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MAPPINGS OF INVERSE SYSTEMS
Sibe Mardesié, Zagredb
1. Preliminaries

In this paper we are concerned with inverse systems {Xa; aa}
(@, 0 < (4, L)) of topological spaces X, as defined, for instance, in
Chapter VIII of [2]. Sometimes the inverse system is denoted merely
by {X;n}. The spaces X, shall always be compact and Hausdorff
and sometimes compact and metric. All the bonding mappings
Taar : Xoo = X, a £ o, shall be (continuous) mappings onto. If the
directed set (A4, <) has the property that each a < A has only
finitely many predecessors, we shall say that A is of finite type.
If the directed set A is the set of natural numbers {1,2,...}, we
speak about inverse sequences {X;;mw} (3,1 =1,2,...).

. Given two inverse systems {Xo; 7w} (@, @ < A) and {Yz; 0ss'}
(8,8 < B), by a mapping of inverse systems F:{X;n}— (Y ; 0}
we mean an order-preserving function a(f) of B into- A and, for
each f € B, a mapping fs: X.(s = Ys such that

fe ey atey = 088 fr, e))

whenever g < f'. Sometimes we write F = {fs}. .

With every inverse system {X ; =z} is associated its limit space
X =Inv lim {X;n} as well as natural projections 7, :X —> X,.
If a £ d, then _

nqay g = T . (2)

If all X, are compact, then X is compact too and the mappings
7, : X — X, are mappings onto. If we have an inverse sequence of
metric compacta X;, then X is a metric compactum.
" The mapping F={f}:{X;a}—>{Y;e} induces a mapping
f:X—>7Y between inverse limit spaces X and Y. By definition,

femapy =087, (3)

for each f < B. Sometimes we write f= Inv lim {fs}.
Following papers [6] and [7] we also consider a class II of
(compact) polyhedra and say that a Hausdorff compact space X is
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II-like, provided for every open covering u of X there exists a
u-mapping g, : X — P, onto some polyhedron P, < II. The class of
all I1-like Hausdorff compacta X is denoted by [I/I]. Metrizable
members of the class [I1] form a subclass (II). Clearly, II & (II) ©
C [II]. A metric compactum X belongs to (II) if and only if it
admits, for each ¢>>0, an smapping g::X — P, onto some poly-
hedron P, < II.

Several examples for these notions have been given in [6] and
[7]. Let us point out the following two:

Example 1. If II is the class of all polyhedra (connected
polyhedra), then (II) is the class of all metric compacta (continua)
and [II] the class of all Hausdorff compacta (continua).

Example 2. Let II = {I} consists of a single polyhedron —
the real line segment I = [0,1]. Then [I] is the class of all chainable
continua and (II) the class of all metric chainable continua (also
known as snake-like continua [1]). '

Here we quote, for future application, some results from [6]
and [7].

In [7] we find (as Theorem 1*) the following

Theorem A. Let Il be a class of connected polyhedra. Then
the class (II) of metric IlI-like continua coincides with the class of
inverse limits of inverse sequences {X;;mw}, where the mappings
iy are onto and X; are polyhedra from I1.

In [6] we find (as Theorem 3; also cf. [5], Proof of Lemma 5
and Remark on p. 287) the following

Theorem B. Let II be a class of connected polyhedra. Then
the class [II] of all Il-like continua coincides with the class of
inverse limits of inverse systems {X,; 7.} (a,a < A), where all
Xa are metric II-like continua, X, < (II), and all n. are mappings
onto. Moreover, one can achieve that the directed sét A be of finite
type and of power k(A) equal to the weight! w(X) of X.

Examples given in [4], [5] and [6] show that it is mot always
possible to expand a continuum X < [II] into an inverse system
of polyhedra from I1. :

Finally, we quote the basic factorization theorem (Corollary 4
in [6]) of [6] as

Theorem C. Let II be a class of connected polyhedra and let
X,P,,..., Py be Hausdorff compact spaces, X being Il-like. Further-
more, let fi: X—P;,i=1,...,n, be mappings. Then there exists
a Il-like continuum @ and mappings g: X—>Q, pi:Q@— Py, i=
=1,...,n, such that fi=pig, i=1,...,n, g is onto and the
weight w(Q) £ Max (w (Py),. .., w (Py).

1 The weight w (X) is the minimal cardinal of a basis of open sets
of X,
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Theorems A and B establish the possibility of expanding con-
tinua X < (II) and X < [II] into inverse sequences of polyhedra
from II and into inverse systems of II-like metric continuas respec-
tively.

