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REAL SYMMETRIC BANACH +=-ALGEBRAS

J. Vakman, Maribor

Abstract. In this paper new results in the theory of real symmetric Banach
«-algebras are presented. The main results characterize such algebras among all
real Banach x-algebras.

Introduction

All algebras in this paper will be supposed to possess identity
elements. The identity element will be denoted by e and we shall
assume that [e] — 1. A real Banach algebra 4 is called real Banach
«-algebra if there exists an involution (linear anti-isomorphism of period
two) x +> x* on 4. An element e 4 is said to be hermitian if A* — A
and skew-hermitian if A* = — /4. An clement v e A is said to be uni-
tary if u*u = wu* = e. An element x € 4 is said to be normal it x*x =
= xx*. The sets of all hermitian, skew-hermitian, unitary and normal
clements of 4 will be denoted by H (4), SH (A), U(4) and N (4),
respectively. It is easy to see that cach element x e 4 has a unique
decomposition x =k -+ k with e H(A), ke SH (4). An element xe 4
is normal if and only if 2 and k& commute. In the study of real Banach
#-algebras it is very useful that any real Banach =-algebra can be iso-
metrically and isomorphically embedded in a certain complex Banach
»-algebra. This can be done as follows. Lect A be a real Banach +-algebra.
Denote by A, the cartesian product 4 X A. Then A, becomes a com-
plex #-algebra if we definc operations and the involution as follows

(x>y) o (u, 7]) = (x + oy + D): (a + ﬂl) (ny) ==
= (ax — fy, ay + fx), (x,) (1, v) = (xu — yv, xv + yu),

(@ 0)* = (x*, —5")

The mapping x + (x, 0) is an isomorphism of A into A,. It is possible
to introduce a norm in A, such that 4, becomes a complex Banach
#-algebra and the isomorphism x> (x, 0) an isometry (see [6, p. 5]
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for details). The Banach =-algebra A, is called the complexification
of A. We shall writec x + 7y for an element (x, y) € 4.. The spectrum
sp (v) of x € 4 is defined to be equal to the spectrum of x as an ele-
ment of the complexification 4. of 4. We shall usually write sp (x)
for sp, (x). We shall write r (x) for the spectral radius of x € 4, and
p (x) for » (x*x)*/2. An elcment s e H (A) is said to be positive, & > 0
if sp () > 0, and nonnegative, & > 0 if sp (4) > 0. The radical of
A will be denoted by rad (A4).

In the first section of this paper we are investigating real symmetric
Banach x-algebras. The main attention is devoted to positive hermitian
functionals on such algebras, and to characterizations of symmetric
Banach s-algebras. V. Ptak proved in [5] that the inequality r (x) <
< p (x) characterizes complex symmetric Banach =-algebras among
all complex Banach #-algebras. In the rcal case the inequality # (x) <
< p (x) does not guarantee the symmetry of a Banach +-algebra, although
this inequality holds also in real symmetric Banach x-algebras. For
characterizations of real symmetric Banach #-algebras in terms of spec-
tral radius stronger assumptions are necessary. We prove, for example,
that a real Banach =-algebra 4 is symmetric if and only if r (x)? <
< 1 (x*x + y*y) holds for all pairs x, v e A. All results are proved
without the assumption that involution in continuous or locally conti-
nuous.

In the second section we prove some characterizations of real
hermitian B*algebras and some characterizations of real hermitian
Banach *-algebras with an equivalent B* norm. Some of those results
were proved by L. Ingelstam [2] and T. W. Palmer [4] by different
methods.

In this paper we use methods from the complex case, especially
those presented in V. Ptak’s paper [5].

1. Real symmetric Banach =-algebras

A lemma of J. W. M. Ford [1] makes it possible to develop much
of the theory of complex Banach =-algebras without the assumption
that the involution is continuous or locally continuous. Ford’s square
root lemma can be proved also for real Banmach =-algebras (see the
proof of Lemma 1 in [4]).

