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In this paper! we study spaces X, which are obtainable as ima-
ges of ordered compacta K, under continuous mappings f: K— X
onto X. To these spaces we refer in the following merely as to
continuous images of ordered compacta.?

Qur attention is centered on relations between the degree of
cellularity® ¢ (X) of continuous images of ordered compacta and-
their local weight lw (X) (§ 4). We prove that lw (X) < c (X) (The-
orem 2). In particular, if ¢ (X) < ¥, i. €. if X has the Suslin proper-
ty3, then X satisfies the first axiom of countability. This result
together with known facts about diadic compacta (see § 9) proves
a recent conjecture of P. S. Aleksandrov to the effect that
a diadic compactum is the continuous image of an ordered compact-
um if and only if it is metrizable (Theorem 14).

The question of the equality of ¢ (X) and the degree of separa-
bility s (X)3, for continuous images of ordered compacta is reduced
in § 8 to the Suslin problem.

We also study the behaviour of ¢, s, lw, and weight w under
mappings f: K—> X onto X (§§ 3, 5, 6, 7), in particular when f is
quasi-open and light in the semse of ordering (see § 2). One of our
main results in this direction is Theorem 1, which establishes
equality of ¢ (K) and c (X) under light quasi-open mappings f.

Results about weight (Theorem 6) enable us to strengthen one
of our earlier results of [8]. We also find that ¢ and s are monotone
functions ‘'on closed subsets of X (Theorem 12).

§ 1. Preliminaries

All spaces in this paper are assumed to be Hausdorff topolo-
gical spaces. By a compactum we mean any Hausdorff compact
space (not necessarily metrizable) and by a continuum any con-
nected compactum.. .

! Part of the results of this paper were amnounced in the authors’
note [9]. ' '

2 The authors have already studied this. class of spaces in [8], also
cf. [7].

3 For definition of netions appearing in this introduction cf. § 1.
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An ordered compactum K is a compactum provided with a total
ordering << such that the topology of K is the order topology indu-
ced by <<. In other words, a subbasis for the topology of K is formed
by all the sets of the form (-,t)= {s< Kls<t}, or ()=
= {s € K|t<|s}. An ordered continuum C is a connected ordered
compactum. The only metrizable ordered continuum is the arc, i. e.
the homeomorph of the real line segment I = [0, 1]. Its closed subsets
are the only metrizable ordered compacta.

A useful example of a non-metrizable ordered continuum is
obtained by considering the square I X I = {(s,t)|s < I, t< I} in
the »lexicographic order« <C. We set (s, t) <<(s,t) if and only if
either s <<s’ or $ = 8’ and t <<t’'. We denote this continuum by @
and refer to it as to the »square in lexicographic order«. Another
interesting example is the ordered compactum Q; €@ defined as
@ = (I X 0)U (I'X 1) with the lexicographic order.

Throughout this paper we denote by k (4) the cardinal of the
set A. With every space X several cardinal numbers: are associated.
The weight w (X) is the least cardinal k having the property that X
admits a basis for its topology with <k elements. Clearly, a com-
pactum X is metrizable if and only if w (X)<<%;. The weight
w(x, X) of a space X at a point x € X is the least cardinal k having
the property that there is at x a basis of neighbourhoods of cardi-
nality << k. The local weight lw (X) of X is defined as Sup w (z, X).
Clearly, =X

w (X) < w (X) . (1)

The degree of separability s (X) is the least cardinal k having
the property that X comtains a subset RE X, dense in X, and of
cardinality k (R) < k. Clearly,

(X)) <w(X). @

Spaces X satisfying s (X) <%, are usually called separable.
Finally, the degree of cellularity ¢ (X) is defined as Sup k (l1), where
U runs through all families I = {U.} of disjoint non-empty open
sets U, € X, Clearly, ¢ (X) is well-defined and

cX)<sX)<Sw(X). 3)

This notion is due to D. Kurepa ([3], p. 131; also cf. [4]). A space
X is said to posses the Suslin property provided ¢ (X)<¥,. In
other words, every family of non-empty disjoint open sets in X
is at most countable. In the following we refer to compacta (continua)
having the Suslin property merely as to Suslin compacta (continua).

The above mentioned inequalities (1), (2) and (3) are the only
inequalities relating w (X), lw (X), s(X) and c(X), valid for all
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spaces X. Any other inequality is violated already in the class of
compacta. E. g. for the ordered continuum @ we have

w@=2" Ww@=% s@=2"° c@=2"
which shows that We- can have
lw X)) <w(X), WwX<sX), wX)<cX).

For the ordered compactum @; & Q@ we have

w@)=2" Ww(@) =%, Q)= c(@)=>x,
which shows that we can have
wX)<w(X), sX)<w(X), cX)<w(X).
An example, showing that s (X) <<lw (X) can occur, is furnished

b
by lhe direct product P = II I,, where I, = I, and k (4) = 2 ° For

acAd
this space $(P) = ¥ (see e.g. [2], N, p. 103). On the other hand, it
N
i well known that lw (P) = w(P) = 2 ° Furthermore, ¢ (P) = Ny,
hecause of the following theorem due to E. Szpilrajn [12].

Let {X,, a € A} be any family of topological spaces X, of weight
w (X)) <%y Then II X, has the Suslin property.

acd
Thus our example also shows that c (X) <<lw (X) can occur.

N
I'inally, consider the space T = Il I, where Isg =1 and k(B) > 2 °
BeB

N
Clearly, w(T) = lw (T)>2 °, By the Szpilrajn theorem c (T) = ¥,.
Hawever, s (T) > ¥ = ¢ (T), because of the following proposition:
N
I] X is a regular space with s (X) < ¥, then w (X) <2 °

I’roof. Let R < X be a countable set, dense in X. Assign to each
subsel S E R the open set Us = Interior Cl(S). Clearly, the family
i {Us}, where S runs through all subsets of R is of cardina-

hity -3 2N°. But U is readily seen to be a basis for the topology of
N. Indeed, if <€ X and VEX is open, x €V, then choose an
open set Wosuch that x € WECIW SV, Put S = R W. Clearly,
Wl SCClWeaeV, and therefore, x < W CInterior C1S =UsCV.

