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ON INVERSE LIMITS OF COMPACT SPACES
Sibe Mardesié¢, Zagreb

In this paper” we are concerned with inverse systems {Xa, nﬂa}
of Hausdorff compact spaces X,; the systems are taken over arbitrary
directed sets M = {a}. X will always denote the inverse limit of the
system and m.:X — X, will be the corresponding natural pro-
jections.D ,

We first introduce a Hausdorff paracompact space X* associated
to every tinverse system and consisting of all the spaces X, of the
system (taken as disjoint sets) and of the limit X. The topology of
X* is such that the subset X is actually the limit (in the sense of
the directed set M) of subsets X,. Several properties of X* are given.
This generalizes a procedure given by H. Freudenthal ([6], p-
153) in the case of inverse sequences of metrizable compacta.

Next we consider the mapping spaces (X, R of all mappings of
a Hausdorff compact X into an ANR and we consider the singular
homology group Hy({X,R>;G) (with coefficients in an arblirary
Abelian group G) as a contravariant functor of X. Using the pro-
perties of X* we show that Hy ({X, R) ; G) is continuous with respect
to inverse limits (for Hausdorff compacta). This generalizes a pre-
vious result of the author ([9], Theorem 13, p. 200) and settles
a question raised in the same paper ([9], p. 202).

1. The Space X*
Let
X*=UX)UX,ax M, 1y

where all X, and their 1imit X are considered as being disjoint sets.
If U, is an open set of X,, let U,* © X* be the set defined by

U= U (st Us) U (a1 Uy). (2)
e<B

Let ) be the family of subsets of X* consisting of all open sets
U, =X, a = M, and of all sets Us*, « = M. Since the sets z,—1 U,

*) This paper has been written while the author held a member-
ship at The Instifute for Advanced Study in Princeton.

1) Basic definitions and facts concerning inverse systems and their
limits can be found in [5] and [8].



form a basis of open sets for X, it follows that 9 is a covering of X*.
Moreover, the intersection of any two members of U is the union
of some members of 9. It suffices to prove this statement for the
sets Ug* and Us*, a,0d = M. Let x < UM Un*, if & & Xp, for a
B E M, then a < 8, «’ < B, and x belongs to the set (g1 Ua) N
(g1 Uw), which is open in X; and thus belongs to 2, On the other
hand, if x < X, then x belongs to the set (71U, M (! Ua)
which is open in X. Therefore, there is a § < M and an open set
Up=Xp such that t < 751 Up S ("1 U) () (e~ 1Uy). One can
also achieve that Uy S U, Uy, so that Ug* @ U Ug*.

We now define the topology of X* by taking the family U
for a basis of all open sets. The properties that we established above
show that 9 can be given such a role. Notice that X, and X inherit
from X* their natural topologies as the relative topologies. X* is
clearly a Hausdorff space if all X, are Hausdorff spaces; this enables
us to use in X* nets and their limits (see [7], Chapter 2).

Theorem 1. Let {X,, 7mga}, a < M, be an inverse system of
nonempty Hausdorff compacta (over g directed set M). Choose for
every a < M an arbitrary point X, < X, < X* Then {xX.},a & M,
is a net in X* which has at least one cluster point x < X CX*,

Proof. Let M, denote the set of all § & M with a < . Then
{nsaxs}, B < M,, is a net of Xa. Let A =X, be the set of all cluster
points of this net. A is non-empty, because X, is compact. Further-
more, A is closed in X, Thus the sets Bs —imgs 1 (A) X5 f < M,,
and B =, 1{4) ©X are also closed. We shall now prove the fol-
lowing proposition:

(i) The set B& X is not empty.

Take any ¢ < A{A is not empty) and any open set U, & X,
containing g. Since a is a cluster point of the net {mp. x5}, f < Mo,
for every f < M, there is a y = § such that my. 2, &< U, On the
other hand, 7. T, = 78, (71,5 ) < 7182(X5) so that (7ms. (X)) N Ua=3=0.
Consequently, a is a cluster point of 75.(Xp) and thus a < 73, (X3),
for all B & M. (ms.(Xp) is compact). This proves that the sets Bg =
= sga—1{A) are non-empty compact spaces. Since obviously np s (Bp)
< By, for § < f, the sets By form an inverse system. The inverse
limit of this system is contained in B = n,1(4) =X and is non-
empty (see Theorem 3.6, p. 217 of [5]), proving the assertion (i).