LEMMA 1 (J. W. M. Ford, T. W. Palmer). Ler A be a real
Banach x-algebra. Let he H (A), and suppose that v (e — k) << 1. Then
there exists e H (A), such that u commutes with h and u®* = h. More-
over, if sp (h) is positive, then so is sp ().

DEFINITION 2. Let A be a real Banach =-algebra. We say that
A is hermutian of sp (h) is real for each he H(A), skew-hermitian if
sp (k) is imaginary for each ke SH (A), and symmetric if (e + x*x)~*
exists for each x € A.
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It is obvious that a complex Banach #-algebra is hermitian if
and only if it is skew-hermitian. It is routine to prove that any complex
symmetric Banach =-algcbra is hermitian. Conversely, any complex
hermitian Banach =-algebra is symmetric. This result was first proved
by S. Shirali and J. W. M. Ford [7]. T. W. Palmer (Lemma 1 in [4])
showed that the methods developed in [7] can be used also for the real
case and proved the following

LEMMA 3 (S. Shirali, J. W. M. Ford, T. W. Palmer). 4 real

hermitian and skew-hermitian Banach s-algebra is symmetric.

In the theorem below results presented by V. Prak [5] concerning
complex symmetric Banach =-algebras are extended to the real casc.

THEOREM 4. Let A be a real symmerric Banach #-algebra. Then
the following statements are valid.

1° To each positive he H (A) there corresponds positive u e H (A),
such that h = u?;

2° r(x) < p (x) for each x € A;

3° r (wo) < r (u) r (v) for each pair u,ve H(A);

4° p (xv) < p (%) p (v) for each pair x,y € A;

5° xerad (A) = p(x) = 0;

6° If ue H(A) and ve H(A) are nonnegative, then so is u -+ v;
7° v (u+v) < r(u) +r(v) for each pair u,ve H(A);

8% 7 (3 (- x®) < p(x) for each x € A;

9° p(x +y)< p(x) + p(y) for each pair x,ye A.

Proof. 1° A simple consequence of Lemma 1. 2° It is possible to
use the proof from the complex case (see the proof of Theorem (5,2)
in [5] for details). 3° The proof is based on the inequality » (x) < p (x)
and the fact that in any Banach algebra » (xv) = » (yx) (see the proof
of (5,3) in [5]). 4° A simple consequence of 3° 5° If xerad (4) then
x*x € rad (A4), and by Theorem (2.3.4.) in [G, p. 56] » (x*x) = 0. Con-
versely, if p (x) = 0 then for ecach ye 4 we have » (yx) < p (yx) <
< p () p(x) = 0. Since r (yx) = 0 for each y € 4, we have y € rad (4).
6° Let # and v be nonnegative. We have to prove that u 4 v is also

. . . z
nonnegative. Let ¢ be an arbitrary positive rcal number. Then 5 e -+ u,

¢ oo .
5 e -+ o are positive. It follows from the first statement of this theorem,

that —é— e+ u=h% % e-+ov=Fk? for some positive /2 and 2. We have
utovt+te=ht+kE=hle+ h *R*h~"Yh=h(e+ (kh~)*kh~ 1)l
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Here # is regular, and so is e ++ (Rh~Y)* (Rh~1), since A4 is symmetric.
Therefore — t ¢ sp (- v). 7° A simple consequence of 6° 8° Let
x=u+ v, uecH(A), ve SH (A) be an arbitrary vector. Then x*x +
4+ xx* = 2 (u? — v?), Obviously r (u? — v?) e — (u? — v?) > 0. Since
-~ 0? » 0, u? » 0, and the sum of nonnegative elements is nonnega-
tive, we obtainr (#? — 9% e — u? = 0,7 (u* — v?) e + v? > 0. There-
forer (1?) < r (u? — v2), 7 (2?) < r(u? — v2). Hence r (} (x + x*))? =
=1 (u)? < Fr(xfx + xx®, v G — )2 =7r ) < Ir(x*x + xx%).
Using the subaditivity of the spectral radius on H (A4), we obtain
r (G o < hr (e ) < (G 7 () = p (92 9°
The subaditivity of the function p follows from the subaditivity of the
spectral radius on [ (A), the statement 8°, and the submultiplicativity
of the function p. (See the proof of (5,8) in [5] for details.) The proof
of the theorem is complete.

