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CHAINABLE CONTINUA AND INVERSE LIMITS
Sibe Mardesié, Zagreb
1. Introduction .

A chain (U1,...,Uy) is a finite collection of sets U; such that
U;MNUj==0 if and only if |i—j|<1. The sets Ui are called links
of the chain (Ui, ..., Us); Uy and U, are the two end-links. A topo-
logical Hausdorff space!) X is said to be chainable if each open
covering of X can be refined by an open covering u = {Uy, ..., Un}
such that (Uy,...,Usn) is a chain (U; need not be connected). It is
clear that each chainable X is compact and connected, i. e. a con-
tinuum. Moreover, X has covering dimension dim X <12,

. The are, i.e. the homeomorph of the real line segment I = [0,1],
is an obvious example of a chainable continuum. Furthermore, if
{Is; e} is an inverse system® of arcs I,, then the inverse limit¥
lim I, is also a chainable continuum (see Lemma 1). From a paper by
J. R: Isbell [3] one derives that each metrizable chainable conti-
nuum is the inverse limit of a sequence of arcs. It is natural to ask
whether metrizability is actually needed, in other words one has the
question: Is every chainable continuum the inverse limit of an
inverse system of arcs? This question has been raised in a recent
paper by R. H. Rosen ([8], p. 170).

In this paper we answer Rosen’s question mnegatively (see
Theorem 6), by constructing in Section 4 a chainable continuum C
with inductive dimension ind C > 1. By a previous result of ours,
" a compact space X with ind X > 1 cannot be obtained as the inverse
limit of 1-dimensional and 0-dimensional polyhedra®) and a fortiori
cannot be the limit of an inverse system of arcs (see [7], Theorem 4).

The problem of expanding chainable continua into inverse
systems of arcs is in many respects analogous to the problem of ex-
panding compact spaces X of (covering) dimension dim X <z into
inverse systems of polyhedra of dimension not greater than n (see

1) All spaces in this paper are assumed fo be topological Hausdorif
spaces. : ;
?) dim X can be zero only in the case when X consists of a single
point. )
%) ¢ ranges through an arbitrary directed set (4, <), 7,0 Iy =1,
are mappings onto, defined whenever a < a’. For basic definitions and
facts concerning inverse systems and:their limits, see e.g. [2] and [4].

4} By a polyhedron we always mean a compact polyhedron.
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[7], especially the introduction). In [7] we established the existence
of an expansion of an arbitrary compact space X with dim X <n
into an inverse system of mefrizable compacta X, with dim X, <n.
In this paper we show that an arbitrary chainable continuum is the
inverse limit of an inverse system of metrizable chainable continua
(see Theorem 2'). Both situations can be treated in the same way so
that it appears convenient to state and prove a unique set of theo- -
rems, which would contain both, the theorems on dimension and
those on chainable continua, as special cases. This is carried through
in Section 2.

Section 3. starts with a few elementary facts about chainable
continua. In particular, we verify certain conditions from Section 2
in order to make sure that general results from that section are
applicable to chainable continua. Some of the results thus obtained
for chainable continua are then stated explicitly.

2. General Expansion Theorems for Compact Spaces

Let 8 be a property well-defined on compact spaces, so that
each compact space X either has property B or does not. We shall
be especially interested in properties B, which satisfy the following
three conditions:

(A) Approximation condition. Let X be any compact space
having property B, let P be a polyhedron with a given metric
d,r >0 a real number and f: X - P a mapping. Then there exists
a polyhedron Q having property B, and there exist a map g: X > Q
and a map p:Q—> P such that

9X)=Q, (1)

dif,pge) <7; (2)

prg denotes as wusual the composite mapping, while. d(f,pg) =
= Sup d(f(x), pg (x), * < X.

(B) Continuity condition. Whenever {X.; s} is an inverse
system of compact spaces X, all of which have property ‘B, and
Ttaa’ : Xot = X, are mappings onto, then the limit X =1im X, also
has property .

(C) If X is a compact space, @ a polyhedron, f: X —> Q a map-
ping, and both X and Q have property BB, then £(X) also has pro-
perty B.

Example. Let n be a fixed non-negative integer and let P be
the property of a compact space X to have covering dimension
dim X <<n. Then 9 verifies conditions (A), (B) and (C) (see [7],
Lemma 1 and Section 1.4).

