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QUADRATIC AND SESQUILINEAR FUNCTIONALS
Svetozar Kurepa, Zagreb

1. Let X ={x,¥,...} be a complex (quaternionic) vector space
and B a function of two vectors which is linear in the first argu-
ment and antilinear in the second argument, i. e.

BA1xy + A2 %2, y) = 41 B(x1,y) + A2 B(xs, ), } M
B(x, m1yy + peys) = u1 B(x, y1) + u2 B(x, y2),
where 1 denotes the conjugate of i.

If we set n(x) =B (x, x), then from (1) it follows that

n(@+y) +n(@—y) = 2n(x) + 2n(y) @)
holds for all =, y < X and also
n(dx)=|2[2n(x) _ (3)

holds for every x < X and every complex (quaternionic) number
2. A functional n(x) which satisfies (2) is termed a quadratic
functional. ' :

Prof. Israel Halperin in 1963 in Paris, in his lectures
on Hilbert spaces raised the question which can be formulated as
follows: Does a quadratic functional n for which (3) holds possess
the property that

B(x,y)=m(x,y) +im(x,iy) @
in the case of a complex space and
B, y)=m(x,y) tim(x,iy) —ij(x,jy) +km(x, ky) (5)
in the case of a quaternionic space is a sesquilinear functional with
1
m(x,y)=T(n(x+y)—~n(x-—y))- : (6)
A similar question was raised also for the case of a real vector
space. In this case (3) is to be replaced by
n(tx) =t2n(x)

for all real numbers t and all vectors x. In [1] we have proved that
the answer to the Halperin’s problem in the case of a real vector
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space is negative provided that the space is not one dimensional.
It was also proved that in an algebraic basic set {ex|1 <k << Q}
the quadratic functional n is given by

(3 e 3 o 3

1Ssk<Q 154,j<0 1Si<j<Q

aij (ti) aij (t;)

, (7
‘s ‘ (M

where in the sum only a finite number of terms differs from zero;
b;; are constants and a;;(t) is a derivative on the set of all real
numbers. By a derivative on the set of reals one understands a
real-valued function f such that

FE+8)=F(t) + f(s) and f(ts)=1tf(s) +sf(t)

holds for all real numbers t and s.

The object of this paper is to prove that in the case of a com-
plex or a quaternionic vector space (2) and (3) do imply that the
functionals (4) and (5) are sesquilinear. We derive these results by
considering spaces as real vector spaces and then by using (7). It
would be interesting to prove these results directly, i. e. without
the use of a »negative« result in a real vector space. In addition
to this in 2 we derive some results on functionals which satisfay (2)
and which are defined on an arbitrary abelian group.

Since the case of a quaternionic vector space is a consequence
of the situation in the complex case, the main result of thls paper
is given by the following theorem.

Theorem 1. Let X be a complex vector space and. n a com-
plex valued functional such that

@ n(x+y)+n(x—y) =2n(x) + 2n(y)
and
(ii) n(lz)=]1[2n(x)

hold for all x, y <X and all complex numbers 1. Under these con-
ditions the functional

By = ety —nE—ul 4 (@i —n@—iy)

is linear in x and antilinear in y, i. e. B(x,y) is a sesquilinear
functional on X and B (x, x) = n(x).
Proof. If n is a real-valued functional, then the functional m
which is defined by (6) is real so that n(ix) = n(x) implies
n(z+iy) —n(@—iy) =nfi@y—ix)]—nli(—y—iv)] =
=[n(y—ix)—n(y+iz)],



Quadratic and sesquilinear functionals 81

which leads to B(x,y) = B(y, x). Similarily one finds B(ix, y) =
= 1B (x, y). Thus, if n is a real functional, then B is a Hermitian
functional and it is sufficient to prove that B is linear in the first
argument. On the other hand in the case of a complex (quaternionic)
n(x), (i) and (ii) imply that real and imaginary parts of n(x) satisfy
the same conditions. Hence, without loss of generality we can
assume that n is a real functional. Since the functional m(z, y) is
additive in x, so is the functional B ([1], Lemma 1) and it is suf-
ficient to prove that B(tz,y) =t B(x, y), or equivalently that

m(tx,y) =tm(x,y) : (8)
holds for all real numbers t and all pairs x, y < X.