V. Ptak proved that the inequality » (x) < p (x) characterizes com-
plex symmetric Banach =-algebras among all complex Banach =-al-
gebras. We proved in the theorem above that this inequality holds
also in real symmetric Banach #-algebras. The converse is not true.
There exist real Banach =-algebras which are not symmetric, although
the inequality » (x) < p (x) holds. In the theorem below we shall prove
that the inequality »(x) < p (x) implies symmetry of real Banach
+-algebra if we assume that the algebra is hermitian. Similarly, other
characterizations of complex symmetric Banach =-algebras, included
in Theorem (5,10) [5], are extended to the real case.

THEOREM 5. Let A be a real Banach =-algebra. Then the follo-
wing statements are equivalent.

1° A is symmetric.

2° Ais hermitian and r (x) < p (x) for all x € A.

3° A is hermitian and v (x) < p (x) for all x € N (A).

4° A s hermitian and r (x) = p (x) for all x € N (A4).

5° A s hermitian and r (% (x = x*)) < p (x) for all x € A.

6° Ais hermitian and p (x 4+ v) < p(x) -+ p(y) for all x,ye A.
7° Ais hermitian and v (1) =1 for all ue U (A4).

8% Ais hermitian and v ()< 1 for all ue U (4).

9° A is hernutian and v () < a for all ue U (A) and some a > 0.
10° A s hermitian and skew-hermitian.

Proof. The implication 10° = 1° is contained in Lemma 3. The
implication 1° == 2° follows from the fact that each real symmetric
Banach =-algebra is hermitian and from Theorem 4. The implications
2°=3° and 3° =>4° are trivial. Assume 4° and prove 10°, We have to
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prove that the spectrum of each skew-hermitian element is imaginary.
Suppose, on the contrary, there exists a k€ SH (4) such that a +
-+ piesp (k), a # 0. Then for each real number ¢ the element ze + %
is normal and ¢ + a + fiesp (te - k). Using condition 4° we obtain
(t+a)®>+ 2 <r(te+ k)? =1r((te + R)*(te - k) =r(t?e — k?) <
< t* + r (k)2 Therefore 2ar + a® + f* < r (k). Since ¢ is an arbi-
trary real number, the contradiction is obvious. The implication 1° =
= 5% is contained in Theorem 4. Assume 6° and prove 5°. Since x -+
-+ x* is hermitian and x — x* skew-hermitian, we have r (x + x*) =
=p(x+ x*). Therefore r(F(x+ ")) =pG &£ x%)) <ip (x) +
4+ 1 p(x*) = p (x). Assume 5° and prove 3°. Letx = 1 4 &k, he H (A4),
ke SH (A) be a normal element. Then, since /7 and £ commute, we
have r(x)< r (k) + r (k). Using 5° we obtain r (x)< v (h) +r (k)<
< p (%) + p (x) = 2p (x). Therefore r (x)< 2p (x) for each x e N (4).
Since x € N (A4) implies x" € N (A4) it follows that

r(xM) < 2p (x"), xeN(A). (5.1.)