We can state now the main expansion and factorization theo-
rems; 3 shall denote a property defined for compact spaces.

Theorem 1. If { verifies the condition {(A), then each metri-
zable compact space X having property B is homeomorphic with
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the inverse limit of an inverse sequence®) {Qi;qi} of polyhedra
Qi all of which have property ‘B.

Theorem 2. If B wverifies the conditions (A), (B) and (C),
then each compact space X having property B is homeomorphic
with the inverse limit of an inverse system {Qu; puy'} of metrizable
compacta Qy all of which have property P;b ranges through a
directed set B of cardinality k(B) < weight w(X)9

An immediate consequence of these two theorems is

Corollary 1. If P verifies the conditions (A), (B) and (C),
then each compact space X having property  is homeomorphic with
a double iterated inverse limit limy (lim; Pyi) of polyhedra Py; all of
which have property P ;i ranges through positive integers.

Theorem 3. Let I verify the conditions (A), (B) and (C), let
"X and P be two compact spaces, let X have property L and let
f: X — P be a mapping. Then there exists a compact space Q having
property B, and there are mappings g: X —> Q,p: Q — P such that .
g is onto and

w(Q) < w (P)Y, 3)
; f=pg. )
Denote by w, (xy the initial ordinal whose cardinality is equal

to the weight w(X). Then we have

Theorem 4. Let B verify the conditions (A), (B) and (C)
Then each non-metrizable compact space X having property B
is homeomorphic with the inverse limit of an inverse system
{Xs;pss}; B ranges through the set of all ordinals B <, x.
X are compact spaces all of which have property L and verify

o w{(X;p) < wi{X). (5)
Furthermore, if k(f) denotes the cardinality of the ordinal §, then
w (Xp) <k, wogﬁ<w7(x), (6)
w (Xp) < Ro, < wo. )]
If B is a limit ordinal, then
- Xp=1im {Xo; par}, a <f, (8)

Pas: Xp—> X, being the corresponding projections.

A proof of Theorems 1, 2, 3, and 4 will be obtained from the
corresponding considerations in [7], by replacing the specific pro-
perty B of having dimension <{n by an arbitrary property 8 which
verifies the conditions (A), (B) and (C). We shall briefly indicate the
main lines of argument, emphasizing only deviations from the
proofs in [7].

5) An inverse sequence is an inverse system {X,; 7,2}, a < A, for
which A is the set of positive integers.

% The weight w(X) of a space X is the least cardinal which is the
cardinal number of a basis for the topology of X.

) We exclude the case when P is a finite set of points.
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All proofs are based on analogues of Lemmas 1 to 5 of [7]. The
exact statements of these analogues are obtained by adding to the
statements of the lemmas in [7] the requirement that X has pro-
perty 3, which verifies the conditions (A), (B) and (C); furthermore,
one has to replace the assertion, that the spaces @, @; and Qp respec-
tively have dimension not greater than dim X, by the assertion that
these spaces have property ‘5.

The analogue of Lemma 1 is true according to (A)., The analogue
of Lemma 2 follows in the same way as in [7]. This enables us to
prove the analogue of Llemma 3 as well as Theorem 1 of this paper,
by following the proofs given in [7] (in particular in Sections 2.2
and 2.4).

In order to prove the analogue of Lemma 4, especially in the
case n =1, we have to consider a mapping fi: X+ Q, where X is
a compact space having property 5, f1 is onto, and @ is the inverse
limit of an inverse sequence {Q;; gi;} of polyhedra Q; all of which
have property 8. We need the conclusion that @ also has property
B (compare with Section 2.3 of [7]). First, we replace {Q;; gij} by
the inverse sequence {q*(Q); qij}, where g': @ = Q; are the natural
projections®. This sequence has the same limit @ and q;; now
become mappings onto. According to (B) it suffices to show that all
-qt(Q) have property B. This follows from (C) and the fact that
Q) =g g(X) = Q. _

Next we proceed to the analogue of Lemma 5 and hereafter to
Theorems 2 and 3 (which are the analogues of Theorems 1 and 2
of. [7]). Observe that the projections pss of the inverse system
{Qv; por} in Lemma 5 of [7] are mappings onto. Furthermore, all
@p have property B, so that @ = lim @, also has property B accord-
ing to (B). This observation is needed in the proof of the above
Theorem 3.

