Sinee the implieation
60 => 7" is trivial it suffiees to prave that 70 irnp1ies l°. It is possible
to prave that

allhll.;;r(h) (16.1.)

for all hermitian and skew-hermitian elements h sinee a IIXII2 < "x*xll
for all x E N (A) (see the proof of the implieation 30 => 40

). Let us
first prove that A is symmetric. Let x = h + kEN (A) be given.
Then using the inequaIity (16.1.) we obtain a2r(x)2.;;; a2 IJXIJ2.;;;
<; u IIx*x + y*yll <; r (x*x + y*y). Henee u2r (X)2 .;;; r (x*x + y*y) for
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all comrnuting pairs x, y EN (A) and some a > O. This implies the
symmetry of A (see the pro of of the implication 5° => l° in Theorem
12). It remains to prave that there exists a B* norm equivalent to the
given norrn. Let an arbitrary x = h + k be given. Since A is symmetric
we have r (h) <: p (x), r (k) <: p (x). Us ing that and the inequality
(16.1.) we obtain alixii <: alihil + a Ilkll <: r (h) + r (k) <: 2p ex). The-
refore

a [[x[1 <: 2p (x) (16.2.)

for all x E A. This inequality implies that A is semisimple (see condi-
tion 5° in Theorem 4). We shalI prove that the involution is continuous.
It suffices to prave that the involution is closed. Assume that x; -7 O
and x!-7 y. Then using the subaditivity of the function p we obtain
p (y) <: p (y - x: + x~) <: p (y - x~) + p (x~) <: /Iy* - xn 111/2 I!Y-
- X:[[112 + [[xn[! 1/21[x!11112. In each of the summands on the right
side one factor is bounded and one tends to zero. It follows that p (y) =
= O so that y is contained in the radical whence y = O. Let us prove
that there exists a constant (3> O such that for each x E A

p (x) <: P IIxii· (16.3.)

Since the involution is bounded we have p (X)2 = r (x*x) <: IIx*xll -c
<: Ilx*llllxll .;;;(31 IIXII 2. The function p is a norm since A is symrnetric
and semisimple. Thcrefore since p (X)2 = P (x*x) we have a B* norm
on A which is by inequalities (16.2.) and (16.3.) equivalent with the
given norm. The proof of the theorem is complete.
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REALNE SIMETRI(;NE BANACHOVE ALGE BRE Z INVOLUCIJO

J. Vukman, Maribor

Povzetek

Realna ali kompleksna Banachova algebra z involucijo je simetrična,
če za vsak x iz algebre obstaja Ce + X*X)-l, kjer je e enota algebre.
V članku so obravnavane realne simetrične Banachove algebre z invo-
lucijo. Glavna pozornost je posvečena pozitivnim funkcionalom nad
temi algebrami in karakterizacijam teh algeber.


