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CONTINUOUS IMAGES OF ORDERED CONTINUA

Sibe Marde$ié and Pavle Papié, Zagreb

All spaces in this paper are Hausdorff spaces. By a continuum
we mean any Hausdorff compact and connected space. A continuum
is non-degenerate if it consists of more than one point. An ordered
continuum (ordered compact) is a continuum C (a compact space K)
provided with a total ordering << such that the topology of C (of K)
is the order topolegy induced by << (see e. g. [1], p. 57). The only
metric ordered continuum is the arc, i. e. the homeomorph of the
real line unit segment I = [0, 1]. Examples of monmetric ordered
continua are given by various »transfinite lines« (see e. g. [1}, L
p. 164 and also [3]).

The object of this paper is to study the class X consisting oi
all spaces X, where X is obtainable as the image of at least one
ordered continuum C under a map f:C-—> X onto X. To spaces of
class £ we shall refer merely as to continuous images of ordered
continua.

Since each C is a locally connected continuum, the same is true
of spaces of class X. By a classical theorem of H . Hahn and S.
Mazurkiewicz (see e. g. [6], Chapter IIT) in the case of metric
continua also the converse is true, for all metric locally connected
continua are continuous images of I and thus belong to X. In this
paper we exhibit a further necessary condition for a space to belong
to the class X, which in the general nonmetric case is independent
of the previous ones. It involves the notion of weight w (X) of al
space X. w(X) is the least cardinal which occurs as the cardinal of
a basis for the topology of X. Thus metric nom—edegenerate continua
are characterized by w (X) = 8o. For spaces of class £ we prove that
the weight is invariant under mappings p: X — Y, p(X) = Y, which
have the property that p—I(y) is nowhere dense! in X, for each

Z Y (see Theorem 1).

Thls result is applied to give a complete characterization osf
those product spaces II, X, which belong to X (see Theorem 3).
Finally, we prove that for spaces X of class ¥ the weight w (X}
coincides with the degree of separability s(X), which is the least
cardinal which occurs as the cardinal of a subset of X dense in X.

1 A set Ac X is said to be nowhere dense in X if every open sei
UcCX, U0, contains an openh subset V'C'U which is non-empty and
is dlSJOl.nt W11;h A. For closed A this amounts to havmg an empty
interior.
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The proofs of these assertions are based on several lemmas.

Lemma 1. Let f:C— X be a mapping of the ordered con-
tinuum C onto X and let K be a closed subset of C having the
property that f maps each component U, of C \\ K into a nowhere
dense set of X. Then f(K)=X.

Proof. First observe that for any finite collection {Uai,...,Uam}
of components of C\\ K we have
FIC\NUaU...UU,n))=X. 1)

Indeed, the set f(Uu U ... U Ua) is nowhere dense in X and thus
the set

FCN (Ui U... UTun) DX\ U U... U Uun) ®

is dense in X. However, this set is closed and must contain all of X.
- Now assume (conversely to Lemma 1) that there is an x &<

with

fFl(xy)=C\K=U,U,. 3)
Then {U.} is an open covering of the compact space f—!(x) and
thus reduces to a finite subcovering. Hence, f1(x) S U1 U... U
U U,», which contradicts (1).
" Lemma 2. Let f:C—>X and p:X-+>7Y be mappings onto.
If p has the property that p~1(y) is nowhere dense in X, for each
Y = Y, then there exists a closed subset K< C, which is w(¥)-
separable? and such that f(K) = X.

Proof. Let {U,}, a < A, be the family of all maximal connected
open subsets of C for which the restriction map p f| U, is constant.
{Us}, @ < A, is a well- defined family of disjoint open sets U, (it
‘may be empty) and is obtained as follows. For each y =< Y, consider
the interior ‘of the set (p f)~1(y). The sets U, are obtained as com-
ponents of these interiors, when y runs through Y. Since p—1(y)
is nowhere dense, it follows that, for each U, f(U.) is mowhere
dense in X. K is defined as C\ U,U, a = A. It follows from
Lemma 1 that f(K)=X. '
~ In order to show that K is w(Y)-separable, consider the
decomposition of C into (closed) segments ClU,, a << 4, and all
remaining points. Let C; denote the corresponding quotient space
and m : C — Ci the natural projection map. m being monotone, the
ordering in C induces an ordering in C; and it is readily seen that
the induced order topology of Cj coincides with the quotient
b’(_)pollvdgy._:"l‘hus C: is another ordered continuum. Since, for each
a - A, pf(ClU,) is a single point, we obtain a wunique map
g:C1—>Y verifying g m = pf. By the maximality property of sets
U, it follows that g is a light mapping (i. e. g 1(y) is totally
disconnected, for each y = Y). According to a theorem of one of