Notice, that for ordered compacta K, in addition to (1), (2) and
(3) we always have

lw (K) < s (K) and 4)

lw (K) < ¢ (K) (5)
{nees Liemma 5.). : ‘ : S
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As to the relations between ¢ (X) and s (X), it is not known whether
one can have c(K) <s(K) for some ordered compactum K. Actually,
the question: does ¢ (K) = ¥, imply s (K) = ¥, for ordered compacta
K? is the famous unsolved Suslin problem, raised by M. Ya.
Suslin in 1920 (Fund. Math. 1 (1920), p. 223, Problem 3.).

§ 2. Monotone, light and quasi-open mappings
In an ordered compactum K an interval (a, b), a <b, is the set
(@, ), by={t<K|a<t<b}.
A segment [a, b], a < b, is the set
{t<Kla<t<b}.

If M < (K, <) is any subset, we call a non-empty subset N& M
an order component of M provided
(a) a,b < N implies [a, b] © N (here [a, b] denotes a segment of K) and
(#) whenever a subset N’ & M has property {(a), then N’ S N.
. Clearly, the order components of M give a decomposition of M
into disjoint subsets. If M is open (closed) its components are inter-
vals (segments) of K. o

Definition 1. A mapping f:K— X of an ordered compact-
um (K <{) onto X is said to be monotone in the sense of ordering
provided, for each x < X, f—1 (%) is a segment of K.

Definition 2. A mapping f:K— X of an ordered compact-
um (K, <) onto X is said to be light in the sense of ordening pro-
vided, for each x € X, every order component of £1(x) has but
one single point.

Remark. If K= C is an ordered continuum, then these de-
finitions give monotone and light mappings in the usual sense, as
used in topology.

For simplicity we shall often leave out the attribute »in the
sense of ordering«.

Lemma 1. Let K be an ordered compactum and £ : K— X
a mapping onto X. Then there is a compactum X’, a mapping
m:K— K’ and a mapping g: K — X such that £ = gm. Moreover,
m, is monotone and g is light in the sense of ordering. This factori-
zation is uniquely determined. '

This lemma is the order analogue of the well-known Whyburn
monotone-light factorization theorem (see [13] and [10]).

Proof. It suffices to consider the decomposition of K produced
by the order components of the sets f~!(x), x < X. K’ is defined as
the corresponding quotient space and m: K — K’ as the correspond-
ing natural mapping. The definition of g follows from the require-
ment f = gm.



Continuous images of ordered... v

In the following we shall also need another class of mappings
that we shall call, for brevity, quasi-open mappings.

Definition 3. Let X and Y be topological Spaces and
f:X—>Y a mapping. I is called quasi-open, provided for each non-
empty open Set US X the set £{U) has a non-empty interior Int
f(U) 0.

Lemma 2. Let £:X->Y be a mapping of the compactum X
onto Y. Then there exists a compactum X; & X such that £(Xi) =
=Y and that the restriction f1 =£|X; is a quasi-open mapping
f:X;—>Y.

Proof. Denote by & the family of all closed subsets X, X
for which

fFXo) =Y. (1)
Define in & a partial order < by setting X, < Xy if and only if
Xe D Xp.

Let us prove that each totally ordered subset § ©F has an
upper bound in (&, <).

Clearly, it suffices to show that the set

X' =MsXs, X< 9 )
belongs to &, i. e. that
fFX) =Y. » 3)

Thus take any y < Y. In any finite subfamily {Xp,,...,Xs } &
€ 9 one of the members, say X; , is contained in the intersection
of this subfamily (§ is totally ordered). Therefore, by (1),

0FFWNX = A WNX,), @)

which shows that {f~!(y) M X}, X5 < &, is a centered system of
closed sets. Hence, by compactness,

0FNF 1 NXp), X< 9, ©®)
which proves that
Fry)yNX 0. (6)

Thus we can apply Zorn’s lemma and obtain a maximal element
X, € ¥ which, we claim, satisfies the assertion of the lemma.
Assuming that this were not the case, we could, find a set UC X,
open in X and such that Uy = U X150 and Int f (U1 = 0. Then
we could prove that Xy =X; \NU; € §. Indeed Y \ f(Uy), and
a fortiori f(Xg) = f(X1i\ U)DY \ F(Uy), would be sets dense in
Y (notice that f(Xy) = Y), which would yield f (X2) =Y, f(X;) being
a closed set. Moreover Xp being a proper subset of X1, we would
have X; <<Xs, which is in contradiction with the assumption that
X, is maximal in {. This completes the proof.
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RemarTtk.. We shall need this lemma only in the case when
X = K is an ordered compactum.

Applying subsequently Lemma 2 and Lemma 1 we obtain this

Lemma 3. Let X be the continuous image of an ordered
compactum. Then there exist an. ordered compactum K and a map-
ping £ : K — X onto X, which is at the same time light in the sense
of ordering and quasi-open.

We conclude this section: by a very simple but important lemma
concerning arbitrary continuous mappings of ordered compacta.

Lemma 4. Let f: K— X be a mapping of an ordered compa-
ctum K into X. Let F and F’ be two disjoint closed subsets of X and
{1}, 2< 4, a family of disjoint non-empty intervals V; = (az, by)
of K. If, for each A< A, £ (V)M FF0and £ (V) YF =0, then A
is a finite set, '

Proof. Assume on the contrary that A4 is infinite and choose an
infinite sequence of different indices A1,...,4n,... < A. There is
no loss of generality in assuming that the left end-points a of the

intervals V;n converge to some point ap < K. We can also assume
that the sequence a; is monotone. Since the intervals V; are dis-
n n

joint, each neighbourhood of a¢ contains all but a finite number of
sets Vzn. Now, choose in V;n two points t, and t’» such that f(t:) < F
and f(t's) € F'. Then, clearly, a; = limy, t, = lim,t’,. We conclude, |

by continuity of f, that f(ag) = lim, f(t.) € F and at the same time
f(ag) = lim, f(t's) € F', which contradicts the assumption FMF’ = 0.

§ 3. Light quasi-open mappings of ordered compacta
and the degree of cellularity.

In this section we establish the central theorem of the whole
paper.

Theorem 1. Let K be an ordered compactum and £ : K—>X
a map onto X which is quasi-open and light in the sense of ordering.
Then the degree of cellularity c¢(K) = c(X), whenever c(X) is in-
finite; if ¢ (X) is finite, then c(K) is finite too.