It is easy to obtain p (x) —= p (x)". Substituting this in (5.1.) we obtain
r ()" = r(x") < 2p (x)", hence r(x) < 2" (x) for each integer n.
The proof of the implication 5° =»3° is complete. The implications
7° = 8°=9° are trivial. Let us.prove the implication 9°=>8°. If ue
e U (A4) thenalsou” € U (A4) for each integer n, so that r (1) = r (u")1" <
< al/". Therefore r (4) < 1. The implication 8°=-7° is a consequence
of the fact that ue U (A4) implies u=* € U (4). Let us prove that 7°
implies 10°. We have to prove that A4 is skew-hermitian. Let &, r (k) <
< 1 be a skew-hermitian element. We shall consider & as an element
of 4,. Let C be a maximal commutative *-subalgebra of A4, containing
k. Then spc (R) = spy, (R). Since 7 (e — (e -+ k%)) = r (k?) < 1, there
exists 1e H (A) N C such that ¢ + 2% = A2, The element v = h + k
is unitary. Let f be an arbitrary multiplicative linear functional on C.
Since r (¥) = 1 we have

Fh) + (k) = f(w) = exp (ar),

(5.2.)
) —f (k) = f(u*) = exp (f7).
Since A is hermitian f (%) is real. It follows from (5.2.) that
0< f(h)?< L (5.3.)

At the same time f(h)? — f(k)? = f (h? — k?) = f (w*u) = f(e) = 1.
Therefore f (k)% = f (h)? — 1 and (5.3.) implies that f (k) is imaginary.
Since f was an arbitrary multiplicative linear functional on C it follows
that spe (k) = sp,, (k) is imaginary. The proof of the implication
7°=10° is complete. Since the implication 1°=> 6° is included in
Theorem 4 and the implication 4° = 7° is obvious the proof of the theo-
rem is complete.
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Now we shall list some elementary results concerning positive
functionals on real Banach #-algebras.

DEFINITION 6. Let A be a real Banach *-algebra. Let | be a
bnear functional on A. We call a functional f hermitian if f{x*) = f(x)
for each x € A, skew-hermitian if f (x*) = — f(x) for each x € A, positive
if f(x*x) = 0 for each x € A, and weakly positive if f(h*) > 0 for each
he H(A).

LEMMA 7. Let A be a real Banach s-algebra and f a positive
hermitian functional. Then the following statements are valid.

° | f ()| < f (x*x) f(y*y) for all pairs x,y € 4;
2° [f(x)]2 < f(e) f(x*x) for all x € A.

Proof. Obviously 2° follows from 1°. The proof of 1° is similar
to the proof in the complex case. (See [6, p. 212] for details.)

LEMMA 8. Let A4 be a real Banach +-algebra. For arbitrary weakly
positive hinear functional f the inequality |f (W) < f(e)r (h) is walid for
each he H (A). If f is positive and hermitian we have

1° [f ()% < fe)? r (x*x) for each x € A;

2° f(xtxx*x) < v (x*x) f (x*x) for each x e A.

Proof. Let & be in H (A) and ¢ an arbitrary positive real number.
Denote (r(h) +¢e)"*h by k. Since r{e — (e — k)) < 1 there exists
u € H (A) such that e — k& = u? by Ford’s square root lemma. Hence
fle— k) =fw*)>0. This implies f(h) < f(e)(r (h) + &). There-
fore f(h) < f(e)r(h). If we replace 4 by — h, we obtain |f(h)] <
< f(e)r(h).

Let f be positive and hermitian. Then using Lemma 7 and f (x*x) <
< f(e) r (x*x) we obtain |f(x)|? < f(e)* r (x*x). It remains to prove
2°. If f is positive and hermitian, then a routine calculation shows that
so is g defined by g (x) = f(a*xa). Since g is positive and hermitian,
we have g (xx™) < g (e) r (xx*). If we replace a by x, we obtain f (x*xx*x)
< f (x*x)r (2*x),

It is well known that each positive functional on a unital com-
plex Banach s-algebra is bounded (sce (2,6) in [5]). The same is true
for positive hermitian functionals on unital real Banach =-algebras.
This can be proved in the following way. Denote by f a positive her-
mitian functional acting on a real Banach =-algebra 4, and define the
linear functional F on A, as follows F(x +1y) = f(x) + i (¥), x +
+ 7y € A,. Then routine calculation shows that F is positive functional
on complex Banach #-algebra 4, and therefore bounded. It follows that
the functional f is bounded too.
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We can say more about positive functionals on a real Banach
=-algebra if algebra is symmetric. The complex version of the follo-
wing results concerning positive functionals can be found in [5].