Suppose that x and y are given and that y = ux. Then

n.(t}x-i—y)—ﬁ'(tx—.y) %(]t+u]2?|tu—y]2)n,(x)=
=t 1+,u|2.—_—[1——y‘|2)n(x)=tn(x+y)ftn(x—y)
implies (8), i. e. (8) holds if x and y are dependent.

If x and ¥y are independent then they determine a two-dimen-
sional subspace Y of X with ej = x and ez =y as a basic set. The
restriction of n to Y, which we denote again by n, possesses pro-
perties (i) and (ii) on Y. Since e,, e, is a basis set in Y, then e,, i e,
ez,iez is a basic set in Y considered as a real vector space. The
functional n as a functional on the real vector space Y is quadratic,
i. e. (2) holds and n (t 2) = t2 n(2) for every real number t and z< Y,
Applying (7) to the present situation we have '

4
n@)=mn(tie; +taie; +tzep-+tyies) = Z bijtit; + 9)

o i,j=1
£ 2

1<i<j=<4g

b

ai; (ti) ai; (t3)
ti t;

where b;; are real constants and a;;(t) is a derivative on the set of
all real numbers. Hence, a;;(r) =0 for every rational (and even for
every algebraic) number 7.
If we take z as a rational vector, i. e. all t; are rational, then
we get
4

n(2) = Z bijtit;. (10)

i,j=1

Replacing in (9) z by

lz=1te + ta'ie; + ty es+tyies,
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where 1 is a complex rational number we get by using n(12) =
=|1|2n(z) the relation

4 4
|12 Z bijtiti = Z bijti ty. 11
L,j=1 Lj=1 |

Obviously, (11) holds for all complex numbers 4. This implies that
the first sum in (9) satisfies conditions (i) and (if) of Theorem 1.
But then the functional

N(2) = Z ; aij (ti) ai; (t7)
ti t;

1si<j<¢4

(12)

also satisfies conditions (i) and (ii). We are going to prove that
essentially (ii) implies N (2) =0, for every z< Y.
For a vector z=1te, +sie, from (12) we get

95 (t 5
N(te+siey) = aiz (t) aiz (s)

S

On the other hand, N{te,+sie)=N[t+is)e]=|t+is|2
N (e;). We have, therefore, (2 + s2) N (e;) = s a2 (t) — t a42(s), which
implies that a2 is a continuous function and therefore ajz=0.
Similarly ag4 = 0. Thus, :

t b(t) b(s
N(te;+tieg+ses+sie) = a(t) a(s)|+’ i) (s) n
S s’
| (13)
¢ <l L d(t) d(s)
t’ S l t’ S, 4

where a, b, ¢c and d are derivatives on the reals and t,t/, s and s are
arbitrary real numbers. If we take z=te;+sie; and A=o0T
+ i7(0, r reals), then

(ctit)z=o0testrtiest(—18)eat+ o5 iey

together with (13) and (ii) implies

(c® + %) | b(t) b(s) L a(ot) a(—rs’) b (ot) a(os’)
| ¢ s | ot —s’ ot os’
¢ () c(—rs’) d(zt) d(os’)
Tt —18’ ‘ Tt os’ | ’ (14)

for all real numbers o,7,t and s’. If we take ¢ and 7 to be rational
numbers and if we use f(rt)=rf(t) for every. derivative f and
rational number r, then (14) turns out to be a polynomial in ¢ and
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7. But then the corresponding coefficients have to be equal. We
have, therefore,

| b)) b(s) _le® —c )
ot s | |t —s |’
) —a(s’ d@) d’
a(t) a(s’) +‘ (t) (f) _
t —s’ \ t s

If we take s’ =1, we get
b(t)=—c() and a(t)=d(t). (15)
Now, take o in (14) to be rational. We get a polynomial in o,
which by the comparison of coefficients leads to

a(t) —af(zs’) a(tt) a(s’)