Now assume that {x.}, a < M, has no cluster points in X. Then
for every * < X one can find an opet set U.* (given by (2)) and an
a(xr) < M such that U;* contains no points of {xs}, f <= Maw) and
x < U.* Since X is compact, there is a finite collection of sets
Ua*, ..., Udn)* covering X and disjoint with {xs}, § < M,, where
y is a suitable element of M, y = a(l),...,a(n). Consider now the
net {ms, 25}, B < M,, and the open set U, = mya L (Ua) U ... U
Umat— 1 ({Uatw) of X,. Clearly,

7~ (Uy) D X (4)

On the other hand, it is readily seen that U,* is contained in the
union of the sets U, (0%, ..., Us(w* and therefore contains no points
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of {xs}, f &< M. Consequently, {ms, x5}, § = M,, is a net entirely
contained in the closed set X, \ U,. Hence, the set A of its cluster
points belongs also to X, \ U,. According to (i) the set B = n, 1 (A) <
C X is not empty and is contained in sz,~1(U,) by (4). Therefore,
(AMNU,) D a, B==0, which is a contradiction to A= X, \U,.

Theorem 2. Let {X, mpa}, @ < M, be an inverse system of
(non-empty) Hausdorff compacta and let U be an open Set in X*
such that X ©U. Then there is a y == M Such that Xz < U, for all
B=y.

Proof Since the sets (2) form a basis for open sets around
points of X and since X is compact, it is easy to find an open set
V of X* such that XC V< U and that

V =Uz* U LU U™ 6)]

In order to prove Theorem 2, it sufficles to find a y = M,
y > a{l),..., a{n), such that

x,CV, | ®)
because (6) will then imply
Xp<=vVaU, for all $>. (M

Suppose now that no y = M satisfies (6). Then one could find
a point x, < X,\V for every y = M. {x,},y < M, would be a
net in X* satisfying the conditions of Theorem 1 and contained
entirely in X* \ V. Hence, this net could not have cluster points in
X <V, which contradicts Theorem 1.

Theorem 3. If {Xa, g4} is an inverse system of (non-empty)
Hausdorff compacta, then the space X* is Hausdorff and para-
compact.

Proof Let {V.} be an open covering of X*. Since X is com-
pact, there is a finite subcollection, consisting of sets V,@),..., Vu@),
which covers X. If V denotes the union of this subcollection, then
there is an a = M such that all Xp, < M,, are contained in V
(Theorem 2). Notice that the set

XF=UXpnpUX (8)
B>a
is an open subset of X* because it is of type (2) (with U, = X,).

Now consider the following collection <)) of open sets of X*:
take first the open sets (X*) M V. ,. .., (X*) MV, for members
of V. Furthermore, for every 8 < M \'M,, consider the open cover-
ing {X4MV,} of Xz and take elements of a finite subcovering as
new elements of <V (recall that X; is compact and open in X*). The
family ) of open sets of X* which we just defined, is clearly a
star-finite covering of X* which refines the covering {V,.}. *) is a
fortiori a locally finite refinement of {V,}.
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2. Mappings of X into ANR-s

In this section we are concerned with absolute neighborhood
retracts R for metric spaces (abbreviated as ANR). Recaill that ANR-s
can be characterized as neighborhood retracts of convex subsets C
of Banach spaces (see [4], p. 363). We shall also use the following
theorem due to R. Arens (Theorem 4.1, p. 18 of [3]; see also [2]):

Let C be a convex subset of a Banach space. Every mapping f
of a closed subset of a Hausdorff paracompact space into C admits
an extension fy to the whole space (the values of fx are in C).

The following theorem generalizes a lemma by M. Abe ([1],
2.2, p. 188) and Theorem 11.9, p. 287 of [5].

Theorem 4. Let {X, mga}, a <& M, be an inverse system of
Hausdorff compacte and let £f: X — R be a mapping of their limit
into an ANR. Then there is an a < M such that for every f# < M,
one can define a map fp:Xg— R with the property that fzmg is
homotopic to £ and fzm,p is homotopic to I, for all y = > a.