Corollary 1. Let K be an ordered compactum and f: K—X
a map onto X which is quasi-open and light in the sense of ordering.
Then X has the Suslin property if and only if K too has the Suslin
property.

Proof of Theorem 1. First observe that for any mapping f: K~
— X onto X we have ¢ (X) < c (K). As to the reversed inequality,
first consider the set Z < X of all the isolated points of X. We shall
show that

k(@) <cX). (1)
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Indeed, for any z < Z, {z} is open and closed. Therefore, f—! (2)
decomposes into order components, each one of which is at the
same time am interval and a segment. There is only a finite number
of these compomnents, because they cover the compactum f~!(2). f
being light, each of the components reduces to a point. Thus, for
each z < Z, f1(2) is a finite set. Furthermore, k (Z) < ¢ (X), because
{2}, 2 € Z, is a family of disjoint open sets of X. This establishes
(1), if e(X) is infinite.

If ¢(X) is finite, then clearly X itself is a finite set and thus
X = Z. Therefore, by the angument used in proving (1), K is finite,
which implies that c¢(K) is finite too. Thus, we can assume from
now on that c(X) is infinite.

Given any family {U,}, a < A, of disjoint open non-empty sets
U, of K, we have to prove that k (4) < ¢ (X).

Because of (1), ! (Z) can intersect at most ¢ (X) sets U,, a < A.
Therefore, we can assume in the following (with no loss of gene-
rality) that U, f1(Z) = 0; for all a < A.

Now we shall assign to each a € A a non-empty open F, - set
U.* © X having the property that

U S f(Ud). 2)

This is readily dome by taking a point xo < Intf(Us)==0 (recall
that f is quasi-open) and constructing, by normality, a sequence of
open sets Vp such that

<V ECl(V)&E...CV, CCl(Vy) &...CInt fF(U)EF(Us). (3)
Clearly, the set

Ny Va = U Cl(Vy) 4)

=l

has all the required properties.

Notice, that U,* always contains more than one point, because
of U.MN§f1(Z)=0.

Now, we define in A a partial ordering << by setting a <d/,
o, € A, if and only if U, D Up. We shall prove that (4, <) has
the following properties

(i) for any fixed a < A4, the set of all ¢’ € A with o <a is
finite,

(ii) for each totally unordered? subset A’ A we have k(4) <
<c(X).

From (1) and (11) it readily follows that k (4) < c(X). Indeed,
denote by R;(A) the set of all minimal elements of A (cf. [3], p. 72)
and define by induction R (4) as the set

Ra(A) =Ro(AN (Re(AHU...UR,_1(4)). )

* A subset of a partially ondered set is said to be totally unordered
provided mo pair of its elements is in the order relation.
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Clearly, for any n, R, (4) is totally unordered and thus, by (ii) we
obtain

k (R, (A) <c(X). ‘ (6)
On the other hand, by (i), we have
A= U Rq,(4), . (7

because an element ¢ < A with n predecessors in A surely | belangs
to Ro(4)U...UR,(4).

Thus, all that remains to be dome is to prove (i) and (ii).

Proof of (i). Let aq; < A be any fixed element. Choose in U,*
two distinet points x and «’. Let A1 < A be the set of all a € A
which precede ag. In other words, a < A; means that a <<ap and
therefore,

fU)D U*a> U%e D {z,2'}. 8)

Let V be an open set of X \ {x} containing x’ and put F =
=X\Vand F/ = {x’} . Clearly, F and F’ are disjoint closed sets
and since * € F and ' € F’, we have f(U) N F=F0 and f(U.) N
N F =0, for each a < A,. Therefore by Lemma 4, we conclude
that A; is a finite set.

Proof of (ii). Let A’ © A be any infinite totally unordered subset
of (A, <). We have to prove that k(4") < c¢(X).

Let A’ (), @ € A’, denote the set of all elements a < A’ such
that Uy* M U*==0. We shall define a subset B< A’ such that

A = BU A’ (B) 9)
€B
and that {Usg*}, 8 < B, is a family of disjoint sets Ug*.

B is defined by transfinite induction as follows. Let a, <a, <
<< a<...,f<w, be a well-ordering of A’. We set ag < B.
Assume that we have already determined, for each a,, 7 <<£<<w,,
does a, belong to B or not. We set a: < B if and only if U.*(Uy* =
=0, for all n <¢. Clearly, B is well-defined and has the two re-
quired properties.

{Us*}, B < B, is a family of disjoint non-empty open sets of X.
Therefore, we have

k(B) < c(X). , (10)
Taking into account (9) and (10), our proof will be completed, if
we show that : '

k(A (B) < %, (1)
for each < B.
In order to establish (11) recall that Ug* is an open F,-set and
thus

o
U= U Fi, (12)
i=1

where F; < Uz* are closed sets. Therefore, it suffices to show, thaf, for
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each 1 < {1,2,...}, the set A/ © A’ (f), consisting of all a < A" (f)
with Ug* F,=I= 0, is a finite set.

For this purpose put F = Fiand F' = X \ U,g* Fora < A/ & A'
a=+f, we have, by definition, U,* (1 F==0. Moreover, we have
UX(F =0, for otherwise we would have U,* < Us* and thus
B < a, contrary to the assumption that A’ is totally unordered and
a, < A'. Since Us* Sf(Us), and {Us}, a € A4, is a disjoint family
of open sets, Lemma 4 yields the conclusion that A;" is indeed a
finite set. This ends the proof of Theorem 1.

Remark. The constant map@i;mg of a non-Suslin ordered
compactum shows that lightness is not a redundant condition in
Theorem 1.

Problem 1. Does Theorem 1 remain true if one only assumes
that f is light in the sense of ordering and do not require that £ be

quasi-open?

§ 4. The degree of cellularity and local weight
of continuous images of ordered compacta

We open this section by a simple lemma.