- 2 Here w(Y) denotes the weight of Y. We say that a space X is
&k - separable if it admits a dense subset of power < k, i. e, 'if ils degree
of separability s (X) < k.
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the authors, the weight is an invaniant of light maps for locally
connected continua ([2]). Thus w{(Ci).= w(Y). It follows that Ci
contains a dense subset Ri of power w{(Y).

In order to define a dense subset R in K observe that, for each
ty &< Cy,m~1(t)) is either a closed segment Cl U, of C with the two
end-points belonging to K or it is a point of C\ U.(CIU.) C K,
which can also be considered as a segment of C with identical end-
points from K (if U, is an end-secticn of C then it may happen that
(C1U,) \ U, consists of only one point). We define R as the set
consisting iof all the end-points of m~1 (t1), when t; runs through Ri1.
R is clearly a dense subset of K and of the same cardinality as Ri
(Notice that w(Y) = Ko, for otherwise Y would be a point, contra-
dicting the assumptions on p). This completes the proof of Lemma 2.

Lemma 3.3 Let X be a locally connected space, K an ordered
compact and f:K—>X a mapping onto X. Then w(X) < s(K),
where w(X) is the weight of X and s(K) is the degree of separabi-
lity of K.

It is clear that s(X) < s (K) and that w(X) < w(K), but notice
that for ordered compact spaces K one can have s (K) < w(K). An
example is obtained by replacing uncountably many points t < I =
= [0,1] by pairs of points (t, t”), where one considers that t" <t”.
The newly obtained ordered compact is still N¢ -separable but
fails to be metric. Also notice that for locally connected continua X
one can have s(X) <<w{(X). An example is given by the product of
N; copies of I. This continuum is No -separable but fails to be metric
(see [1], N, p. 103).

Proof of Lemma 3. It suffices to consider the case when both
spaces K and X are infinite. Let R be a subset dense in K and of
power N.. Since Cl1R =K and f (K) = X it follows that f (R) is dense
in X and thus s (X) £ N.. Denote by R the family of all closed
segments of K of the form [rg s:]lx, where 7 8¢ < R, re<<set
Clearly, the cardinal k() =k (R) = N.. Let Q denote the family of
all sets @ which are unions of finitely many segments [rgs, Sei]lk <=
< R-k(Q)=kA)= NR;.. For each Q@ < Q consider the interior
Int f(Q) of the set f(Q). Due to local connectedness of X all com-
ponents of Int f(Q) are disjoint open sets. Furthermore, s(X) £ Nr
implies that, for each Q < &, the set Int f{®) has at most 8, com-
. ponents. Let B denote the family of all components of Int f(@),
when Q runs through £ .3 is a family of open sets and k(8) = 8-
To complete the proof it suffices to show that B is a basis forithe
topology of X.

8 Instead of Lemma 3 the first draft of this paper contained &
slightly weaker statement. The authors are indebted to Dr. A. J. Ward:
for the observation that their proof of the original lemma  essentially
established the neater and stronger Lemma 3 given at present. ,

< 4<Here [a,b]k,a < b, denotes the set of all points t & K with
a<t<h, ’ e : : s
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. Let x X and let U be an ambitrafry open set, x = UC X,
We have to find a set V= 8 with x < V< U. Since f‘l (U) is
an open set of K, it is 'ahe union of a famlly of disjoint open
intervals {a; bi)x of K5. The set of those (a; b))k which intersect
F1(x) is finite. Let these intervals be (ai, b1)x, ..., (an, bn)k. Their
union contains f—!(x) and is contained in f—! (U). Denote by ai’, bi
the first and the last point of (a; b)x () f~(x).a’, b/ exist and
ai<<ai £bJ <b; Now we shall define, for each i < {1,...,n},
a closed segment Ji = [c;, di]g such that
[, b lk EInt J; & J; < n(ai, bk 4)
as follows. If (4, ai)x N R=E0, choose ¢; <~ (a;, &)k 1 R; otherwise,
let ¢; = ai. Notice that in the second case (@i, ai')g must be empty,
which means that a;” s an interior point of [a{, bi']x with respect
to K. d; is defined in the same way so that (4) follows.
Denote by J the umion J=J1U...U J. (4) implies