PROPOSITION 9. Each weakly positive functional on a real sy-
mmetric Banach s-algebra is positive.

Proof. Let x € A be an arbitrary element and ¢ arbitrary positive
real number. Then ee + x*x is positive since the algebra is symmetric.
By Theorem 4 there exists u e H (A4) such that ee + x*x = u?. There-
fore f(ee -+ x*x) = f (u?) > 0 since f is weakly positive. This implies
fx*x) = 0.

The theorem below is similar to (6,4) in [5] proved for the com-
plex case.

THEOREM 10. Let A be a real symmetric Banach =-algebra. Let
[ be a linear functional on A such that f(e) > 0. Then the following con-
ditions are equivalent.

1° f is hermitian and |f (h)| << f(e) r (B) for each he H (A).
2° f1is positive and hermitian.
3° f is weakly positive and hermuitian.

4° |f(x)| < fle)p(x) for each x € A.
59 1 f )] < fe)p(x) for each x e N (A4).

Proof. Assume 1° and prove 2°. The proof is borrowed from the
proof of (6,3) in [5]. We may assume that f(e) = 1, Let us take ke
e H(4) and write

a = inf {4}, B = sup {1},

Aesp (B Aesp (&)
e=%(@+ph), 6=3(—a.

Since a<sp(h)< f we have r(h — pe)< §. By the hypotheses of
the theorem we have |f(h) — o] = |f(h — ge)] <7 (h — pe)< 6. The=~
refore

a=p—0<f(H)<o+6=4 (10.1.)

Let x be an arbitrary element in A. Since 4 is symmetric, we have
sp (x*x) > 0. Using (10.1.) we obtain f(x*x) > 0. The implications
2°=3° and 4° = 5° are trivial. The implication 3° = 4° follows from
Proposition 9 and Lemma 8. Tt remains to prove the implication 5° =
= 1°. Let 4 be hermitian. Then |f (k)] < f(e) p (k) = f (¢) » (h). There-
fore we have only to prove that the functional f is hermitian. For this
purpose let us write f in the form f = f; + f,. Here f, is hermitian
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and f, a skew-hermitian functional. We shall prove that f, = 0. It
suffices to prove that f, (k) = O for ecach k € SH (A4). Let k be in SH (4)
and let ¢ be an arbitrary real number. The element x = re -+ % is nor-
mal. Using p (x)? = p (x*x) and the subaditivity of p we obtain

p ()2 <2+ p (k)2 (10.2.)
Using condition 5° and (10.2.) we obtain
If I = (tf1 () + f2 (B2 < £ ()2 p ()2 <
<t (e +f(&*p (R
Since f(e) = f; () we have finaly
2if (&) f2 (B) + [ (R)* < f(e)* p (B)*

for each real number z. This implies f, (¢) = 0. The proof of the
theorem is complete.

The theorem above allows us to prove two characterizations of
real symmetric Banach =-algebras in terms of positive functionals.

THEOREM 11. Let A be a real Banach =-algebra. The following
statements are equivalent.

1° A4 is synunerric.

2° To each proper left ideal I < A there corresponds a positive
hermitian functional f, f(e) = 1, such thar f (I} = 0,

3° For each xe 4 sup f (x*x) = p (x)%, f a positive hermitian func-
tional such thatr f (e) = 1.