Lemma 5. For ordered compacta K the weight w(K), the
degree of separability s (K), the degree of cellularity c(K) and the
local weight 1w (K) always satisfy the inequality

w (K)<c(K)< s(K)<w (K) 0)

Proof. It suffices to prove that lw (K) < ¢ (K), because ¢ (X) <
< $(X) <w(X) holds for all spaces X. Thus, we have to show that
each point t < K admits a basis containing at most ¢ {(K) neighbour-
hoods. This is trivial if t is an isolated point. Therefore, assume
that t is an accumulation point of the set (-, t) = {s €K |s<<t}.
By transfinite induction we can easily define such a tramsfinite
sequence

SO<S1<...<35<...,§<77, 2)

that each interval (sz, Sg+1), £ <%, is non-empty and
t = Sup {s:}. 3)
f{<n

Since {(S¢, Sz+1)} is a family of disjoint non-empty open sets
of K containing k () members, it follows that k () < c (K). Hence
t is the least upper bound of a sequence of < c(K) points s <t.

If ¢t is also a point of accumulation of (t, -)={u < K|t <<u},
we obtain a decreasing sequence of < ¢(K) points u; with t =1inf u;.
Clearly, (sg, u;) give a basis of intervals at the point t, containing
at most ¢(K) . ¢(K) = ¢(K) members. We proceed sn'mlatrly in the
case when t is isolated from one side.
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Now, we shall establish one of the main results of this paper,
asserting that (1) remains true also for continuous images of ordered
compacta.

Theorem 2. If X is the continuous image of an ordered
compactum, then its local weight 1 w(X) does not surpass its degree
of cellularity ¢ (X), so that we have

lw(X) < e(X) < s(X) < w(X). @

Corollary 2. If the Suslin compactum X is the continuous
image of an ordered compactum, then X satisfies the first axiom
of countability, i. e. its local weight 1 wiX) < ¥,.

Theorem 2 will be derived as a consequence of this

Theorem 3. Let X be the continuous image of an ordered
compactum. Then the degree of cellularity ¢(X) < ¥q, a >0, if and
only if each open subset V& X is the union of < ¥, closed sets of X.

Proof of sufficiency. By Lemma 3 we can assume (with no
loss of generality) that X = f(K), where f is quasi-open and light
in the sense of ordering. Then, by Theorem 1, c(K) = c(X),
provided c(X) is infinite. Therefore, by Lemma 5, l w(K) < c(X) <
< ¥, Howewver, this implies that each interval (a,b) in K is the
union of < Mo se-gtmants Indeed, let for instance a have an immediate
successor a’,a <a’, (a,a’) =0, and let b be a point of accumulation
of (-, b). ’I‘heun

(a.v b) = LEJ [a" bf] ’ (5)

where {b:}, £ <%, is a monotone increasing sequence of points from
(a, b) with Sup: b; = b and k () <lw (K) < R..

Now, if V& X is any open set, then f~! (V) decomposes into at
most ¢ (K) = ¢ (X) < ¥, disjoint intervals, and since each of these
intervals is the union of at most ¥, segments, we conclude that
71 (V) itself is the union of at most ¥, segments. f being closed,
we obtain that V = f f~1(V) is indeed the union of at most R, closed
sets.

Necessity follows from this

Lemma 6. Let X be a compactum such that each open set
VEX is the union of at most ¥, closed sets. Then ¢(X) < ..
Proof. Let {V.}, a € A, be a family of non-empty disjoint open
sets. Then
Vv=U V. (6)
acAd

is an open set of X and, by assumption,
V= U Fy, (7

BeB
where Fy = X is cl.os:ed and k(B) < ¥..

{V.} is an open covering for each Fj, so that Fs must be
contained already in finitely many sets V..
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Therefore, V = U Fs must be contained in k(B) < ¥, sets Vo,
BeB .

which proves that k(4) < ¥, and therefore ¢(X) < ¥,.

Corollary 3. Let X be the continuous image of an ordered
compactum. Then X has the Suslin property if and only if each
open set VE X is an Fs-set,

Proof of Theorem 2. If c(X) is finite, then X is finite, and (4)
is fulfilled. Therefore, assume that c¢(X) = N,. Then, by Theorem 3,
each open set VC X is the union of <%, closed sets of X and
dually each closed set F &= X is the intersection of <<%, open sets
of X. In particular, for each x, € X, there is a family {V1}, 1 < 4,
of open sets V; € X such that

0 Vi={=o} - ®
and k(4) <%, =c(X).

Choose, for each 1 < A4, an open set U, xo < Uj, such that

ClLU)EV;. 9)

We shall prove that the family 1 of all finite intersections

U=U,MN...NU, 4,...,An< 4, is a basis of neighbourhoods
of x,. Observe that

‘ E(N) <w.=c(X), ‘ (10)

so that (10) implies (4). Thus, our proof will be completed if we
show that, for any open V& X, x, € V, there is a finite subset
{A,..., 4} & 4, such that

UyN...NU, =ClLU,)N...NCLU,)EV, (11)
Assuming that this is not the case, we would have |
ClLU)NEN\NVIN...NCLU )NE\V]F0, (12)

for all finite subsets {l1,...,4} &4, which would mean that
{CLWUY)NEX NV}, A< 4, is a centered system of closed sets.
By compactness of X it would follow that

[Ar)1 CL{UHNINEX \WN =0, (13)
and a fortiori
Q V:NEX\V)F0, (14)

which, however, contradicts (8). This completes the proof of Theo-
rem 2.

§ 5. The increasing of local weight under continuous mappings

The weight w, degree of separability s and degree of cellularity
¢ cannot increase under a -continuous mapping. In other words, if
J:X—Y is a mapping of a compactum X onto Y, then w (Y) < w(X),
(V) <s(X) and c(Y) < c(X).
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On the contrary, we have

Theorem 4. A mapping f can increase the local weight of a
compactum. Moreover, there exist ordered continua C and Such
quasi-open light mappings £:C-> X onto X that 1 w(C) <lw(X).

This answers a question raised, by . Kurepa several years ago
(unpublished), '

An example prowving Theorem 4 is provided by the square in
lexicographic order (see § 1), which we have denoted by @. @ is a
continuum and |l w(Q) = R,. Y is defined as follows. Let

P=1 1, =1={0,1], (1)
tel
be the direct product of 2™ copies of I=1[0,1]. Let Ys < P be
the set of all p € P having all coordinates p: =0, for t3=t,.

Then we set

Y=U Y;. v (2)
t€d
Clearly, Y is a continuum. The point O < P, having all co-
ordinates zero, belongs to Y and it is readily seen, that Y does not
admit of a countable basis of neighbourhoods at O. Actually,
lw(Y)=2%>%,=1w(Q).