The purpose of this paper is to investigate the possibility of
expanding mappings f: X — Y into inverse systems of mappings,
i. e. of expressing mappings as limits of mappings F of inverse
systems. More precisely, we ask whether the following two state-
ments are true or false:

Statement A, Let II and 2 be two classes of connected
polyhedra. Then, for each mapping f:X — Y of the metric Il-like
continuum X < (II) onto the metric Z-like continuum Y < (2),
there exist inverse sequences {Xi;mw}, {Y;;0ir} of polyhedra
X; < 11, Y; € 2 with mappings sy and e;p onto, and there exist a
mapping F = {f;} :{X;a}— {Y ;0} and homeomorphisms h:X —
> X =Invlim {X;n} and k:Y—> Y =Invlim{Y;o} such that
f h=kf, where f =Invlim {f;}. .

Statement B. Let II and 2 be two classes of connected
polyhedra. Then, for each mapping f: X — Y of the Il-like continu-
um X < [II] onto the 2-like continuum Y < [2], there exist inverse -
systems {Xo; 7w} (2,0 < A), {Ys; 088} (8,8 < B) of metric con-
tinua X, < (II), Yp < (2) with sm.e and osp onto. There also exist a
mapping F = {fg} : {X;n} > {Y ; 0} and homeomorphisms h:X —
— X' = Invlim {X;n}, k:Y—>Y = Inv lim {Y; 0}, such that
f'h =k, where =Invlim {fs}. Moreover, one can achieve that
(4, <) and (B, <) be directed sets of finite type and of power
w(X) and w (Y) respectively.

The main result of this paper asserts that Statement A is false
(see Theorem 1), while Statement B is true (see Theorems 3 and 4).

2. A chainable continuum which admits mappings not expandable
into mappings of arcs.

In this section we prove that Statement A is false in the case
when 2 is the class of all connected polyhedra and II = {I}, where
I=10,1] is the real line segment. More precisely, we prove

Theorem 1. There exist a metric chainable continuum X
and a mapping f: X 1 onto I such that it is not possible to find
an inverse sequence of arcs {Xi;mw} (1,1 =1,2,..), Xi=1, an
inverse sequence of metric compacta {Y;; 7} (3, =1,2,...) and
a mapping F= {fj}:{X;n}— {Y;0} such that there exist ho-
meomorphisms h: X - X' = Inv lim {X;xn}, k:Y—>Y = Inv lim
{Y; 0}, for which f h =k f, where f =Inv lim {f;} (here we need
not require that ni and gj» be onto).
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The proof follows easily from this

Theorem 2. There exist a metric chainable continuum X,
a mapping f: X —1I onto I and numbers ¢ >0, 6 > 0, such that it
is mot possible to find an e-mapping = : X —1I inte I, a d-mapping
0 :1— Q into some metric compactum Q and a mapping ¢ : 1 > Q,
for which
pr=¢f. (1)
We first prove that

Theorem 2 implies Theorem 1. Indeed, let X, f, ¢ 6
have properties stated in Theorem 2. Assume that there exist inverse
sequences {Xi; i}, {Yi;0i7} (mw, 0jf not necessarily onto) and a
mapping F = {f;} : {X ;#n} - {Y ; 0} such that X;=1I, Y; be metric
compacta and that there exist homeomorphisms h:X — X' =Inv
Im{X;n}, k:I->Y =Invlim {Y; e}, for which fh=kf, where
f =1Invlim {f;}. Clearly, for a sufficiently large j the mapping
oik :I—7Y; would be a d-mapping, while @iy h:X — Xij would
be an e-mapping. Nevertheless, we would have

filmiy h) =0i f h=(0j k) f, (2
contrary to the. assertion of Theorem 2.

Proof of Theorem 2. Let C denote the Cantor triadic
set. C is obtained from I = [0,1] by successively deleting first the
open middle-third U of I, second the open middle-thirds U, and
U, of each of the two segmen‘cs remaining, third the open mmddle-
‘thmds Usor Upyy Usgs Uyq of each of the four segments remaining,
etc. Notice that diam (Ui, ...4,) =1/37%1— 0, for p— .