Proof. Let us assume 1° and prove 2°. We can define a linear func-
tional f on the linear subspace X = {x + te; x € I, ¢ real} as follows

flx + te) =t

It is evident that f(e) = 1, f(I) = 0 and that resp (x -+ te). Since A
is symmetric, we have r (x + re) < p (x -+ te). Using that inequality
and the fact that r e sp (x + t¢), we obtain |f(x + te)| = |t] <r(x +
+ te) < p {x + te). The function p is subaditive since A is symmetric.
Hence by Hahn-Banach theorem f can be extended to the whole of
A satisfying the condition |f (x)| < p (x) for each x € 4. By Theorem
10 f is positive and hermitian. The implication 1° = 2° is so proved.
Let us prove the implication 2°=- 3° Since sup f(x*x) < p (x)? by
e)=1
Lemma 8, it suffices to prove that there exis{s( a hermitian positive
functional f, f (¢) = 1, such that f (x*x) = p (x)?. The element r (x*x) e —
— x*x is without left inverse. Hence r (x*x)e — x*x is contained in
some proper left ideal 1. By assumption there exists a positive hermitian

functional f, f (e) = 1, such that f (I) = 0 and therefore f(r (x*x) e —
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— x*x) = 0. The implication 2° = 3° is so proved. It remains to prove
the implication 3° = 1°. The proof of this implication is borrowed
from the proof of Theorem (4.7.21.) in [6]. Let x be given, let us wri-
te g for r (x*x) and set u = ge — x*x. For arbitrary positive hermitian
functional f, f (e) = 1, we obtain f (u?) = p? — 2of (x*x) + f (x*xx*x).
Combining this equatlon with f(x*xx*x) < pf (x*x) (see Lemma 8)
we obtain f (u?) < p? — of (x*x) < p?. Since f was an arbitrary posi-
tive hermitian functional such that f (¢) = 1 it follows from assumption
thatr ()2 = r (u?) = sup Fw?) < p? Hence r(w) < gorr (r (x*x) e —

— x*x) < 7 (x*x). ThlS mequahty implies that A4 is symmetric. The
proof of the theorem is complete.

The complex version of the equivalence 1° < 2° was proved by
N. Namsraj [3]. The equivalence 1°<-3° in the complex case is a
well known result, first proved by D. A. Raikov (see Theorem 4.7.21.
in [6] and Theorem (6,5) in [5]).

We mentioned that in the real case the inequality r (x) < p (x)
does not guarantee the symmetry of a real Banach s-algebra. For cha-
racterizations of real symmetric Banach #-algebras in terms of spectral
radius stronger assumptions are necesary. In the theorem below some
results of this kind are presented.

THEOREM 12. Ler A be a real Banach =algebra. The following

conditions are equivalent.

1° A is symmerric.

22 r(x)2<r(x*x) for all xe A and r(x*x)<r (x*x + y*y) for
all pairs %,y e A.

3° r ()2 < r(x*x) for all xe N(A) and r(x*x) < r (x*x + y*y)
for all commuting pairs x, v € N (A)

Cr(x)? < r(xtx + y*) for all x,ye A.
5% r (%)% < r (x*x - y*y) for all commuting pairs x, y € N (A).

Proof. Assume 1° and prove 2°. Since A is symmetric we have
r(x)? < r(x*x) for cach xe 4 by Theorem 4. Using the result in
Theorem 11 we obtain r (x*x) = sup f(x*x) < sup f(x*x - y*y) =

fe)=1 fle)=1
= r (x*x + y*y). The implications (2° = 4° = 5°, (2" = 3°=5° are ob-
vious. It remains to prove the implication 5°= 1°. Let B be an arbi-
trary closed commutative #-subalgebra of A, Let x + ¢y € B, be unitary.
Then x*x 4 y*y = e. Since x and y commute we have r (x + y) <
< 7 (x) 4+ r (»). Using the assumption we obtain r (x + 2v) < r (x) +
+r(y) < 2r (x*x + y*y)V? = 2r (¢) = 2. Since we proved that » (x
+ 4y) < 2 for arbitrary x + iy € U (B,) it follows that B, is symmetric
(see Theorem (5,10) in [5]). Therefore B is also symmetric. We proved
that each closed commutative s-subalgebra of algebra A is symmetric.
This implies that 4 is symmetric. The proof of the theorem is complete.
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2. Real B* algebras

DEFINITION 13. 4 real Banach s-algebra is called a B*algebra
if |x*x]| = |x]|2 for each x € A.