' fFlx) = IntJ S J <1 (V). (5)
Int J being an open set containing f!(x), it follows from the
eontinuity of f that there is an open set U, x = U’, such that
f1{U)<=Int J (this is easily proved by contradiction). Conse-
quently, x & U c=f(J), which proves

x  Int f(J) (6)
On the other hand (5) implies
Intj(HEf<U. (M

J is not necessarily a member of £, because the end-points of
some 'J; may belong to K \\ R. Therefore, we replace all J; by new
closed segments Ji with end-points from R and such that J; = J7,
that J;” \ J; is a closed set (which is empty or consists of one or
two segments of K) and that

FUSNT)OfI) =0. (8)

If both end-points of J; are from R we set J;" = J;i. If for a given
Ji = [ei, dilg we have ¢i=ai and d; <= R, then (a;, ¢ )x =0, a;<<a;,
and a; is either a cluster point of points from R which precede a; or
a; = R. Since f(a;) - X\ U and f(J) < U, there exists a point
¢ C R, ¢ £ ai, close enough to a; or equal to a; and such that

f(es, adr) N f(J) = 0. N

In this case we set
Ji' = [c, ailg U [af, di]g = [¢, di]k (10)
and the above conditiions are verified. We proceed in exactly the

same way with the right end-point in cases when d; = b;".

5 Here (¢, b)g,a <b, denotes the set of all points t < K with
a<t<b, If the first (the last) point of K belongs to f—1(U), then the
‘corresponding interval of f—1{(U) consists of all points t < b; (t > aj).
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Now denote by J° the union JyU...UJ,” and observe that
INT =y NJpU... U@ \Jy is a closed set. Clearly, J < Q
and J € J’, which implies (by (6)) that & << Int f(J). Furthermore,
(8) implies .

fI'NI)NfI)=0. (11)
This means that

FUY=Ff" N\NDHUFW) (12)

is a decomposition of f(J') in disjoint closed sets and therefore the
component V of Int f(J') whiich contains x coincides with that com-
ponent of Int fi(J) which contains . Thus (7) implies that x < V&
< U, V = 8B, and the proof is completed.

Theorem 1. Let X be a continuous image of an ordered
continuum, p:X—>Y a mapping onto another continuum Y. If p
has the property that, for each y <= Y, p—1(y) is a nowhere dense
set in X, then w(X) =w(Y), i. e. X and Y have equal weights.

Proof. Y being an image of X under a continuous map p it
follows that w(Y) £ w(X) (see e. g. Lemma 3 in [2]) - w{(X) £ w (Y)
is an immediate consequence of Lemmas 2 and 3.

This theorem can be compared to the theorem on invariance of
weight for locally connected continua under light mappings {2]. Now
the assumptions on maps are weaker, but the assumptions on spaces
are stronger.

Theorem 2. Let X be a continuum and I the real line
segment, If X X.I is the continuous image of an ordered continuum,
then X is metric and thus a Peano continuum.

Proof. X X1 is a locally connected continuum and so is X.
Let p: X XI—1 be the matural projection given by p (x,u)=u,
x < X, u = I Clearly, p—1(u) = X X u is nowhere dense in X X1,
for any u = I. Applying Theorem 1 we dbtain w (X XI)=w () =
=Ny, which means that X X I and thus also X is a metric con-
tinuum. '

Now oonsider products X XY of two non-degenerate continua.
By the Urysohn lemma there exists a map g:Y — I sending two
distinct points of Y into the two end-points of I. Connectedness of
Y implies that g is onto and so is (1 Xg): X XY — X X 1. Conse-
quently, if X XY is the image of an ordered continuum, then so is
X X1 and Theorem 1 implies that X is a Peano continuum. The
same is true of Y. In general we have.