Let X (see Fig. 1) be the subset of the square I X1 given by

=CXHUUX)U U,UU,)X1U
»U,(Uozo U Uy UU, Uy X0U 3)
U Upoo U Uy U ... UUy,) X1TUL..ETIXL
X is a metnic chainable continuum. (i. e. it admits e-mappings onto
arcs, for each ¢ > 0) conSId'ened already by B. Knaster for other
purposes. _
Let g :I—I be the Cantor step-function, which shrinks closures
of the intervals Uy .. Jip into points. The mapping g is order-pre-
serving and ¢(C)=1. We define now the mapping f:X—1TI by
putting
f(s,t)Zg(S),(S,t)éngXI (4)
Clearly, f is a continuous mapping of X onto I.

Observe that
r=(t)<X, =)< X, s<¥¢, (5)
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tmplies
fl@) <f@), (6)
except in the case when both s and s’ belong to the closure of the

same interval Uij ...,

Finally, let ¢ =% and 6 = 1.
We claim that, for X, f, & and é chosen in this way, holds the
assertion of Theorem 2.

|| L ||

Upg Up Uy u Uo Uy Uy

Fig. 1. The chainable continuum X.

Assume on the contrary, that there exist a metric compactum
@, an e-mapping #:X—1I into I, a d-mapping o:I— Q@ into Q@
and a mapping @ :I— Q, such that (1) holds. We shall bring this
assumption {0 a contradiction.

Denote by M € I the set

M={y|ly<I, e()=00)}, ()
and let . ‘
Yo =L u. b. (M) . (8)
M being closed, y, belongs to M and thus
2 (y,) =0(0). )]
Clearly, »
Y, <1, (10)

for y, =1 and (9) would imply o (1) = ¢(0), contrary to the assump-
tion that ¢ is a d-mapping, for 6 = 1.

Choose a point x, < X such that
F(xo) = Yo 11
and that x, be of the form
Zq=1(cy, 1/2), ¢, < C. (12)
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Moreover, if ¢, is an end-point of some interval Uj ... ip let it be
the right end-point. Because of (10), we have

c,<1. (13)

Therefore, we can find, arbitrarily close to c,, points ¢; < C,
¢, <c,, for which

. Yo = f(xo) =g (Co.) < g (cl) = f(xl) ’ (14)

where
x,=(cy, ty), 5 <I. (15)

Now consider the points x," = (¢, 0) € X and x,” = (cy, 1) < X.
Clearly, the points 7 (x,), 7{x,) and 7 (x,”) are three distinct points,
their mutual distances being at least 1/2 =e.

We claim that z(x;) lies between the points 7 (x;) and 7 (x,")
on the segment I. If this were not so, we would have, say, 7w (x,)
lying between the two remaining points 7 (x,) and = (x,”). Then we
could consider the segment c, X [1/2,1] whose end-points are =z,
and x,’. The image of this segment under the mapping = would be
a connected set on I joining 7 (x,) and n(x,”) and therefore neces-
-sarily containing the intermediate point z(x,). In other words, we
would have a point & < ¢, X [1/2,1] with = (é) =wn(x,). However,
this is impossible, the distance between & and x,” being at least
1/ 2==¢

Now consider two disjoint connected neighbourhoods U’ and
U” about the points 7z (x,) and #(x,”) respectively, and let U’ and
U” be so small that they do mnot contain x(x,). Choose neighbour-
hoods V' and V” about x,” and x,” such that

(V) C U, n(V") © U”. (16)
Then it is possible to find a point ¢; < C, ¢, <c¢,, such that
(€, 00 <V, (c,, 1) €V, an
and that (14) hold, for all x, =(c,,t,),t; < I.
The end-points of the segment ¢, X I map under # into U’ and
U” respectively. Therefore, zz(c, X I) must contain the intermediate
point m(x,). Consequently, there exists a point x; = {c;, t;) < ¢; X1,
such that
m(x,) = 7 (x,) . (18)
From the commutativity relation (1) and from (18), (11) and (9),
we obtain

o(f(x) =@n(x,)=g@u(xy)=0f(x,) =0, =0(0),

which proves that

flxy <M. _ (19)
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This is, however, impossible because (14) implies
fx))>y,=Lub.(M). (20)

This completes the proof of Theorems 2 and 1.

Remark 1. Let X and f be those described in the proof of
Theorem 2. Then there exist an inverse Ssequence {Xi sy of
connected 2-dimensional polyhedra X; with mappings a7 onto, a
sequence {Y;;j7} of arcs Y; =1 with mappings ¢;» onto, a map-
ping F={fi} : {X;n}—>{Y; ¢} and homeomorphisms h : X —
=X =Invlim{X;n}, k:I—> Y =Invlim {Y;e} such that fh=
=k, for f = Invlim {f;}.