The well known result of I. M. Gelfand and M. A. Naimark that
every complex B*algebra is isometrically *-isomorphic to some C*
algebra is not true in real case (see [2, p. 265]). L. Ingelstam [2] proved
that the Gelfand-Naimark theorem holds for real B*algebras if we
assume that real B* algebra is also symmetric. Similar result was obtai-
ned by T. Palmer [4]. T. Palmer considered real Banach =-algebras
with generalized involution. Symmetry of real B* algebra follows from
weaker assumption that B* algebra is hermitian. Using suitable charac-
terizations of real symmetric Banach =-algebras from the first section,
this can be proved in a very simple way.

PROPOSITION 14. 4 real hermitian B*algebra is symmerric.

Proof. From [x*x| = [x[|2 it follows that r (k) = ||A|] for each
he H(A4). Then p(x)* = |x*x| = |x]2. Hence p (x) is a norm and
since A is hermitian it follows from Theorem 5 that A is symmetric.

The characterizations of real hermitian B* algebras and characte-
rizations of real hermitian Banach =-algebras with equivalent B* norm,
presented in the theorems below, are similat to some results obtained
by L. Ingelstam [2] and T. Palmer [4]. The proofs presented here
seem to be simpler.

THEOREM 15. Let A be a real Banach =-algebra. Then the follo-
wing conditions are equivalent,

1° A is a hermitian B* algebra.

2° |[x]|2 = [|lx*x] for each x € A and |x||* < |x*x + y*y| for each
pair x,y e A.

3° |x|2 = |x*x|| for each xe A and ||x|? < |x*x + y*y| for all
commuting pairs x,y € N (4).

4° ]2 < [[x*x + y*y|| for each pair x,y e A.

Proof. Assume 1° and prove 2°. Since in B* algebra » (k) = ||Al,
h e H (A) and since by Proposition 14 hermitian B* algebra is symme-
tric, we have by Theorem 12 [x*xf| = r (x*x) <7 (x*x 4 y*y) =
= [lx*x 4+ y*y|. The implication 1°= 2° is proved. The implications
2°=13° and 2°=>4° are obvious. Assume 3° and prove 1°. We have to
prove that A is hermitian. Let commuting pair x, y € N (4) be given.
Since r (1) = ||A| for each & e H (A), we have r (x)? < ||x]|2 = [|x*x +
+ y*yl| = r (x*x - y*y) for all commuting pairs x, y € N (4). By Theo~
rem 12 A is symmetric. The implication 4° = 1° can be proved in a
similar way. The proof of the theorem is complete.
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THEOREM 16. Let A be a real Banach «algebra. Then the follo-
wing conditions are equivalent.

1° A is hermitian with an equivalent B*norm.

2° A s hermitian and a ||x|? < [x*x|| for each x € A and some a >
> 0.

3% Ads hermitian and a ||x|? < |x*x| for each x € N (A4) and some
a > 0.

4° A is hermitian and |\ul| < a for each uwe U (A4) and some a > 0,
B Al < r(h) for each he H(A) and some fi > 0.

5° A s symmetric and a ||kl < v (k) for all hermitian and skew-
hermitian elements h and some a > 0.

6° allxl|? < |x*x 4 y*y| for all pairs x,ye A and some a > 0.

7° a|xf? < |x*x -+ v for all commuting pairs x,y € N (A4) and
some a > 0.