Finally, we proceed to the proof of Theorem 4 (the analogue of
Theorem 3 of [7]). Notice that the mappings Ppa. : X« = Xa which
appear in the system {X,; Pax}, @ < B (see [7], Section 4), are map-
pings onto. Hence, we can conclude that Xz =lim X, has property
B provided that all X, have property .

3. Theorems on _Chainable Continua

1. Let € denote the property of a compact space to be chainable,
We shall show that the property € verifies the three conditions
(A), (B) and (C) of Section 2.

Here is a standard proposition that we shall utilize in verifying
the condition (A).

Let X be a compact space and let 2 be a family of finite open
coverings of X, which is cofinal in the set of all open coverings of
X (the ordering is given by the notion of refinement). Let P be a

8) N-dtation-s are those of [7], Section 2.3.
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compact -polyhedron with a given metric d, let r >0 be a real
number and f£:X—>P a mapping. Then there exist a covering
v = Q, a mapping g: X —> N(v) of X into the nerve N(v) of v, and
a mapping p:N(v)— P such that

d(f,pg) <. (1)

A proof of this proposition can be obtained e. g. from the first
part of the proof of Lemma 1 of [7]. One has to replace the family
of coverings, whose order is mot greater than 1+ dim X, by the
family Q.

Now take for  the family of all open coverings of X, which
are chains. If X is a chainable continuum, then Q2 is cofinal and the
proposition of above is applicable. It yields an approximate factori-
zation of f through the merve of a chain-covering of X, i. e. through
an arc I. Since X is connected, so is g{X) €I, and thus g (X) is either
an arc or a single point. Hence, in both cases g(X) is a chainable
polyhedron. This establishes the assertion (A) for €.

Remark 1. The only chainable polyhedra are: the arc and a
single point. Indeed, chainable continua have (covering) dimension
0 (only in the case of a single point) or 1. Hence, a chainable poly-
hedron is either a single point or a connected graph. Furthermore,
it ds clear that a chainable continuum cannot contain a triod; this
rules out all the graphs except the arc and the circle. Finally, a
chainable continuum must be acyclic, which leaves the arc as the
only l-dimensional chainable polyhedron.

-2, Now, we shall prove a slightly stronger statement (Lemma 1)
than the assertion that € verifies (B); it involves the notion of end-
points of a chainable continuum and will be needed in Section 4.

Let X be a chainable continuum. A point a- = X is said to be
an end-point of X, if each open covering v of X admits a refine-
ment u= {Uy,...,Un}, such that (Uj,...,Uy) is a chain and a
belongs to one of the two end-links U; and U,. Similarly, a pair of
points a, b of X is said to be a pair of opposite end-points of X, if
each open covering v of X admits a refinement u = {Ui,..., Us},
such that (U;,...,Up) is a chainand a = Uy, b é Uj,. Observe that
one can always assume that a = U; \. Uz, b = Up \ Up-1 (other-
wise take U; U Uz and U,_-1 U U, for end—hnks and assume that u
is a star refinement of v).

Remark 2. There exist (metrizable) chainable contmua without
any end-points, with only one end-point, and such having every
point for an end-point (see [1}], Pp. 662)

Lemma 1. Let {X.;pa'}, a = A, be an inverse system of
chainable continua X, and let Pas be mappings ontp. Then X =
lim X, is also a chainable continuum. Furthermore, let (a,b) be a
pair of points of X and let a,=p*(a) = X; b, =p* (b).= X,
where p*: X — X, denotes the natural p'rojection If (aq bg) is a pair
of opposite end-points of X,, for all a = A then (a,b) is a pair of
opposite end-points of X.
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Proof. Let v be an arbitrary open covering of X. We can
assume that v is finite (X is compact) and that the elements of v
are sets of the form (p*)—1(V;), where V; are open sets of certain
Xq a = A. Furthermore, there is no loss of generality in assuming
that all V; belong to the same X,. Then the sets V; cover p* (X) =
= X,. Let (Uy,..., Uy, be a chain-refinement of the covering {V}.
Then {(p*)~1(Uj)} refines {(p®—1(Vy)}. In order to show that X is
chainable, it remains only to verify that (p®)—1 (U1),-.., (@)1 (Uw)
is a chain. This is immediate, because (p®)~—1(U;) M (p»)~1 (Ux) =0
if and only if U; YUz =0, and (Uy,..., Uy) is a chain.