Theorem 3. In order that a product space Il, X, a < A
{cardinal k(A) > 1), of non-degenerate continua be the continuous
image of an ordered continuum it is necessary and sufficient that
all X, be metric Peano continua and that ki(A) < No. In this case
11, X, is itself a Peano continuum and thus a continuous image of 1.

Proof. For an arbitrary " = A let Yo = II'y X,, where I,
denotes the product taken over all a &= A except a’. Clearly, I1,X,=
= Xy XYy, Consequently, if JI, X, is the image of an ordered
continuum then both X. and Y« are Peano continua. Hence I, X,



176 Sibe Marde$i¢ and Pavle Papi¢, Zagreb

is itself a Peano continuum and an image of I (the Hahn-Mazur-
kiewicz theorem). Clearly, k(4) < 8o; for II, X, a &< A, can be
mapped (the Urysohn lemma) onto Il.I,, a < A, where Io,=1 and
it is well-known that, for infinite A, w (Il,I;) = k (A) (this follows
from [4]). Thus &, > w (s 1l:) =k (A), because Il I, a <, A is a
metric continuum.

Theorem 3 presents a considerable strengthening of a former
result of one of the authors, according to which all the X, had to .
possess the Suslin property (see [3]).

Corollary 1. If all X, k(4) > 1, are ordered continua and
Il, X, a < A, is a continuous image of an ordered continuum, then
all X;=1I and k{(A) < No. Hence Il, X, is either an n-dimensional
cube or the Hilbert cube.® »

A product I, I, a < A, of uncountably many copies I, of the
line segment I is a locally connected continuum, which by Corol-
lary 1 fails to be the image of an ordered continuum. Moreovern,
observe that it also fails to be the image of an ordered compact K.
Indeed, each K fs easily imbedded in am ordered continuum C by
an order preserving imbedding, and a map of K onto Il I, a < A,
could always be extended to all of C by the Tietze extension
theorem.

Corollary 2. Let Cy, Cg, Cs be three ordered continua and f
a map of C; onto Co X Cs. Then Co=Cs=1I and f can be factored
into a (monotone) map ¢g:Ci— I and a »Peano map« h:I—>1XI
onto I X1.

Proof. Co=Cs=1 is a consequence of Corollary 1. Applying
the monotone-light factorization theorem we obtain g and h (see
e. g [6], p. 141). g being monotone, g (Cy) is also an ordered con-
tinum. Since h:g{(Ci)—I1XI is light it follows (by Theorem 1)
that w(g(C1)) =w({I XI)=Rg; hence g(Cq1) =1

A consequence of this corollary is the fact that I is the only
ordered continuum which admits a map onto its square I X1I (the
Peano phenomenon). This has been established already in [3] by
other methods. .

1t is clear that for ordered continua C the degree of separability
s (C) and the weight w (C) coincide. Now we shall establish the
same fact for images of ordered continua.

Theorem 4. Let X be a continuous image of an ordered
continuum. Then the weight w{(X) and the degree of separability
s{X) are equal.

The proof is an immediate consequence of Theorem 1 and this

Lemma 4. Let X be a non-degenerate N.- separable con-
tinuum. Then there exists a continuum Y of weight w (Y) < N, and
a map p:X-—>Y onto Y such that, for each y < Y, the set p—1(v)
is nowhere dense in X.

¥*) Added in proof: Prof. B. Kurepa has informed the authors that
he also obtained this resulf.
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Proof. L.et RE X be a dense subset of power < 8, 7=0.
The set R X R of all pairs (r, "), 7,7 & R, is also of power N. For
each pair (7, v’) define (by the Urysohn lemma) a map prr: X —> 1=
[0, 1] such that

P (1) = 0, Prpi(r) = 1. (13)

The maps prm, (r,7) € R XR, define a mapping p of X into the
product space Il Iy, (r,7") & R XR, I, =1. This product space
is of weight kK (RXR) S NR,. Let Y=pX)<Il,» L. Y is a con-
tinuum of weight w (Y) £ N.. It remains to show that, for each
Yy =Y, p~1(y) is nowhere dense in X. If it were not so, we would
have a ¥y <€ Y and an open set U < X contained in p—! (v) (U == 0).
Since X has no isolated points, we could find two distinct points
r3=7,r < RMNU,» < RNU. Now U<p1(y) would imply p (r) =
=p(r’) =y and therefore also P, (r) = prr (r’), which contradicts
(13). This establishes the lemma.