Remark 2. It would be interesting to know whether State-
ment A is true or false in the case when II = 2 is the class of all
connected polyhedra.

Remark 3. Theorem 1 gives a partial answer to a problem
raised recently by J. Mioduszewski ([8], Remark on p. 40;
also cf. Problem P 389, Collog. Math. 10 (1963), p. 185).

3. Expanding mappings of general JI-like continua into mappings
‘ of metric II-like continua

In this section we prove

Theorem 3. Statement B is a true theorem.

In fact, we shall prove a more precise result, which impliesf""‘ '

Theorem 3. It reads as follows:

Theorem 4. Let II be a class of connected polyhedra, X and
Y two Hausdorff continua, X being Il-like, X < [II], and let f: X —
—Y be a mapping onto Y. Furthermore, let {Ys; 088} (8, 8 < B)
be an inverse system of metric compacta Yz with mappings ogp
onto and such that Y =1Invlim {Ys; 0ps} and 'that (B, <) be of
finite type. Then there exists an inverse system {Xa; na,,a} (a,a’ < A)
of metric Il-like conlttinua X, < (II), with mappings 7, onto, such
that (A, £) be of finite type. Furthermore, there exist a mapping
F={fg} : {X;a}—>{Y; 0} and a homeomorphism h: X — X' =
=Invlim {X;n} such that fh=f where ' =Invlim {fs}. If in
addition k(B) < w(Y), then one can achieve that k(4) £ w(X).

Remark 4. Theorem 4 is a generalization of almost all earlier
results of the author concerning inverse system expansions in the
non-metric case. In particular, Theorem 4 readily implies Theorems
B and C. However, the proof of Theorem 4 given below depends on
Theorem C (in the case when Pi,..., P, are of countable weight,
i. e. are metric).
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Theorem 4 implies Theorem B. Let II be a class of
connected polyhedra and let X < [II]. Put Y=X and let i : X—>Y
be the identity. Y = X can be embedded in the direct product 11 I,
A< 4, where I;=1=1[0,1] and 4 is a set of power k(4)=w(X).
Clearly, III; is the inverse limit of the inverse system of all the
finite products I;; X... XI;T with natural projections as bonding
mappings, the set of indexes B being the set of all finite subsets
B ={41,...,4}, ordered by inclusion. B is of finite type and k(B) =
=k(4)=w(X) (for infinite w(X)). By appropriate restrictions we
obtain an inverse system {Y;z; o088} (8, f < B) of metric continua
Y = pp(X) with mappings ogs onto and such that Inv lim {Y ; ¢} =
X. An application of Theorem 4 to i:X — X = Inv lim {Y ; o}
immediately yields the assertion of Theorem B.

Theorem 4 implies Theorem C. It suffices to prove
Theorem C in the simplest case when n = 1. The general case then
follows easily by considering the mapping f=fiX... Xfr: X—
—P1 X...XPy=P and applying Theorem C (case n=1) to this
situatiomn.

So, let II be a class of connected polyhedra, let X and P be
Hausdorff compact spaces, X < [II], and f: X — P a mapping. Take
an expansion of P into a system of metnic compacta {Ys; 0ss}
(6,8 < B) (use the argument given above). We can assume in ad-
dition that k(B) = w(P) and that B is of finite type.

The application of Theorem 4 to this situation yields an inverse
system {X.; @lea} (@, &’ < A) of metric II-like continua X, < (II),
a mapping F = {f3} : {X;n}— {Y; 0} and a homeomorphism h:X—
- X' =Invlim {X;#} such that f h=f, f = Invlim {fs}.

Let a(B) be the order-preserving function from B into A, which
occurs in the definition of F, and let A, = a(B) & A. Clearly, 4, is
also a directed set of power k(4,) < k(B) =w(P). Consider now
the inverse subsystem {X.;7aw} (o,0 < A, and let X, be its
inverse limit. Clearly, F = {fs} maps this subsystem into {Y;e}
and thus induces a limit mapping f;: X, = Y, defined by

osfo=Fsmapo, (1

where 74(g) 0 : Xo > Xa(p) is the natural projection.
Moreover, there is a natural mapping p : X — Xy, defined by

M0 P =Ta, a< Ap. (2)
Clearly,
for=7, ' 3)
because of
osfoPp=TFsapoP=Fs7ap) =085,
for all B < B.