Since (aq be) is a pair of opposite end-points of X, one can
chocyse the chain (Ui, ..., U) on X, in such a way that a, <~ U and
bs = U,. Then a and b belong to the end-links (p®)—!(Uy) and
(pa)—1 (Un) respectively of the chain ((p9)~1(Uy),..., ()1 (Us),
which refines the arbitrarily chosen covering v of X. This concludes
the proof of Lemma 1.

3. Finally, let us verify (C). By Remark 1, @ is either a single
point or an arc. Since X is chainable and thus connected, it follows
that f(X) is also connected and thus again either a point or an are.
This completes the proof of the following

Theorem 5. The property € of a compact space to be chain-~
able verifies the conditions (A), (B) and (C). Therefore, the Theorems
1, 2, 3 and 4 are valid for P = G.

For example, Theorem 1 becomes a proposition asserting that
metrizable chainable continua are inverse limits of arcs.

Remark 3. There is another class of chainable continua, all of
- which are inverse limits of arcs. These are ordered continua?.

Theorem 2 for L = € yields

Theorem 2. Every chainable continuum X is homeomorphic
with the inverse limit of an inverse system {Qb;pbb’} of metrizable
chainable continua Qp; b ranges through a directed set B of cardi-
nality k(B) < weight w(X).

. Corollary 1 goes over into

Corollary 1. Every chainable continuum X is homeo-
morphic with a double iterated inverse limit limy (lim; Iy;) of arcs
Ivi; i ranges through positive integers.

4. We conclude this Section with a simple lemma which shall

be needed in the next Section
' Lemma 2. Let X and X” be two chainable continua (consi-
dered as disjoints sets) and let (a’,b") and (a”; b”) be pairs of opposite
end-points for X’ and X” respectively. Let X be the continuum
obtazned by taking X' U X” and identifying the two points b’ and

. Then X is again a chainable continuum and (a b”) is a pair of
opposzte end-points of X. '

The proof is straightforward and is omrtted

%) A proof of this assertion will appear elsewhere.
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4. A Chainable Continuum of Inductive Dimension Two

1. Theorem 6. There exist chainable continua X with indu-
ctive dimension ind X > 1, These continua are not obtainable as
inverse limits of inverse systems of polyhedra of dimension <1, a
fortiori they are not obtainable as inverse limits of arcs.

The second assertion is a consequence of Theorem 4 of [7]. In
order to prove the first assertion, we shall define a certain chain-
able continuum C which satisfies

ind C = 2. (1)
* Since the covering dimension of a chainable continuum is <1, we
shall have dim C =1. Therefore, the existence of C presents a
strengthening of previous results of A. Lunc [6] and O. V. Loku-
cievskil [5], who have also constructed compact spaces X with
dim X =1, ind X = 2. It is readily verified that the spaces of Lunc
and Lokucievskil are not chainable (they contain triods).

y ]
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Now, we proceed to the construction of C, which shall be per-
formed inh several steps. ‘ '
2. For each real number g, 0 << <1, choose a fixed sequence
of reals 1> 01> 02> ..., converging towards g. Next, consider
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sequences 0 <<r; <rp<...<1 of rational numbers 7, for which
the limit lim r; <<1; the lumt will be denoted by o= o (7)) =lim 7;.
With every such sequence (r;) we associate a certain continuum
K = K (ri), contained in the unit square [0,1] X {0,1] of the XY coor-
dinate plane. K is defined as indicated in the adjoint figure; it
consists of countably many straight line segments joining (0,0) with
(273, 1), (2/3, T1) with (1/3, 72), (1/3, r2) with (2/3,73),...,(1/3, o) with
2/3,0),...,(2/3, 02) with (1/3, 1), (1/3, o1) with (1,1) and (1,1) with
(1,0) respectively.

It is readily seen that K can be obtained as the inverse limit
of a sequence of broken lines'® with fixed end-points (0,0) and
(1,0). It follows (Lemma 1) that K is a (metrizable) chainable con-
tinuum and that the points (0,0) and (1,0) form a pair of opposite
end-points of K.