However, there exists a mapping f:Q@— Y onto Y. f is defined
as follows. It maps the segment {t X 0,.t X3} of (@, <) linearly onto
Y: (recall that Y;=I; X0X0X...=[0,1]X0X0X..)) in such a
way that f(t X0)= 0, and f maps the segment [tX 3, tX1] of
(@, <) linearly onto Y; in such a way that f(t X'1) = O. It is readily
seen, that f is continuous and that f(Q) =Y. Moreover, f is light
and quasi-open. Of course, Y has not the Suslin property. This
completes the proof of Theorem 4.

If f:K—X is any continuous map of the ordered compactum
K onto X, we introduce the cardinal

%(f) = leezg k(f= (x)) . (3)

% (f) exists and, clearly, x (f) < k(K).

Theorem 5. The cardinal =(f) given by (3) satisfies the
inequality
Tw(X) < #(f) - Lw(K). @

Proof. If 1 w(K) is finite, then K and X are finite sets and (4)
is trivially true. We wassume henceforth that ! w(K)>¥,. Given
any x < X, consider f~1(x) and for any t < f~!(x) choose such a
basis U (t) of neighbourhoods that k (1 (t)) <lw (K). Let T be the
set of all finite subsets of f—1 (x).

Since k(f1(x)) <x(f), clearly, k(T)<x(f) provided z(f) is
infinite. If »(f) is finite, then k (T) is finite too. Let U be the family
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of all sets U=U(t)U...UU(ty), where {t1,...,t,} <T and
U (t) < U(t;). Since 1w (K) is infinite ,it follows that

kD) <x(f) - lw(K). ' (5)

Now we shall prove that {Intf(U)}, U< U, is a basis of
neighbourhoods of x. Then (5) shall imply (4).

Let V be an open set in X about x < X. Choose for any
t<f1(x) a set UR)<U(() such that U (t)=F1(V). By com-
pactness of f~1(x), there is a finite set {t{,...,ta} € T, such that

Fll) U@ty U...UU(ty) =U. {6)

Thus U € U and, clearly, x < Int f(U) ©V, which completes our

proof.
Corollary 4. If f: K— X maps K onto X and x(f) <1w(X)
then the local weight cannot increase, i. e. we have

lwX)<lw ). (7)

Indeed, this is trivial if lw (X) is finite, because then lw (X) = 1.
Thus assume that ! w(X) is infinite and (7) false. Then we would
have 1 w(K) <lw(X) beside the assumed inequality »(f) <l w(X)
Multiplying these two mequahtnes we would obtain

x(f) - lw(K) <lw(X), (8)
whidh,- however, contradicts (4).

§ 6. Light mappings and the decreasing of weight and local
‘weight

In this section we consider the question of the decreasing of
numbers w(K) and lw(K) under continuous mappings. Clearly,
these numbers, as well as $(K) and c(K), can always decrease. This
occurs e. g. if we map an ordered compactum K with &, <1 w(K)
onto a point. However, the question becomes interesting if we
restrict ourselves to mappings f:K— X which are light in the
sense of ordering.

Lemma 7. Let £ : K~ X be a mapping, lzght in the sense of
ordering, and let x, < X and, t, < £1(x,) be two points. Further-
more, let B = {Vo}, a € A, be a basis of neighbourhoods at x, and
U., « < A, the order component of £—1(V.) containing t,. Then
Il {U.}, a €A, is a basis of neighbourhoods at t,.

Proof. Let (a, b) be any interval of K containing t, Then there
exists an o, 0 <o’ <t, with f(a)==f(t,) =z, for otherwise we
would have f([a tol) = {xo} a<t, contradicting the lightness of f.
Similarly, there is a b, t, <b" <b with f(b") =z, Let V. < B be.
such that z, € VoS X\ {f(a), f(b)}. Then (VN {a, b}——O
tnd, therefore, the component U, of f—1(V,), which contains t,, is
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itself contained in (a’,b’). This proves that U = {U,}, a < 4, is
indeed a basis of neighbourhoods at t,.

Theorem 6. Let f: K— X be a map of the ordered compa-
ctum K onto X. If f is light in the sense of ordering, then the weight
w(K) <wi(X), whenever w(X) is infinite. If w(X) is finite, then
w (K) is finite too.

Proof. Let B = {V} be such an open basis for the topology
of X, that k(B) <w (X). For any V<3, f1(V) is an open set
of K. :

Let U be the family of all the order components of §~1(V),
when V runs through 8. Given any t, < K, consider x, = f(t,) and
let BB consist of all V < B, which contain x, Then B is a
basis of neighbourhoods at x, and, by Lemma 7, there is a subset
W S U, constituting a basis of neighbourhoods at t,. This proves
that i is a basis for the topology of K.

Now, observe that every open set V & X is the union of at most
w (X) closed sets F. It suffices, to consider all W < % such that
ClWCV and recall that X is regular. However, if FCV is a
closed subset, then due to compactness f—!(F) is contained in
finitely many components of f~—!(V). Since V is a union of at most
w(X) closed sets, it follows that f~!(V) has at most w(X) com-
ponents if w(X) is infinite and has finitely many components if
w (X) is finite. This and k (B) <w (X) proves that k () < w (X)
if w(X) is infinite and k (W) is finite if such is w (X). This com-
pletes our proof.

Remark. Theorem 6 is the order analogue of Theorem 1
of [6]. ' .

Now we apply Theorem 6 to obtain a strengthening of the
main result of [8] (Theorem 1)°

Theorem 7. Let X be the continuous image of an ordered
compactum and p:X—>Y a mapping of X onto Y such that
Int p—i(y) =0, for each y< Y. If X is locally connected, then
w(X) < w(¥).

The proof follows the same plan as in [8]. By Lemma 1 we
can assume that X = f(K), where K is an ordered compactum and
f is quasi-open. Then, for any y < Y the set (p )~ (y) =1 (p7' ()
cannot contain a non-empty interval U, because f(U) would be part
of p~!(y) and thus would have an empty interior.

Now consider all pairs of points t,t" < K, t <t', such that the
interval (t,t) =0 and (pf)(t) = (pf) (t). Identifying the points in
each such pair, we obtain a new ordered compactum K,. Observe
that any two such pairs {t,t'} and {s,s’} are disjoint, since other-
wise we would have, say t' =s, and thus {s} = (t, s") F= 0 would be
a non-empty interval contained in (pf)~1(y), ¥y = (@) ().