Proof. The implications 1°=>2°=- 3° are trivial. Assume 3° and
prove 4°. Let he H(A) be given. Then by assumptions « [2]? <
< [|#?]. This inequality implies a?|k]|? < a|A*] whence a[[A] <
< (a||A?])*/*. Inductively, a ||A] < (a[A'/?"])!/2" for each integer n.
This implies a 4] < r (). Obviously aul? < 1 for all ue U(4).
The implication 3° =-4° is so proved. Let us prove that 4° implies 5°.
Since [u] < « for all ue U(4), 4 is symmetric by condition 9° in
Theorem 5. Let k€ SH (A), r (k) < 1 be given. Since # (¢ — (e + k2))<<
<< 1, there exists z € H (A4) commuting with k such that e + k2 = A2,
Therefore the element u# = 4 + & is unitary. Since k= % (u — u*),
we obtain using the assumption [[k]| <3 ([u] + [u#*]) < a. Hence
|&] < ar (k) for each ke SH (4) and the implication 4° = 5° is pro-
ved. Let us prove that 5° implies 6°. Let x = h + &, he H(A), ke
€ SH (A4) be given. Since A is symmetric we have r (h) < p (x), v (k) <
< p (x) by condition 8° in Theorem 4. Using that and the assumption
we obtain a x| < a(|h] + [&]) <7 &) + r(R) < 2p(x). By condi-
tion 2° in Theorem 12 p (x)? < r (x*x -+ y*y) for all pairs x,y € 4.
Hence a? [[x]? < 4p (x)? < 4r (x*x + %) < 4 [x*x + y*y| for all pa-
irs x, vye A. The implication 5°=6° is proved. Since the implication
6° = 7° is trivial it suffices to prove that 7° implies 1°. It is possible
to prove that

allhl < r (h) (16.1.)

for all hermitian and skew-hermitian elements % since a ||xf2 < |x*x]
for all xe N (4) (see the proof of the implication 3° = 4°). Let us
first prove that 4 is symmetric. Let x =%k + ke N(4) be given.
Then using the inequality (16.1.) we obtain a?r(x)2< a?{x|?<
< afx*x + y*y|| <r(x*x + y*). Hence a?r (x)? < r (v*x + y*y) for
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all commuting pairs x, ¥ € N (4) and some a > 0. This implies the
symmetry of 4 (see the proof of the implication 5°=>1° in Theorem
12). Tt remains to prove that there exists a B* norm equivalent to the
given norm. Let an arbitrary x = 4 4 & be given. Since 4 is symmetric
we have r(h) < p(x), (k) < p(x). Using that and the inequality
(16.1.) we obtain a ||x| < a ||| -+ al|k] < r(h) 4+ r (k) < 2p (x). The-
refore

allx] <2p (%) (16.2.)

for all x € A. This inequality implies that 4 is semisimple (see condi-
tion 5° in Theorem 4). We shall prove that the involution is continuous.
It suffices to prove that the involution is closed. Assume that x, -0
and x}—y. Then using the subaditivity of the function P we obtain
N<p(y =2+ <p(y—x)+pEH < [y —x|V2 |y —
— Y2+ ”1/2 [x¥|*/2. In each of the summands on the right
side one factor is bounded and one tends to zero. It follows that p (y) =
= 0 so that v is contained in the radical whence y = 0. Let us prove
that there exists a constant > 0 such that for each x e 4

2 (x) < B+. (16.3)

Since the involution is bounded we have p (x)? = r (x*x) < [x*x]| <

< ||=* [*] < B2 x| 2 The function p is a norm since 4 is symmetric
and semlsxmple Thcrefore since p (x)* = p (x*x) we have a B* norm
on A which is by inequalities (16.2.) and (16.3.) equivalent with the
given norm. The proof of the theorem is complete.
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REALNE SIMETRICNE BANACHOVE ALGEBRE Z INVOLUCIJO
F. Vukman, Maribor

Povzetek

Realna ali kompleksna Banachova algebra z involucijo je simetri¢na,
Ce za vsak x iz algebre obstaja (e + x*x)~1, kjer je e enota algebre.
V ¢lanku so obravnavane realne simetri¢ne Banachove algebre z invo-
lucijo. Glavna pozornost je posvelena pozitivnim funkcionalom nad
temi algebrami in karakterizacijam teh algeber.