The mappings 7. being onto, it is easy to show that p: X —
— X, is also a mapping onto. Indeed, if xp < X, then the sets
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7 (a0 (x0)) € X, a < Ag, form a centered system of non-empty
closed sets. Therefore, the intersection of all these sets is not empty,
and obviously maps under p into xo. Furthermore, Xy < [II], [1I]
being closed with respect to inverse limits (see [6], Theorem 1).
Finally, k(4¢) £ w(P) and the fact that w(X,) < % imply that
w(Xo) L w(P). Putting Q@=Xy, g=p, p=7fi, we thus obtain
Theorem C.

Theorem 4 implies Theorem 3. This is immediate.
It suffices to apply Theorem B and expand Y into an inverse system
of 2-like metric continua with an indexing set B of finite type, and
then apply Theorem 4.

Proof of Theorem 4. Let II be a class of connected poly-
hedra, X a II-like continuum, {Y¥s;08} (6,8 < B) an inverse
system of metric compacta Ys with mappings ogs' onto and such that
B be a directed set of finite type. Let Y = Inv lim {Y ; ¢} and let
f:X—>7Y be a mapping onto Y. We can assume that the weights
w (X) and w (Y) are infinite cardinals. Clearly, w(Y) £ w (X).

It is easy to see that there exists an inverse system {Xa; 7ax}
(¢, 0’ < A) of metric continua with mappings 7. onto, and with
the indexing set (4, <) of finite type and cardinality k(4) < w (X),
and such that X =Invlim {X;n} (apply the argument described
above or Theorem B taking for II the class of all connected poly-
hedra).

Consider now the set (C, <) = (4, <) X (B, £) provided with
the product ordering, i. e. let

v=(p = (d,f)=Y 4)
a<ad and B B ()

C is readily seen to be directed and of finite type. Moreover, if
k(B) < w(Y), then

k(C) = k(4) k(B) < w(X) w(Y) = w(X). 6)

if and only if

For each y ={(q, f), let a(y) =a and B(y) = B. Now we wish to
define, for each y € C, a metric Il-like continuum Z, < (II), a
mapping x, : X - Z, onto Z, and mappings @, : Z, > Xa (), @y : Zy—>
— Yg ) such that

Py Xy =7a () » (7

Yy Xy=080T. (8

Moreover, we wish to define mappings o,y : Z,» — Z,, for each
pair y < ¥, 7,9 <€ C, in such a way that

Oy’ Xy =Xy )]

for all y £ . In other words, we require the commutativity of the
diagram
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Ta(y)
Xat) —~a— X
Py Xy
Ly
. - Z, f

Z, Oyy' '

Yy - v
Yﬁ ) OR (v)

The objects Z,, %y, @y, ¥y 0Oy are defined by induction. First
observe that C (being of finite type) has a set of first elements
70 (elements with no predecessors). For every such yp, consider
Ta(yrg) : X > Xag) and 0g¢q f: X > Ygpy, and apply Theorem C.
We obtain a metric Il-like continuum Z,;, a mapping xy, :X —> Zy,
onto Z,, and mappings @, : Zyy = Xa o) Yro * Zyo > Y8 (v, Such that
(7) and (8) hold, for y = y,.

Now assume that we have defined already Z,, Xy, @y ¥y 67+
for all y < 9,7 < 9, in such a way that (7), (8) and (9) hold, that
Zy, < (II) and xy (X) = Z,. We extend the definitions to y" as follows.

Let y1,..., 7 be all the predecessors of y". Consider the map-
pings 7a() 1 X > Xa(), 086 X > Y00, 21 1 X > Zyy ey Ayt X
—> Z,, and apply Theorem C. We obtain a II-like metric continuum
Zp,< (1), a mapping i :X—>Z, onto Z,, mappings ¢, :Z, >
= Xa@), Yy 1 Zy > Xp () and mappings oy : Zy > Z,, for all y Y,
i. e. for y=791,..., 7. These mappings satisfy relations (7) and
(8), for y =9', and satisfy (9).

It follows that, by induction, we can define Z,, x;, @y, ¥y, 0y,
for all y,y'<C, y < ¥, in such a manner that Z, < (Il), x, is onto
and (7), (8) and (9) hold good.