) ’

t —18 k1 s

If we take t=5" =1, we get a(r) =0, for every v <R. Thus, a=
=d = 0. Now, we take z=1te; +sep in (13) and we use a=d =0,
b=-—c. We get N(2)=0. This gives N{(1z)=0, for l.—_g—i-
+i7(s,7<R). Using (13), for 1z=ote +rtieg+osextrsies
we find
(rsb(ot)—atb(xs) +(—osb(zt)+1tb(c8) =0,
which for s =s=t=1 implies b(r) =0, for every z< R. Thus,
a=b=c=d=0 and, therefore, N(2) =0, for every z<Y.
In such a way we have proved that in (9) all a;; = 0. Hence,

4
n [(t; + ity) e1t(tstit)e]= z bij ti t;

i,j=1
for all real numbers t;. If we set

o=t tit,, A,=t,+it,,

then
A 47 — 2 —,
ty= 1 ! ,tg:Ll 2L ,t3=—12+12 and t4=—12 42
2 2 2 %
imply
2
n (A eq + Az eg) = z cij di Aj, (16)
i,j=1

where cy1 and cg2 are real numbers and cy2 = cz;. From (16) we find

1 — - _ _
m (A1 ey, Az e2) = ?(612 Ay A+ c12 11 A9),



84 S. Kurepa, Zagreb

which for 4=t and A2 =1 leads to -
mtx,y)=tm(x,vy),

i. e. (8) also holds in the case of independent vectors x and y.

Theorem 2. Let X be a vector space over the field of quater-
nions and n a real functional on X such that

() n(x+y)+nx—y) =2n(x)+ 2n(y) and
(b) n(Ax)=|1[2n(x)

holds for all x,y < X and all quatermons A, where [1]|2=1 2and 1
is the conjugate quaternion of 4. Under these condztzons the func-
tional’ : e _ .

B(z,9) = m (5 y) +im(miy) +im@ i) +kmizky)

is a sesquilinear functiondl and n(x) = B (x, x), where
1
-m(x,y) = (n(x+ y) —'n—(x—y))-

Proof. If we consider X' as a complex vector space, then the
conditions 6f Theorem 1 are fulfiled so that m(tx, y)=1itm(x; y)
holds for all real numbers t and all x,y < X. This implies the
assertion of Theorem 2 by the same reasoning as in Theorem 1.

2. In this section X denotes an Abelian group, R the set of all
reals and 7 : X'~ R a quadratic functional, i. e. a function which
satisfies the equation. :

n(x+y)+n@x—y)=2n(x)+ 2n(y)

for all x,y < X. As in ([1], Lemma 1) one proves that a function
1
m(x, y) = N (n(x+y)—nx—y)
is additive in each argument and that m (x, y) = m(y, x) holds for all

x,y< X. :
A quadratic functional n is termed positive if

n(x) = 0 (17)
holds for all x< X. If g: X — R is any additive functional, i. e
gxty=g@ toly) @y<X), (18)

then ’
n@=lg@]? (19)

is a positive quadratic functional. Positive quadratic functionals on
an Abelian group possess some properties of norms on unitary
spaces. We have ‘
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Theorem 3. Let n: X — R be a positive quadratic functional
on an Abelian group X and m(x,y) a bmddztwe functional defined

by (6).

I. For any system of elements x1,...,x; < X the matrix
m (21, 1) m (1, x2) . . . m (X1, Tk)
T(xy,... oK)= m (x2, 1) mlx2, x2) . . . m (T2, X&) (20)
m (xk, x1) m(xk,x2) . . . m (Ck,Tk)

is positive semidefinite.

II. A mappmg x—|x|=[n(x)]% possesses the following pro-
perties

imxy) [ <|z||y] (1)
and : :
lz+y|<lz[+]y], ‘ (22)
for all x,y< X.

III. The set X, ={x, [n(xo) =0,x,< X} isa subgroup of X and
the functional n :X/X,— R defined by

n (x + X)) =n(x) 7.

is aq positive quadratic functionai oﬁ X/X, with the Ip‘rope'rty that
"r\z(x-l-XO):O implies x < X,.

Proof If p is any integér then n(px)=p2‘n(x) holds for
every x < X. Hence, by using (2), we get

1 - s .'.'v
. [n(px+y)+n(pw—y)]—n(px)+n(y) pPn(r)+n(y)-
and |

; o | }
?[n(px+y)—n(px——y)]=2m(px,y)=2pm(x,y)-

If we add these two relations, we find
n(pzt+y)=pin(x)+2pm(x y) +ny)), (23)

for all ,y <X and any integer p.