Finally, let us point out that the question of a topological
characterization of continuous images of ordered continua remains
open. ]
Question. Can one characterize images of ordered continua
as connected and locally connected spaces which are continuous
images of ordered compacta? In the metric case the answer is
affirmative, because metric compact spaces and images of ordered
metric compacta coincide.
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NEPREKIDNE SLIKE UREDENIH KONTINUUMA
Sibe Mardes$i¢ i Pavle Papi¢, Zagreb
Sadrzaj
Pod kontinuumom razumijevamo u ovom ¢&lanku svaki Haus-

dorffov kompaktan povezan prostor. Kontinuum je nedegeneriran
ako se sastoji od viSe nego jedne totke. Uredeni kontinuum (ure-
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deni kompakt) je svaki kontinuum C {(kompaktan prostor K), koji
posjeduje takovo potpuno uredenje <<, da se topologija prostora C
(prostora K) podudara s uredajnom topologijom koju inducira <<.
Jedini metri¢ki uredeni kontinuum je luk, t. j. homeomorfna slika
jediniénog segmenta I = [0, 1] realnog pravca. Primjeri nemetric¢kih
uredenih kontinuuma dani su raznim »transfinitnim linijama« (vidi
na pr. [1], str. 164. i [3]).

Predmet ovog rada je ispitivanje razreda X svih Hausdorffovih
prostora X, koji se mogu dobiti kao slike barem jednog uredenog
kontinuuma C pri neprekidnom preslikavanju f:C— X na ¢itavi
X. O ovim prostorima govorimo kra¢e kao o neprekidnim slikama
uredenih kontinuuma.

Kako je svaki C lokalno povezan kontinuum, to su svi prostori
razreda X takoder lokalno povezani kontinuumi. Prema klasi¢nom
teoremu H. Hahna i S. Mazurkiewicza u metrickom slu-
taju vrijedi 1 obrat, jer je svaki metricki lokalno povezani konti-
nuum neprekidna slika segmenta I. U oviom ¢lanku iznosi se jedan
daljnji nuzdan uvjet, da bi neki prostor pripadao razredu X. Ovaj
uvjet je u opéem mnemetrictkom slufaju nezavisan od gore spome-
nutih uvjeta. Formulacija iziskuje pojam tezine w (X) prostora X.
w(X) je najmanji kardinalni broj, koji se javlja kao kardinalni broj
neke baze okolina prostora X.

Teorem 1. Neka je X neprekidna slika uredenog kontinu-
uma, a p:X — Y preslikavanje na ¢itavi kontinuum Y. Ako p ima
svojstvo da je za svaki y <© Y skup p~!(y) nigdje gust u X, tada
je w{X)=w(Y).

Uz pomo¢ ovog rezultata dobiven je

Teorem 3. Da bi produkt 7, X,, a <= A4, potencija k (4) > 1,
nedegeneriranih komtinuuma X, bio neprekidna slika uredenog kon-
tinuuma nuZzne je i dovoljno da svi X, budu metri¢ki Peanovi kon-
tinuumi i da bude k (4) £ 8. U ovom slucaju je sam Il, X, Peanov
kontinuum, te je neprekidna slika od I.

Na kraju radnje se usporeduje tezina w (X) prostora X < X sa
stepenom separabilnosti s(X).s(X) je definiran kao minimum po-
tencija skupova gustih na X.

Teorem 4. Neka je X meprekidna slika uredenolg kiontinu-
uma. Tada je w (X)=s(X).

Kljuénu ulogu u dokazivanju navedenih teorema igra ova

Lema 3. Neka je X lokalno povezan kompaktan prostor, K
ureden kompakt, a f:K— X preslikavanje ma ¢&itavi X. Tada je
w (X) < s (K).

(Primljeno 8. VII, 1960.)