Indeed, C being of finite type, it is easy to see that C satisfies
the following principle of induction:
Let I' © C be a set such that:

({) I contains all the first elements y, of C,
(i1) if I' contains all the predecessors of y < C, then y < I'.
Then I' coincides with C.

Now, it is easy to see that {Z,;o0,} (7 <C) is an inverse
system with mappings o,y onto. Indeed, (9) and the fact that y, is
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a mapping onto imply that o,, also is a mapping onto. Furthermore,
if y =y =77, then, by (9),
| Oyy> Opy” Xy == Opy’ Yy’ = ¥ == Opy» A",
and since g,» is onto, it follows
Oyy’ Oty = Gyy . (10)

Let X’ denote the inverse limit of {Z,;0,} and 0,: X' —Z,
the corresponding natural projections. The mappings x : X — Z,
induce a mapping h : X — X', which is onto, and is defined by

o h=y. (11)

h:X — X is in fact a homeomorphism, because it is one-to-one.
Indeed, if x %2/, x, 2’ € X, then

7a () F 714 (2], (12)
for some a < A. Take any S < B and let y= (g, f) < C. Then,
a(y)=a and f(y) = . Clearly,

% (@) F 1 (), (13)
because ¥, (x) = ¥, (") would imply, by (7),
74 (Z) = @y 1y () =@y 2 () = 702 (),
which is in contradiction with (12). However, (13) and (11) imply
h(z)Eh(x). (14)

Furthermore, the mappings v, : Z, — Ys(,) enable us to define
a mapping F = {fs} : {Z,; 0,0} > {Yp; 088 }. For this purpose choose
a fixed a, < A and assign to each 8 < B the element 7 (8) = (a,, f) €
< C. Clearly, §<f' implies y(8) <y(8). Then define, for each
B < B, a mapping fz:Z,s > Ys by

Je=wv . (15)
For 8 < B, we have

fe oy v6n =088 T (16)

which means that F = {fs} is a mapping of inverse systems. (16) is
obtained by applying subsequently (10), (15), {8), (8), (15), as fol-
lows:

T80y ®) v @) Xv8) = T8 % ®) =Wy (0) X ) =

=08 = 0sp 08 T = 088 Wy (6" X (8" =

= 088" f8* X v (87
and by taking into account that yx, (¢ is a mapping onto Z, .
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F induces a mapping f : X’ — Y defined by
osf=Ffs0,- (1
By (17), (15), (11) and (8), we obtain

osfh=Ffsoph=yvymo@mh=w@ e =08f,
for all § < B, which proves that
fh=f. (18)

" This completes the proof of Theorem 4.

4. A remark concerning fixed points of inverse limits

Concluding this paper we wish to point. aut how Theorem A
(demonstrated in [7]) can be used to answer a question raised
recently by J. Mioduszewski and M. Rochowski (see [9]
and [10]). The question is the following:

Let {X;;mw} be an inverse sequence of polyhedra X; let all
7y be onto and let X = Inv lim {X;;m}. Furthermore, let all
X; have the fixed point property, i. e. the property that every
mapping of X; into itself has at least one fixed point. Does it follow
that X also has the fixed point property?

The answer is megative. Indeed, let X be the contractible 2-
dimensional continuum, described by S. Kinoshita in [3], which
fails t0 have the fixed point property. Let P be the 2-dimensional
connected polyhedron, contained in the Euclidean 3-space E? = E2 X
X E1 and defined by

P=DX0O)UEXHU(TXD, 1)
where

D= {(x,y)|x>+y2< 1} C E?, 2)

S={(x,y)|x®+y2=1} C E2, (3)

T={xy|y=0,0<x=<1} C E2, 4)

I ={z|0£=z<1} CE. (5)

Obviously, P is contractible and, therefore, acyclic. Hence, by
the Lefschetz theorem, it has the fixed point property.