Proof. Consider R as @ neighborhood retract of a convex set
C of a Banach space. Let V be a neighborhood of retraction of R
in C and let ® : V— R be a retraction. Consider { as a mapping of
X into C. Since X is a closed subset of X* and X* iis Hausdorff and
paracompact (Theorem 3), we can apply the theorem of Arens and
obtain a mapping f.:X*—> C extending f.

Choose now, for every x = X, a convex open set V (x) of C such
that f(x) <€ V{(x) €V and choose an open set Uqn* of type (2) such

*
that x & Uy* & 1V (x)). Notice that X N U.(n* = 7ta (2 Ual),
so that for § = M., we get

(X N Us@*) Cagat@ (Ualn) CUa* & Fu 2 (V (). 9
Thus, for § & M.,
Fers X N Us %) SV (). (10)

The collection {U,(»*},x << X, is an open covering of X and
we can choose a finite subcovering consisting of sets Ua(p*, ..., Ud®,
where a(i) = a(x:), x: = X. If we denote the convex set V{x;) by Vi
then (10) goes over into

f:-::nﬁ'(XnUa(i)*)CVi7 i:l,,,,,n, (11)

and is valid for all f larger than a(l),...,a(n).

Now define a homotopy in C, connecting f and fso1s, f 2 «, by
joining points f(x) and fynp (x) by a line segment, ocbviously lying in
C. We want to show that this segment lies actually in the retraction
neighborhood V. Given any x <= X, there is an i = {1,...,n} such
that = = U,p* < f,1(V). Thus, f(x)=f,(x) <~ Vi. On the other
hand, (11) shows that f.m;(x) < Vi Since V; is convex and is lying
in V, it follows that the segment joining f{x) and fi s (x) is con-
tained in V; and thus in V too. In other words, for § 2 a(1),..., a(n),
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we have a homotopy in V connecting f(x) and fizs(x). Choose now
an a = a(l),...,a(n) such that all Xp, 8 & M, lie in U.*U ... U
U U.w* < f1(V); this is possible due to Theorem 2. Now define

fo=0fxXg, f & Ma ' 12)
We have obtained already a homotopy, connecting f and f,ng in V,
for all B <: M, Composing this homotopy with the retraction O,
we now get a homotopy connecting f and @ fomg=fgorp in R. A
similar argument shows that fgn,s and f, are homotopic in R, for
aly=2f=a

Theorem 5. Let {X, mpa} ond {Yu 0ga}, a = M, be two
inverse systems of Hausdorff compacta and let Xo < Yo, oga| Xp =
7ga; let X =Y be the corresponding limits. Let R be an ANR and
let, for a fixred a <&M, f,: Xo— R be a given mapping Such that
£, 710 : X~ R is extendible to Y. Then there is a f <& M. such that
f, 182 1 Xg—> R is extendible to Yp.

This theorem generalizes Lemma 8, p. 199 of [9]. Disposing
of Theorem 2 and other properties of the spaces X* and Y* it is
easy to carry on the necessary modifications in the proof given in [9]
in order to obtain a proof of Theorem 5. Notice in particular that
the space X,*, defined in (8), is a closed subset of the correspond-
ing space Y,*. Furthermore, let 7.* : X* — X, be a mapping coinciding
with 78, on X, § = «, and coinciding with 7, on X, The fact that
the sets (2) are open in X* insures the continuity of m,*.

3. Continuity Theorem for Homology of Function Spaces

Let X be a Hausdorff compact and Y a metrizable space. We
denote by (X,Y) the space of all continuous mappings f: X—>Y;
(X, Y) is given the compact-open topology f(e. g., see [7], p. 221).
If X' is another Hausdorff compact and g:X — X is a4 mapping,
then the transformation G:(X,Y)—>(X’,Y> defined by

GH=Tfg, 13

i.e. by composing f and ¢. If C’ is a closed subset of X', then C’
and g(C’) are compact. If U is an open set of Y, then
GI{f|f <X, Y, FO)CU={flf<<XY), fg(C)<EU]}.

(14)
This shows that G is continuous.

Now consider an inverse system of Hausdorff compact spaces
{Xo, mpa} , a < M, and a metrizable space Y, Let I1.5: (X, Y) —
—> (X, Y) be the induced mappings. Let H,({X,, Y), G) denote the
g-th singular homology group of (X, Y) with coefficients in the
group G and let Il.p; be the homomorphism induced by Ii.s. Then
{Hy({Xo,Y), G), Haps}, a <&M, is a direct system of groups.
Furthermore, if X is the limit of X,, then the mappings 7. : X — X.



induce mappings I1,:{X,, Y)— (X, Y) and we have homomorphisms
oy X, ({Xo, Y), G)— Hy ({X, Y), G), which induce a natural homo-
morphism 5 of the direct kimit of Hq({(Xa, Y), G) into He({X, Y), G).