3. Let w, be the initial ordinal of cardinality 280 and let A
denote the set of all OTdilnaJs agw,, Consider the union M’ of a
family of disjoint copies I, a <= AN\ {wa} of the real line segment
1=10,1]. We mtroduce a total 'ordermg in M’ by setting x <<y, x =
< L,y £ 1,0,0 = A\ {w,}, whenever a<<a’ or whenever a = a’
and x <<y in the matural ordering of I, = [0,1]. Adjoin a new point
b to M’ and denote M’ U {b} by M. Consider M as ordered with b
as its maximal element. M also has a minimal element a =0 =
Z Iy M. Consider A as a subset of M by 1den‘cifyi“nﬂr a = AN\
N {ws} with 0 «~ I, &M and w, < A with b <~ M. It is readily seen
that M is an ordered continuum under the order topology.

Now, we shall define a subset L of the Cartesian product
M X1, I=][0,1]. First, consider all sequences of rationals 0 <r; <<
<re<... with lim r; = o (1) <<1. There are 2® of these sequences.
Therefore, one can establish a fixed one-to-one correspondence bet-
ween all of these sequences and all the ordinals o << w, Let (i)
denote the sequence thus assigned to the ordinal a.

For each a <w, consider I,XI< M XI as the unit square
IX1I of Section 2. Let K, =1, XI < M X1 be the set corresponding
to K((ri)a) of Section 2. Now, define L& M X I by

L={UK)U U aXD, (2)

where ¢ in the first term ranges through A \ {w,} and in the
second term ranges through A \ {0}.

Lemma 3. L is a chainable continuum with the points a X0
and b X0 as a pair of opposite end-points.

Proof. Introduce the folowing notatioms

[g,dlu={x|x < Mya<z<d},ad < 4 (3)
L(2)=LMN(0,aluXI),a < A 4)

19) Such a broken line can be obtained from the part of K exhibited
in the figure, by adding the line segments joining (2/3, r5) with (1/3, ¢) and
(1/3, 05) with (2/3, o).

1y Notice that in the expression a X I, a denotes 0 < I,.



Chainable Continua. .. 227

We shall prove, by transfinite induction on @, the following
proposition:

Each L(a), a < w, is a chainable continuum and the points
aX0 and a X0 form a pair of opposite end-points of L (c).

Since L = L (w,), this will prove Lemma 3. ‘

The proposition is true for a =1, because L (1) = K¢ = K {(7:)0)
is chainable and has the points 0 X 0 and 1 X 0 for a pair of opposite
end-points (see 2.). Now, assume the proposition true for all the
" ordinals <<a,1 <a<w, One has to distinguish two cases: case
(a) when a — 1 exists and case (b) when a is a limit ordinal.

Case (a). By assumption L{a—1) is a chainable continuum
with the points ¢ X0 and (a—1) X0 as a pair of opposite end-
points. Furthermore, L{a) = L{a—1) U K,_-1 and L(a—1) M K,_1 =
= {{a—1) X 0}. Since both L(a—1) and K,-.1 are chainable ccn-
tinua with pairs of opposite end-points (a X0, (¢ —1) X0) and
{(a — 1) X0, a X 0) respectively, it follows (Lemma 2) that L(a) is
a chainable continuum and (a X 0, a X 0) a pair of its opposite end-
points. L
Case (b). First, observe that L(a) is a closed subset of the
compact space [0,a]ly XI and thus is compact itself. Indeed, if
x = ([0, a] u X I) \ L{a), then there is'a f <<a, such that x belongs
to the open set (Is\ {8, f+1})XI of [0,a]ly X1 Since L(a)
NI X)) =Kz U(BXI) is closed in Iz X I, one can easily find a
neighborhood U(x) of x in (Is\ {8,  +1}) X1, such that U(x) N
M L(a) = 0. Clearly, U(x) is open in M X L

" Now, assume that q is a limit ordinal, ¢ < w,.Observe that for
each pair § < g < w, we have
LB)=L@BUENOIE I XD). - (5)
Define a mapping ngp : L(8)— L{f) by taking for mgs|L{f) the
identity mapping and for g |L M8, f1xXI) the mapping,
which sends x Xy into g Xy < B XIS L(p) - npp is clearly con-
tinuous and onto; it verifies '
. Tige TP 7 = Tpp” (6)
for BB < B” (mpp is defined as the identity map).

It is immediate that {L(8); nss'}, B, B’ < @, is an inverse system
and that ng.: L{a) > L(f) is a system of mappings onto, inducing
a mapping 7#: L(a) - lim {L(f); nsp'}. Due to the compactness of
L(a), ## is a mapping onto. On the other hand, it is readily seen
that nf is a one-to-one mapping, which proves that

Lia) =Xm {L(f); msp}, B, p' < a; (M
7tpa: L (a) > L(f) are the corresponding projections.