If ri,...,xr are elements of X and pi,...,pr are integers,
then by setting p=p1, * = x; and :

Kk

Y= Z Dix;

i=2
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in (23) we get
k k Ok

n(z pixi) =pZn(x)+2 2 mp;m(xx,xi)Jrn(z Pixi)’

i=1 i=2 i=2

which leads to

k K
n (Z Pi xz) = Z Pi Pi M (Ti, ;) . (24)
i=1 hji=1
Now, suppose that ry,...,7r are rational numbers. Writing
r; = pi/ p with integers p; and a natural number p, we have
Kk K
1
z Ti T M(Ti, Tj) = — Z Pi pj m (T4, T5) .
p?
i,j=1 i,j=1

Since n(x) >0, for every x < X, we find, by using (24),
x .
Z ri i mxi, ) > 0. . . (235)
i,j=1 : '
By the continuity we derive from (25)

x S
Z titim(x;, x;) >0, "~ (26)
§,j=1 _

for all real numbers t1,..., ts. Thus, the matrix (20) is positive

semidefinite. _ o
Since the matrix I' (x, y) is positive semidefinite, we have

det I'(z, y) = n(x) n(y) —m(x, y) m(y, x) =0,
i. e. (21) holds for all x, y < X. Now, |
n@ty)=n@+n@+2my) =0,

together with (21), implies (22).

In order to prove the third part of Theorem 3, we note that
x, < X,, together with (21), implies m(x,, y) =0, for any y<X.
Thus, x, < X and y < X imply

n(x, TY) =n(x,—Yy). _, (27)
Furthermore, x,, y, < X, and n(z) >0, for all z< X imply
n(x, T Yo T n(xy—y,) =0,
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from which it follows that n(x,+y,)=n(x,—y,) =0. Thus, X
is a subgroup of X.

If x,x’<X are such that x,=x"—ax < X, then
n(x) = n(x,+ x) =n(x,) +n(x) + 2m(x, x) = n(x)

0

implies that the functional 7 (x + X)) =n(x) is well-defined. That
it is positive definite and that n(x + X)) =0 (=)x < X, is obvious.
This concludes the proof. -

"As we have remarked, a functional x— n(x)=[g(x)]2 is a
positive quadratic functional for any additive functional g : X — R.
The following theorem gives necessary and sufficient conditions in
order that a positive quadratic functional be of this form.

Theorem 4. A positive quadratic functional n:X — R is of
the form _
n(x) = [g (*)]2,

where g : X = R is an additive functional, if and only 1f n satisfies
the following subsidiary condition

[rEt+y)—nx—y]2=16n(x)n(), (28)

i. e. if and only if det I' (x,y) =0, for all x,y < X.
Proof Let n:X—>R be a pos1t1ve quadratic functional and
let it satisfy (28), i. e. let .

(m(x, Y]?=n(@)n@), 29)

for all x, y < X. If n =0, then we can take g = 0 in order to satisfy
(19). If n 5= 0, then a y € X can be found such that n(y) > 0. From
this fact and (29) we conclude that

1 R
n(x) = [————— m(x, y)] .
AT () I
Thus, n is of the form (19) with

1

g(x)= ——;—m(x v,
S Yy

which is an additive functional in x. _

Since x — [g(x)]2 is a positive quadratic functional whenever
g : X — R is additive, Theorem 4 is proved.

Corollary 1. If n: X — R is a positive quadratic functional
and n(x) =g, (x) g, (x), where g, and g, are additive functionals,
then g, and g, are proportional.

Proof. Using n(x)=g,(x)g,(x), we get

. 1 '
det I'(z,y) = — I‘[g1 (®) 9, (W) —9,®) g, (x) P,
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which, together with Theorem 3, leads to g, (x) g, (¥) = g, (¥) g, (x),
from which Corollary 1 follows.