§ Theorem 7 is not used in prowving other tneorems of this paper.
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Denoting the identification map by m:K-— K,, there exists
a uniquely defined map g: K, =Y such that gm =pf. The map g
is light in the sense of ordering. Therefore, by Theorem 6,

w(K)<<w(Y) - 1

(w(Y) is infinite, for otherwise Y would be finite and for any y <Y
the set p~!(y) would be open contrary to the assumptions). (1)
implies s(K,) <w(Y). Let R, €K, be a set dense in K, and such
that k(R,) < w(Y).

Clearly, the set R=m"1(R,) is then dense in K and kK(R) <
<2k(R,) <w(Y). Hence

$(K) <w(Y). @)

We conclude the proof by combining (2) and a proposition from
[8] (Lemma 3), which reads as follows:

Let K be an ordered compactum and f:K-—>X a mapping
onto X. If X is locally connected, then w(X) <s(X).

Now, following the same plan as in [8], we can prove®

Theorem 8. If X is the continuous image of an ordered
compactum and is locally connected, then w(X) =s(X).

This improves Theorem 4 of [8].

Local connectedness is not a reduhda:nh condition in Theorems
7 and 8, since one can have, even for ordered compacta K (without
isolated points) s(K) <<w(K) (see @, in § 1).

We conclude this section by proving

Theorem9. Let £:K— X be the mapping of an ordered com-
pactum K onto X. If f is light in the sense of ordering, then the
local weight 1 w(K) <1w(X).

Proof. Given t, < K, consider x, = f(t,) € X and choose such
a basis ¥ of neighbourhoods at x, that k (8) <lw(X). Then, by

Lemma 7, there is a basis I of neighbourhoods at t; such that
k) = Ik (V) <lw(X), which proves that lw(K) <lw(X).

§ 1. Light quasi-open mdppings and the decreasing of the degree
of separability

Theorem 10. Let K be an ordered compactum and f: K— X
a mapping onto X. If £ is quasi-open and light in the sense of
ordering, then the degree of separability s(K)=s(X), whenever
s(X) is infinite; if s(X) is finite, then s(K) is finite too.

This theorem is an analogue of Theorem 1.

¢ For an aflternate proof see § 7.
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Proof. $(X) <s(K) is fulfilled for any continuous map f. In
order to establish the reversed inequality, let f be quaS1~open and
light. By Theorem 2 we have '

lw(X) <c(X)<s(X). (1)

Thus, for any given x < X, there is aj basis of nelghbxourhoods
{Va}, a < A, where k(A) <lw(X) <s(X).

Consider f~1(V,) and its order components U.g, f < B(a).-
Since f—!(x) is compact, there is a finite subset B’ (a) =B (a)
such that {U.p}, f < B'(a), covers f~!(x). Clearly, the sets Uy,
B< B (a), a < A, form a family U of at most s(X) intervals if
s (X) is infinite; if s (X) is finite, U is finite too.

It follows readily from Lemma 7, that W1 is a basis for the
topology of f~!(x). Thus, for any x < X, the weight

w (1 (x)) <s(X), S )
if s (X) is infinite, and is finite if s (X) is finite. Since, we always
have s < w, we obtain ,

| s @) <s(X), 3)
for s(X) infinite and s(f~! (x)) finite, for.finite s(X). '
Now, let R be a dense subset of X with K(R)<s(X), and
consider

HE®)=U fl@. @
' T x<&R
It follows from (3),_ that
s(f71(R) < s(X), ' 6)

if s(X) is infinite, and $(f—! (R)) is finite if so is s(X). Thus our
proof will be completed, if we can show that f~1(R) is dense on K.
However, for any open set UCK, U=t=0 we have Int f(U)=i=0
f being quasi-open. Therefore,

FANNRMIntf(MNRF0, (6)
and. thus
UNfIR=FEo0. ' (N

Problem 2. Does Theorem: 10 remain true if one only assumes
that f is light in the sense of ordering and do not require that £
be quasi-open?

Lemma 3. and Theorems 6, 9, 10 and 1 yield

Corollary 5. Let X be the continuous image of an ordered
compactum. Then there exists an ordered compactum K and a
map f:K— X onto X such that

wK) <w(X), lwE <lwX), $E <sX) and c(K) <c(X).

Now, by means of Theorem 10, we can prove Theorem 8 without
recourse to Theorem 7. Indeed, let X be locally connected and the
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image of an ordered compactum K under a map f. By Lemma 3
wce can always assume that f is quasi-open and light. Then Theorem
10 yields
s(K) = s(X) ()
if $(X) is infinite,
By Lemma 3 of [8] {quoted in § 6 of the present paper) we
know that '

w(X) < s(K). )
"Thus, for infinite s(X), we have
w(X) < s(X). (10)

If s(X) is finite, then X is finite too, and w(X) = s(X). This proves
Theorem 8. .

By means of Theorem 8, we can give an affirmative answer
to Problem 2, in the case of locally connected X. Indeed, we obtain

Theorem 11. Let K be an ordered compactum and £: K— X
a mapping onto X which is light in the sense of ordering. If X is
locally connected, then s(K) = s(X), whenever X is infinite, If s(X)
ts finite, then so is s(K).

Proof. s{X) < s(K) is obvious. In order to prove the reversed
inequality, first observe that s(K)<Cw (K) (true for all spaces).
Furthermore, if s(X) is infinite, then so is w(X) > s(X), and thus
w(K) < w(X) (Theorem 6). If s(X) is finite, then so is w (X) = s(X)
and thus also w (K) = s(K) is finite (Theorem 6). Now, by Theorem
8, we have w(X) = s(X). Combining these facts, we readily obtain
aur assertion.

Cencluding this section, notice that a compactum X can
contain subcompacta X’ < X with $(X’) > s (X) and ¢ (X’) > ¢ (X).
B.g if X = HA I, I, =1, and k(A4) = 2%° then ¢(X) = %o and

a€

s(X) = R, (see § 1).

On the other hand, for the square in the lexicographic order
() (see § 1) we have w (Q) = c(Q) = s(Q) = 2R0, Therefore, by a
well-known theorem, @ can be topologically imbedded in X.