Notice that 75.(a X0)=a X0 and ag.(a X 0)=pX0. Our
assumptions and Lemma 1 yield thus the assertion of the above
proposition. This concludes the proof of Lemma 3.
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4. Let w1 be the first uncountable ordinal and B the set of all
ordinals f << wi. Consider the union N’ of family of disjoint copies
Mg, B < B\ {w1}, of ordered comtinua M (defined in Section 3).
The first and the last element of M; will be denoted hereafter by
as and bg respectively and the segments of Mjp, corresponding to
I, in M, will be denoted by Iz,. We introduce a total ordering in
N’ by. setting x <<y, x < My, y < Mp, 8,8 = B\ {wi}, whenever
p<<p or whenever f=p" and x <<y in the ordering of Mg=M
Adjoin a new point b 10 N’ and denote N'U {b} by N. Consider N
as ordered with b as its maximal element. N also has a minimal
element a = a9 = My < N. Consider B as a subset of N, by identi-
fying § <~ B\ {w1} withap < Mg<E N and w; < B with b = N.
It is readily - seen that N is an ordered continuum under the order
topology. '

"~ Now, we shall define a confinuum C SN X I as follows, For
each g <<wi, consider Mg XIS N XI as the Cartesian product
M X I of Section 3. Let Ly & Mg X I <= N X I be the set corresponding
to L& M X I of Section 3 and let Kz, © Lg be the sets corresponding
to K, & L. Now, define CE N X by

~(ULﬂ)U(Uﬁ><1), ®)

where f in the first term ranges through B\ {w1} and in the second
term ranges through B\ {0}12. _

Lemma 4. C is a chainable continuum.

The proof follows closely the proof of Lemma 3. Let

B, flv={x|x T N,f<xz<f}, 6 < B, 9
C(ﬂ) c (o, ﬁ]NXI) ﬁ\/B (10)

Notice that C(w1) =

One proves, by 'oransﬁnite induction on S, the following pro-

position
* Each C{(f), < w1, is a chainable continuum and the points
a X0 and X0 form a pair of opposite end-points of C(f).

For f =1 the proposition reduces to Lemma 3. Assuming the
proposition true for ordinals << f < w1, we conclude that it is true
for f. Again one has to distinguish the case when f—1 exists and
the case of a limit ordinal 8. The first case is treated by recurring
to Lemma 2. In the second case, one has to prove that C(f) is closed
in [0, f1n X I. Then one defines mappings zgs : C (8) — C(f), ﬂ <BF,
taking for ss | C (B) the 1dent1ty map and by sending x Xy = CMN

N (B, B1vX1I) into Xy = X I=C(P). Next, one proves that
28:C(B)—=>C@y),y <8, 1nduce a homeomorphism between C(g) and
the limit of the inverse system {C(y);my}, 7,y <B. We conclude
the argument by applying Lemma 1 to this system.

5. Since N and I are ordered continua, we have

12) Notice that in the expression § X I, § denotes ay = M.
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ind (N XI)=2, (11)
so that C & N X I implies
' indC < 2. (12)
Now, we wish to establish
ind C > 2. (13)
. It suffices to find a point ¢ < C and a meighborhood V of c
{in C) such that each open set U of C, ¢ = U &€V, has_the property

that its frontier Fr U = U \ U contains a nondegenerate real line
segment; this will imply ind Fr(U) >1 and thus (13).

Take for V e.g. the open set (N X {1/3,2/3)) (1 C and for c the
point b X 1/213), Let U be any open subset of C such that c=b X
X1/2 = UCSV=(NX(1/3,2/3))1C. Let o be the least upper
bound of reals t, for which b Xt = U. Then clearly, 0 <p <1 and

, (b X, 1) N U =019, (14)

Choose -a sequence t; <<ts<<t;<... of reals, 0<tg;.1<p,
such-that g =lim tg;,1 and .
b X tzi.1 = U. (15)

Next, choose a sequence of rationals 0 <<ry << re<l...<n<...,
T2i41 << t21+1 <<r2i+2, and choose a sequence of ordmals B, Bs,.--,

Beir1,... < B\ {w1} in such a way that
([,622-(»17 b]N >< [T2l+1, ""21+2]) n cc U: i= 0)1 y oo (16)
This is possible due to (15). Let § be the least upper bound of the
sequence f2i.1 = B\ {w}1, i=0,1,... . It follows that 8 < w1. We
conclude from (16) that
U([B, blw X [r2i+1, T2i+2)) NC S U. an
i=0

For each B C B, < <wi one has Mp=1f,+1]yE
<{B, bly and Lgp € C. Therefore, (17) yields

U Mp X [r2i.1, T2i42]) N Lp U, (18)
i=0
foreach f, 8 < f <1
Now, consider the sequence 0 <7< 7s<<... chosen above.