In connection with the subsidiary condition (28) which appears
in Theorem 4 we have the following

Theorem 5. Suppose that @ : R— R is such a function that

det[ 4Q(x Q(vc—l~'y)—Q(9c—y)]=0’1 o
RQix+y)—Q(x—y) 4Q (y)
Rirx+y)—REx—y)]2=16Q () Q () (30)
holds for all x,y < R. Then
Q(rx)=12Q(x) (31)

holds for any x < R and every rational number r.

If @ is a continuous function, then @ (x) = x2 Q (1) holds for any
r<R.

Proof. If in (30) we set x=y =0, we get [Q(0)]2=0, i e.
@ (0) = 0. Now, by setting x =0 in (30), we find

Q) —Q(—yl2=0,
i. e. @ is an even fulnctmn From (30) we see that Q is of constant
sign on R.
Suppose that @ (x) >0, for every x< R. From (30), for x = y,
we get

[Q(2y)]® = 16 [Q ()12,
which together with @ >0 leads to

QR2yY)=4Q ),
for any y<R.

Suppose that y is such that Q(y) 3= 0. If we set x = 3y in (30)
and if we use Q(4y) =4 Q{2y) = 16 Q(y), we get -

[12Q(y)]12=16Q (3y) QR (),
from which '

QBY)=9Q (W)

follows.
Now supoose that

Q(ky) =k?Q(y) (32)

holds for all natural numbers k <p (p > 3). Let us prove that (32)
is valid also for k=p+ 1. If p+ 1 is an even number, i.e. p+ 1=
= 2q with a natural number g, then

RQiletNyl=4Q@QY)=4¢QRW) =m+1)2Q(y)
is a consequence of ¢ <n and the inductive hypotheses (32).
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If p+1 is an odd number, i. . p = 2q with a natural number
q, then ¢ +1<p, so that

RQIg+Dyl=(q+1)2RQ(®1),
Q[(p+2)y]=Q[2(q+1)y] =4Q [(q+1)y]

and

lead to
RQlp+2)yl=rP+22Q(Y). (33)

If in (30) we set x=(p+ 1)y, we get by using (32) and (33)

(p+2°—P 12 [QW)I2=16Q [P+ 1)y] Q(Y), i. e
RIr+Dyl=r@T12QWY).

Thus, Q(kvy)=k2Q(y) holds for all integers k. Now, for any
integer k, k== 0, we have

1 1
R =Qk —y=kK2Q(__1yv),
L k
from- which

Qty="L0ow (39
k 2

follows Fmally (34) and (32) imply

Qry)=r"Q (y) ) (35)
for any rational r.
If Q(y) =0, for some y < X, then Q(ry) =0, for any rational
7, so that (35) holds in this case too. Indeed, otherwise one. could
find a rational number r,=F 0 such that Q(r,y) = 0. This leads in
the same way to Q(r:r,y) =2 Q(r,¥), for any rational number r.
Setting r =1/r, we get

1
QW) = _—2Q(roy)=f:0
T2 .

contrary to the assumption Q(y) = 0. Thus, @ (rx)=12Q (x) holds
for any x < X and for every rational number 7.

We end this paper with a theorem about quadratic fu:nctlonals
on real partially ordered vector spaces. We have:

Theorem 6. Suppose that X is a partially ordered vector
space over reals. If n:X— R is a quadratic functional with the
property that x <y implies n(x) < n(y), then

1
m(x, y) = Z[n(x+ Y)—n(x—1y)]
is a bilinear functional on X.

Proof. Since n(0) =0, we conclude that x> 0 implies n(x) >
=>0. Now, set n;(t)=n(tx) for real number t and x>0. Since



90 S. Kurepa, Zagreb

t>s>0 (t,S<R) implies tx>sx >0, we find that 0 <s<t
implies
0<<n;(s) <nz (1),
i. e. the function t — n;(t) is monotonic on (0, ). Since the function
t > ny(t) satisfies the functional equation
ng (t+8) + ng (t—8) = 2n (t) + 2n4(5)
and since it is monotonic, we find see (see [2]) that n,(t) = t2 ng (1),

i. e. that
n(tx) =t2n(x)), (36)

for any real number t. Thus,
n(te+y) =t2n(x) + 2m(tz, y) + n(y) (37)

holds for all =,y >0 and t (see [1], p- 26). On the other hand, 2 >0
implies n(z) >0 and x,y >0, t >0 implies tx + y > 0. Hence, by
using (37), we get :