For continuous images of ordered compacta, ¢ and s are always
monotone and we have

Theorem 12. Let X be the continuous image of an ordered
compactum. Then for any pair of closed subsets X' © X" of X we
have s (X)) <s(X") and ¢ (X)<c(X).

Proof. Let X = f(K), where K is an ordered compactum and
el K= f1(X"), K" = f1(X"), K€K”. By Lemma 3, we can
nlways assume that f” = f| K” is quasi-open and light. Assuming
that s (X”) is infinite, we have, by Theorem 10,

${K") = s(X"). (11)
Murthermore, K’ © K” implies readily

s (K)<s(K"). (12)
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Indeed, let R"C K” be a set dense in K” with k (R") < s (K").
For each r € R” consider

9 = Sup {(-, 7] © K’} (13)
and

ry = Inf {[r,-) N K}, 14
where (-,7] = {t<K"|t<7r} and [r,.) = {t £ K" |[t>7r}.r, and
1y are well-defined elements of K’ and ryp <r <7y.
Let :

R = U {r, r}. (15)

reh”

Since s(K”) is infinite, we have k (R) <2k (R") <s(K").
However, it is readily seen that R’ is dense in K/, which
_ establishes (12). '
Finally, we have

s (X) <s(K) (16)

because X’ is the image of K under f|K’. Composing (16), (12) and
(11) we obtain
$(X)<s(X7), (17

for s (X”) infinite.

’If s(X ”),i's finite, then X” and X' € X”are finite, and therefore,
SX)=kX)<k(X)=s (X”), and we obtain again (17).

The proof in the case of the degree of cellularity follows the
same scheme and is based on Theorem 1.

Remark. w and lw are always monotone.

§ 8. The Suslin problem and continuous images of ordered
compacta

In this section we compare the degree of cellularity e¢(X) with
the degree of separability s(X), for spaces X which are continuous
images of ordered compacta. We state three hypotheses:

H,. If K is an ordered compactum, then c (K) = s (K).

H,. If X is the continuous image of an ordered compactum K,

then ¢ (X) = s (X).
Hj. If X is the continuous image of an ordered continuum C,
then c (X) = w(X).

The hypothesis H; has been conjectured and much studied by
D. Kurepa (cf. [3], [4] and [5]). If K is a Suslin compactum, then
H, implies, that K is separable, and thus answers the Suslin pro-
blem (stated in § 1) in the affinmative.
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Theorem 13. The hypotheses H;, Hy and Hj are equivalent.

H,=>H,. c (X) <s(X) is always true. In order to prove the
reversed inequality, choose an ordered compactum K and a map
f:K-—>X onto X such that ¢(K) <c (X) (apply Corollary 5). Then,
by Hy, s(K) =c(K) and thus s(K)<c(X). However, X = f(K)
implies that s (X)<<s(K) and we obtain s (X) <c(X).

Hy=>Hj. Let X be the continuous image of an ordered conti-
nuum C. Then, X is locally connected, and by Theorem 8 we have
w (X) = s (X). However, by H,, we also have $§(X) = ¢ (X).

H;=>H,. Let K be an infinite ordered compactum. We have to
prove that s (K) <c (K). Denote by Z< K the set of all isolated .
points t = K. Replacing each t <= Z by a copy of the real line
segment I, we obtain an ordered compactum K’ without isolated
points. Since k(Z) < c¢ (K), we infern that ¢ (K') < ¢ (K). Thus there
is no loss of generality in assuming that K itself has no isolated
points.

Now consider all empty intervals (@q, ba), @< b, Qg ba € K,
and identify all pairs {aq4, bs}. (Observe that these pairs are disjoint,
because K has no isolated points). One obtains an ordered continuum
C. Let p: K— C be the identification map. p being continuous, we
have ¢ (C) < c(K). By Hj;, we conclude that s(C) = ¢(C) < ¢ (K). Let
R CC be a set, dense in C and such that k{R) < s{C) < c¢(K). Then
p1(R)CK is dense in K and since k{p—1(R)) <2k(Rj=k(R) <
< ¢(K), we conclude that $(K) < c¢(K). This completes the proof of
Theorem 3.

Corollary 6. The affirmative answer to the Suslin problem
is equivalent to each of these two propositions:

A compactum X, which is the continuous image of an ordered
compactum, has the Suslin property if and only if it is separable.

A continuum X, which is the continuous image of an ordered
continuum, has the Suslin property if and only if it is metrizable.

Corollary 7. The hypothesis H; implies an affirmative
answer to Problem 1, for the case of locally connected X.

The proof is immediate from H;, the implication H,=> H,
(Theoram 13) and Theorem: 11.

Corollary 8. The hypothesis H; and an affirmative answer
to Problem 2 imply an affirmative answer to Problem 1.

The proof is immediate by applying the implication H, =>H,
{Theorem 13).

§ 9. Continuous images of ordered compacta and diadic compacta’

Let D denote a discrete space consisting of just two points.
A diadic compactum is any space X which is obtainable as the
continuous image of a direct product 1. D,, a < A, where D, = D,

7 This section depends only on §§ 1-—4.
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for each a € A. There are no restrictions on k (4) (P. S. Aleksandrov).
If k(A) = ¥, we obtain continuous images of the Cantor triadic set,
namely all metrizable compacta.

N. A. Sanin has shown that each diadic ordered compactum
is necessarily metrizable (Theorem 51, p. 92 of [11]) Strengthening
this theorem we prove

Theorem 14. A diadic compactum X is the continuous image
of an ordered compactum if and only if X is metrizable.

This has been recently® conjectured by P. S. Aleksandrov.

Proof. Let X be a diadic compactum and the continuous image
of an ordered compactum. Then, by Szpilrajn’s thecrem (quoted in
§ 1) X has the Suslin property. Hence, by Corollary 2, X satisfies
the first axiom of countability, i. e. lw (X) < ¥, However, A. S.
Esenin-Vol'pin [1] has proved that a diadic ccmpactum X,
satisfying the first axiom of countability, is metrizable.