There is a certain ordinal a <w, such that (r) is precisely the
sequence 'of rationals (r;), assigned to o in Section 3. Since I,gv
S My, Kpr o = Lp 19, we obtain from (18)

13) (1/3,2/3) denotes the open interval {t|[t <1, 1/3 <t<2/3);
b = w; = B is the last point of N.

14 [g, 1] denotes the closed segment {t|t = I, o <t L 1}.

5) Recall that I, (Kj,) are the subsets of My (of Ly), which corres-
pond to the sets I, (K_;) of M (of L). ,
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U (IpaXr2is1, T2is2]) N Kp <= U. (19)
i=0 :
Observing that Kp . corresponds to K{(r:).) = K(r;) and inspecting
the figure, we conclude that (Igq X [rgis1, T2i+2]) (VY Kpo is the
straight line segment 1;, joining the points (2/3, r2:.1) and (1/3, 72i.2)
in Ip, X 1. It is evident that the line segment [1/3, 2/3] X g & Ip, X
X1, p = lim 7;, belongs to the closure of the union of the segments

1. By (19), it belongs a fortiori to: U, so that we have
’ [1/3,2/31p. X 0 ST, (20)
for each g, f < B < w1; here [1/3,2/3]4 denotes the segment [1/3,

2/3] of the copy Ip. of I=70,1] and U denotes the closure of U
with respect to C.
If we assume the existence of at least one g, 86 <oy,
having the property that the line segment {1/3,2/3]p. contains a
" non-degenerate subsegment which is disjoint with U, then it follows
from (20) that Fr U contains that subsegment. On the other hand,
if there is mo such £, f < 8 << w1, then for each f’, one can certainly
find a peint cp .= [1/3,2/3]p. contained in U. U being open, it
also contains the intersection of Kp', ©C with a set of the form
[x1, x2] X [0—¢, 0+ €], where [xj, x2] is a non-degenerate subse-
gment of [1/3,2/3]p, and &> 0. Inspecting again the figure, it is
evident that one can choose, for each §, a line segment contained in
this intersection (and a fortiori in U), whose end-points have
distinct rational coordinates sg and tg, such that o <<sg << tg. The
set B'={f'| B < B < w1} being uncountable, there is a subset B”
of B’, which is cofinal in the set B’ and has the property that both
sg and tp have constant (rational) values s and t respectively, for
all §/ <= B”. 1t follows immediately, that the non-degenerate line
segment b X[s,t] <= b X I = C belongs to U (b = w1 =< B is the last
point of N). On the other hand, p <<s <t, so that (14) implies (b X
X [st) MU =0. Hence, b X[s,t] is a non-degenerate segment of
Fr U. This proves that Fr U always contains a non-degenerate line
segment, which implies (13) and completes the proof of Theorem 6.
Remark 4. We believe that there exist chainable continua X
with arbitrarily large inductive dimension.
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LANCASTI KONTINUUMI I INVERZNI LIMESI
Sibe Marde$ié Zagreb
SadrZaj

Kona¢na uredena familija (Uy, ..., Us) otvorenih skupova U;
zove se lanac, ako je Ui U;=0 onda i samo onda, kada je
|i—j| < 1. KaZe se da je topoloski Hausdorffov prostor!) X lancast,
ako svaki otvoreni pokriva? prostora X dopu$ta jedno profinjenje
{U1,...,Ur}, takovo da je (Ui,...,Us) lanac. Svaki landasti X
je nmuzno kompaktan i povezan, dakle kontinuum.

Osnovni primjer lanéastog kontinuuma je 18k, t. j. homeomorfna
slika segmenta I = [0,1] realnih brojeva. R. H. Rosen je nedavno
postavio ovaj problem ([8], str. 170.): Da li je moguée dobiti svaki
landasti kontinuum Kao inverzni limes? mekog inverznog sistema®
lukova?