2m(tx, y) > —tn(x) —n(y),
which implies _
inf mtx,yy >— 0<t<L1)

so that the additive function t— m(tx, y) is bounded below on an
interval. But then it is continuous and m(tx,y) =t m(x, y). Thus,

m(tx,y) =tm(x,y) (38)
holds for all t< R and x,y>>0. , ’
Now any y < X can be written in the form
Y=y —Y- U+ y-=20). N
By the additive property of m we have, for x>0,
m(tr,y) =mEr, v, —y.) =mEtz,y,) —mEz,y.) =
=tm(x,y.)—tm(x,y-)=tm(x,y).

Hence, (38) holds for all t<R, all y<X and >>0.
Writing an arbitrary x < X in the form x = x, — x. we find in
a similar way that (38) holds for all x,y < X and t<R.
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KVADRATNI I SESKVILINEARNI FUNKCIONALI

Svetozar Kurepa, Zagreb
Sadrzaj

U ¢lanku su dokazani ovi teoremi:

Teorem 1. Neka je X kompleksan vektorski prostor, i n kom-
pleksnoznalna funkcija takva da vrijedi

@) n@+y) Fn@—y) =2n@+2n) i
(i) n(Az)=|1]2n(x)

za sve x,y < X i sve kompleksne brojeve A. Tada je funkcional
1 i ' . .
B(x,y) = X[n(x+y)—n(x——y)] + Z[n(x-i-ty)—n(x—zy)]

linearan u x i antilinearan u y (tj. B(x, y) je seskvilinearan funk-
cional na X) i B(x, x) = n(x).

Teorem 2. Neka je X vektorski prostor nad tijelom kvater-
niona i n realan funkcional definiran na X sa svojstvima (i), (it) iz
teorema 1 (pri tome je [l|2=17i A je konjugirani kvaternion
kvaterniona A).

Tada je

B(x,y)=m(x,v) +im(x,iy) +im(x,jy) + km(x, ky) seskvi-
linearan funkcional i n{x) = B(x, x). Pri tome je

1
m(x,y) = ?[n(ﬁy)—n(x—y)]-

Teorem 3. Neka je R skup realnih brojeva, X Abelova grupa
i neka n : X - R zadovoljava uvjete (2) i (17) za sve x, y < X. Neka
je nadalje m(x, y) definirano sa (6).

1. Za bilo koji sistem elemenata x1,...,x; < X matrica (20) je
pozitivno semidefinitna.

II. Preslikavanje x—|x|=[n(x)]*% zadovoljava uvjete (21)
i-(22).

III. Skup X, = {z,|n(x,)=0,x,< X} je podgrupa od X i
funkcional n: X/X,— R definiran s ﬁ(x + X,) =n(x) zadovoljavae
wvjete (2) i (17), i n(x + X,) =0 povladi x < X, .

Teorem 4. Ako su n, X i R isti kao u teoremu 3, onda je
n(x) = [g(x)]2, pri ¢emu g: X — R zadovoljava (18) za sve x,y < X,

onda i samo onda ako funkcional n zadovoljava uslov (28) za sve
x,y< X
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Teorem 5. Neka je R skup realnih brojeva i Q : R~ R takva
funkcija da vrijedi (30) za sve x, y < R. Tada je Q(rx) =12 Q (x) za
svako x € R i svaki racionalni broj r. Ako je @ meprekidna funk-
cija onda je Q(x) =22 Q(1) za svako r < Q.

Teorem 6. Neka je R skup realnih brojeva i X parcijalno
ureden vektorski prostor nad R. Ako funkcional n: X — R zadovo-
ljava uslov (2) za sve x,y < X i ako x <y povladi n(x) < n(y), tada
je (6) bilinearan funkcional na X. _

Teoremima 1 i 2 dan je pozitivan odgovor na jedan problem
profesora I. Halperina iz 1963. na koga je negativan odgovor u
slu¢aju realnog prostora dan u-[1].

(Primljeno 16. IIT 1964.; dopunjeno 22. I 1965.)