The converse is trivial, the Cantor triadic set being at the same

time diadic and an ordered compactum. This compJetes the proof
of Theorem 14.
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NEPREKIDNE SLIKE UREDENIH KOMPAKATA,
SUSLINOVO SVOJSTVO I DIJADSKI KOMPAKTI

Sibe Marde8i¢ i Pavle Papié¢, Zagreb

Sadriaj

U ovom se radu ispituju Hausdorffovi prostori X, koji se mogu
dobiti kao slike barem jednog uredenog kompakta K, pri nepre-
kidnom preslikavanju f:K-—>X na &itav X. Ovakve prostore zvat
éemo kraée neprekidnim slikama uredenih kompakata. Pri tome
se u ovom &lanku pod kompaktom razumijeva Hausdorffov kom-
paktni prostor, koji ne mora biti metrizabilan.

Promatraju se i neke specijalne klase neprekidnih preslikava-
nja uredenih kompakata na Hausdorffove prostore koje se defini-
raju ovako:

Definicija 2. Preslikavanje f: K-> X uredena kompakta
(K, <) na X se naziva laganim u uredajnom smislu, ako za svaki
x < X, skup f~1(x) ne sadrZi niti jedan zatvoreni interval koji ima
viSe od jedne tacke.

Definicija 3. Neka su X 1 Y topolo§ki prostori i meka je
f : X = Y neprekidno preslikavanje. Preslikavanje f se naziva kvazi-
-otvorenim, ako za sviaki neprazni otvoren skup U S X, skup f(U)
ima nepraznu nutrinu, Int f(U)3=0. _

Vaznost ovih klasa preslikavanja izlazi iz ove leme:

Lema 3. Neka je X neprekidna slika uredenog kompakta.
Tada postoji uredeni kompakt K i preslikavamje f:K—> X na X,
koje je i lagano u uredajnom smislu i kvazi-otvoreno.

Posebna je paZnja u ovom radu obraéena vezama izmedu ste-
pena celularnosti c(X) i lokalne teZine lw(X) ‘nepreklldmh slika
uredenih kompakatal (§ 4).

Stepen celularnosti ¢ (X) prostora X je Sup k (1), gdje 11 pro—
lazi svim familijama W = {U,} disjunktnih nepraznih otvorenih
skupoval! U, © X. Ovaj je pojam uveo D. Kurepa ([3], str. 131).
KaZe se da prostor X ima Suslinovo svojstvo ako je c¢(X)<¥,.
Tezina wi(x, X) prostora X u tatki x < X je najmanji kardinalni
broj k sa svojstvom da tatka x ima bazu okolina kardinalnog broja
< k. Lokalna teZina lw(X) se definira kao Sup w(x, X). Jasno je

x< X
da je lw(X) < w(X), gdje je w(X) teZina prostora X.

Sa s(X) se oznalava stepen separabilnosti prostora X, tj. naj-
manji kardinalni broj k, za koji postoji podskup R < X, k(R) <k,
koji je svuda gust na X.

Osnovni rezultat rada moZe se izre¢i u ovom obliku:. --

1 k(A) oznatava kardinalni broj skupa A.
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Teorem 1. Neka je K ureden kompakt, a f: K— X preslika-
vanje na X, koje je kvazi-otvoreno i lagano u uredajnom smislu.
Tada za stepene celularnosti od K i X vrijedi relacija ¢ (K) = c (X),
ako je c(X) beskonaéan; ako je ¢(X) konalan, onda je konacan .
i c(K).

Korolar 1. Neka je K ureden kompakt, a f:K— X nepre-
kidno preslikavanje na X, koje je kvazi-otvoreno i lagano u ure-
dajnom smislu. Tada X ima Suslinovo svojstvo onda i samo onda
kada K ima Suslinovo svojstvo.

Teorem 2 Ako je X neprekidna slika uredena kompakta, tada
njegova lokalna tezina 1w (X) ne mozZe biti veéa od njegovog stepena
celularnosti, tj. lw (X) < ¢(X).

Korolar 2. ‘Ak;o je Suslinov kompakt X neprekidna slika
uredena kompakta, tada X zadovoljava prvi aksiom prebrojivosti,
tj. 1w (X) < N.

Korolar 2, zajedno s nekim poznatim rezultatima o dijadskim
kompaktima (vidi § 9), dokazuje ovu slutnju P. S. Aleksan-
drova?

Teorem 14. Dijadski kompakt X je neprekidna slika uredena
kompaktq, onda i samo onda, ako je X metrizabilan. '

Pri tome se dijadski kompakti definiraju ovako:

Neka je D diskretan prostor sastavlijen od tamo dwvije tacke.
Dijadskim kompaktom se naziva svaki kompakt X koji se mozZe
dobiti kao neprekidna slika direktnog produkta II D., gdje je

acAd

D, =D za svaki a < 4, a k (A) moZe biti bilo koji kardinalni broj
(P. S. Aleksandrov).

U §§ 3, 5, 6 i 7 izudava se vladanje stepena celularnosti ¢, ste-
pena separabilnosti s, lokalne teZine lw i teZine w pri neprekidnim
preslikavanjima f: K— X na X, posebno, ako je f kvazi-otvoreno
i lagano u uredajnom smislu. Evo nekih rezultata te vrste: '

Korolar 5. Neka je X neprekidna slika uredena kom-
pakta. Tada postoji ureden kompakt K i neprekidno preslikavanje
f:K— X na X tako, da bude:

w(K) < w(X), lw(K) <lw(X), s(K)<s(X) i c(K)<c(X).

Teorem 6. Neka je f:K— X neprekidno preslikavanje na
X. Ako je f lagano u uredajnom, smislu, a tefina w(X) prostora X
beskonaéna, onda je w(K) < w(X). Ako je pak teZina w (X) konaéna,
onda je konaéna i teZina w{XK).

2 Slutnja je izreCena u diskusiji na IV Svesaveznom matemati¢kom
kongresu, Lenjingrad, 3.—12. VII 1961.
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Teoremom 7 je poostren jedan od ranijih rezultata autora iz [8].

Teorem 12. Neka je X neprekidna slika uredenog kompakta.

Tada, za Svaki par zatvorenih podskupova X ©X” iz X, vrijedi
S(X) <S(X7) 1 o(X) < e(X7),

Pitanje jednakosti stepena celularnosti ¢(X) 1 stepena separa-
bilnosti s(X) za prostore X, koji su neprekidne slike uredenih
kompakata, svedenc je u § 8 na Suslinov problem.

(Primiljeno 3. XII 1961.)