U ovom ¢lanku se gornji problem dovodi u vezu s ovim proble-
mom o dimenziji prekrivanja:

Da li se svaki kompaktni prostor X, za kojeg je dimenzija pre-
krivanja dim X <n, moZe dobiti kao inverzni limes nekog inverznog
sistema poliedara P, za koje je dim P, < n?

U radu [7] bio je dan megativni odgovor na drugi od gornjih

"problema. Toénije, bilo je pokazano da kompakini prostori X, za
koje je dim X =1, dok im je induktivna dimenzija ind X > 1, ne
.mogu biti inverzni limesi poliedara dimenzije <{1 ([7], Teorem 4.).
Egzistenciju kompaktnih prostora s gornjim svojstvima utvrdili su
ranije A. Lunc [6] i O. V. Lokucievskil [5].

U ovom ¢lanku (u tocki 4.) se konstruktivno definira jedan lan-
éasti kontinuum C sa svojstvom ind C = 2. Kako je dimenzija pre-
krivanja za svaki lanéasti kontinuum ocito <1, to postojanje kon-
tinuuma C predstavlja pooStrenje rezultata Lunca i Lokucievskog.
Iz [7], Teorem 4. slijedi da C ne moze biti inverzni limes lukova, te
je tako dobiven negativni odgovor ma problem Rosen-a.

1) Za sve prostore u ovom &lanku pretpostavija se da su topoloski
Hausdorffovi prostori.

?) Osnovne definicije i injenice u wvezi s inverznim sistemima 1
njihovim limesima opisane su na primjer u [2] i [4].
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Nadalje je u [7] bilo pokazano, da je svaki n-dimenzionalni
kompaktni prostor X inverzni limes jednog inverznog sistema n-
dimenzionalnih metrizabilnih kompakata. U ovom radu (to¢ka 3.) se
dokazuje analogni teorem (Teorem 2'): Swvaki lancasti kontinuum
je inverzni limes jednog inverznog sistema metrizabilnih lanéastih
kontinuuma. Dokazi obaju teorema teku paralelno, pa je stoga po-
zeljno dobiti jedan opéeniti teorem, koji bi oba gornja teorema
obuhvatao kao specijalne slucajeve. To je ulinjeno u toéki 2. ovog
rada, gdje se promatra neko opée svojstvo 5, koje je definirano za
sve kompaktne prostore, tako da svaki kompaktni X ili ima svoj-
stvo P ili nema to svojstvo. Na svojstvo ¥ se zatim postavljaju ova
tri uvjeta: .

(A) Uvjet aproksimacije. Neka je X bilo koji kompaktni prostor
sa svojstvom B, meka je P neki poliedar sa zadanom metrikom
d, r > 0 neka je realni broj, a f: X — P neko preslikavanje (nepre-
kidno). Tada postoji poliedar @ sa svojstvom P i postoje preslika-
vanja g: X —> Q,p: @ — P, za koja vnijedi g(X)=@Q@ 1 d(f,pg) <.

(B) Uvjet neprekidnosti. Neka je {Xq; 7.0} neki inverzni sistem
kompaktnih prostora X,, koji svi imaju svojstvo BB, i neka su 7aq:
: X — X, preslikavanja na &itavi X, Tada i X =1lim X, ima svoj-
stvo .

(C) Ako je X kompaktni prostor, @ neki poliedar, a f: X — @
preslikavanje, te ako X i @ imaju svojstvo %3, tada i f(X) ima svoj-
stvo L. _

Primjeri. (1) Neka tvrdnja »X ima svojstvo P« znaéi da je
dim X <n, gdje je » neki ¢vrsti cijeli broj, n >0.

(2) Neka tvrdnja »X ima svojstvo P« zna¢i da je X lancast.

Ova oba svojstva 8 zadovoljavaju {(A), (B) i (C).

Sada moZemo izreéi ovaj opfeniti teorem:

Ako svojstvo P zadovoljava (A), (B) i (C), tada se svaki kom-
paktni prostor X sa svojstvom B dade prikazati kao inverzni.limes
jednog inverznog sistema metrizabilnih kompakata sa svojstvom P
(Teorem 2.).

U radu su dokazana jo§ dva opéa teorema o faktorizaciji (Teo-
Tem 3.), odnosno o razvijanju u inverzne sisteme (Teorem 4.).

" (Primljeno 27. VI. 1959.)