It is easy to see that, for each ¢>0, X admits an e-mapping
onto P. Consequently, Theorem A 7yields an Iinverse sequence
{Xi;nw} with mappings 7 onto and such that X;=P, for all
i=12,..., and that X = Inv lim {X;; mw}. We have thus an
example answering the above question in the negative. *

* Note added in proof. The same answer was found also by S. 1.
Iliadis using properties of a 3-dimensional continuum constructed
earlier by I. Ya. Ver&enko, Matem. Sbornik 8 (1940), 295—306 (cf.
Ref. Z. Mat. 11 A 249, 11 (1963), p. 44).
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Notice that the polyhedron P admits e-mappings onto the n-cell
I*, for each ¢ > 0 and n = 3. Hence, the above argument also proves
that, for n = 3, the continuum X of Kinoshita is an inverse limit
of m-cells I" with bonding mappings onto. Thus, continua X like
the n-cell I” need not have the fixed point property, provided n 2 3.
For n =2, this is a hard unsolved problem.
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PRESLIKAVANJE INVERZNIH SISTEMA
Sibe Mardes§ié, Zagreb
Sadrzaj

U ¢lanku se promatraju inverzni sistemi {X,, ; naa’} (a,d < A)
kompaktnih prostora X, te preslikavanja inverznih sistema F =
= {fs} : {Xo; Ataw} = {Y3; 0pp}. Svakom inverznom sistemu pripada
grani¢ni prostor X = Invlim {X,; 7ta}, dok preslikavanju sistema
F pripada grani¢no preslikavanje f = Inv lim {fz} : X — Y grani€nih
prostora.

Nadalje se promatra neka klasa II povezanih poliedara i kaZe
se da je kompakt X poput II, ako za svaki otvoreni pokrivat u
prostora X postoji u-preslikavanje gu:X — Py, na mneki poliedar
P, < II. Klasa svih kompakata koji su poput Il oznatava se sa
[II], dok se sa (II) oznadava potklasa svih metrickih kompakata
poput II (ovi pojmovi su uvedeni i promatrani veé u [6]).
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Cilj je ¢lanka da se ispita istinitost ovih dviju izreka:

Izreka A. Neka su Il i 2 dvije klase povezanih poliedara.
Tada za svako preslikavanje f:X — Y metrickog kontinuuma X <
< (II) na metricki kontinuum Y < () postoje inverzni nizovi
{Xi;mw}, {Yi;0ii}, gdje su mir, 0jp preslikavanja na, a X; i Y; su
poliedri X; < II, Y; < 2. Nadalje, postoji preslikavanje F = {f;} :
:{Xi;mie} = {Yj;0i} i homeomorfizmi h:X—X'=Invlim {X;;m},
k:Y—Y =Invlim {Y;;0ii}, takovi da je fh=kf, pri cemu je
f = Inv lim {f;}.

Izreka B. Neka su Il i 2 dvije klase povezanih poliedara.
Tada, za svako preslikavanje f:X—Y kontinuuma X <[II] na
kontinuum Y < [2], postoje inverzni sistemi {X.;maw} (o, @’ < A),
{Ys; 080} (B, <B) metrickih kontinuuma X, < (II), Ys < (2), pri
éemu Su 7. i 0pp Preslikavanja na. Takoder postoji preslikavanje
sistema F = {fg} : {Xa; e} = {Y4; 088}, te homeomorfizmi h:X—
— X' =Invlim {X,; mw}, k: Y —> Y =Invlim {Ys; 0sp} takovi, da
je fh=Kkf, gdje je f'=Invlim {fs}. Nadalje, moZe se postiéi da
(4, 2) i (B, £) budu usmjereni skupovi sa svojstvom da im svaki
element ima samo konaéno mnogo prethodnika i da im potencije
k(A) i k(B) ne prema$uju teZine w (X), odnosno w(Y), prostora X
i Y, tj. da bude k(4) Zw(X) i k(B) < w(Y).

Glavni rezultati élanka utvrduju, da izreka A opéenito ne stoji,
dok je, maprotiv, izreka B istinita. Istinitost izreke B dobiva se iz
teorema 4, koji daje nesto preciznije informacije nego 1i sama izreka
B, te predstavlja poopéenje gotovo svih dosada postignutih autorovih
rezultata, koji se odnose na inverzne sisteme nemetridkih prostora.

Primjer, kojim se dokazuje da je izreka A opéenito neistinita,
daje ujedno i djelomitan odgovor na jedan problem J. Mio-
duszewskog ([8]; vidi i Problem P 389, Collog. Math. 10 (1963),
str. 185).

Napokon, u posljednjoj tatki 4 &lanka se pokazuje, da jedan
raniji rezultat J. Segalai autora [7], te jedan primjer S. Ki-
noshite [3] daju negativan odgovor na jedno pitanje J. Mio-
duszewskog i M. Rochowskog ([9] i [10]) o fiksnim taé-
kama inverznih limesa.

(Primljeno 7. XII 1963.)