Theorem 6. Let {Xa 710, a <&M, be an inverse system
of Hausdorff compacta and let R be an absolute neighborhood re-
tract. Then n establishes a natural iSomorphism between the direct
limit of Hy({Xa, R), G) and the group H ((X, R), G), where X is the
inverse limit of {Xa, mpa} and G is any group of coefficients (the
homology is taken in the sense of singular theory).

The proof is carried on first by interpreting singular homology
of the mapping spaces (X, R) as X-homology of R, in the sense
of [9] (see I 4, p. 190). Obvious modifications of the arguments on
p- 200—202 of [9] give a proof of Theorem 6. Notice that the Lemma
of Abe and Lemma 8 of [9] have to be replaced by the above
Theorems 4 and 5.
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O INVERZNIM LIMESIMA KOMPAKTNIH PROSTORA
Sibe Marde8§ié¢, Zagreb
SadrZaj
U ovom &lanku se promatraju inverzni!) sistemi {Xa, /gy Haus-
dorffovih kompaktnih prostora X, i to nad proizvoljnim usmjerenim
skupovima M = {a}. Relacijom (1) se uvodi u razmatranje skup

sastavijen od svih ¢lanova sistema (koje smatramo disjunkinima)

1) Osnovne definicije i svojstva inverznih sistema izloZeni su na pr.
u [5] i [8]. {
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i od grani¢nog skupa X. U skup X* se uvodi topologija time, §to se
definira jedna baza otvorenih skupova “{ na ovaj nagin. U se sastoji
iz svih skupova U. < X,, koji su otvoreni u X, a << M, te iz svih
skupova oblika (2); pri tome je 7. : X — X, prirodno preslikavanije,
koje pripada promatranom sistemu.

Pokazuje se vi$e svojstava prostora X*. Napose se pokazuje da
svaki otvoreni skup U iz X* koji sadrzi X, sadrii i sve X;, potevsi
od nekog dovoljno velikog a <= M (Theorem 2.). Kao posljedica do-
biva se da je X* Hausdorffov i parakompaktan. Ove ¢injenice omo-
gutuju da se primijeni jedan teorem R. Arensa o proSirivanju
neprekidnih preslikavanja, koja su definirana na nekom zatvorenom
dijelu nekog parakompaktnog prostora, a vrijednosti im leZe u
nekom konveksnom dijelu nekog Banachovog prostora. SluZeéi se
1im teoremom dokazuje se na primjer ovo {(Theorem 4):

Neka je {X. 734} jedan inverzni sistem Hausdorffovih kom-
pakata, neka je R jedan apsolutni okolinski retrakt (za metricke
prostore) i neka je dano neprekidno preslikavanje f:X — R. Tada
postoji @ = M sa svojstvom da je, za svaki § 2 a, moguée definirati
jedno neprekidno preslikavanje fs:Xs—> R i to ma takav naéin,
da je preslikavanje fgsp homotopno sa f, dok je fg =,z homotopno
sa f,, za sve y 2 f 2 a.

SluZeéi se ovim i jo§ jednim sli¢nim rezultatom (Theorem 5)
dokazuje se glavni rezultat radnje:

Neka je R jedan apsolutni okolinski retrakt a (X, R) i {X,R)
neka su prostori svih neprekidnih preslikavanja od X. u R, odnosno
od X u R. Neka je G neka Abelova grupa, a Hq(Y, G) neka oznaduje
g-dimenzionalnu singularnu grupu homologije prostora Y s koefi-
cijentima u G. Tada inverznom sistemu {X,, 7g.} pripada direktni .
sistem grupa {Hy({Xa, R), G)}. Direktni limes ovog sistema je gru-
pa izomorfna grupi Hy (X, R), G).

Ovaj teorem, dakle, pokazuje da je funktor homologije funk-
cionalnog prostora (X, R) neprekidan s obzirom na prijelaz vari-
jable X, na inverznu granicu. Time je dobiveno poopéenje jednog
teorema iz autorove disertacije (vidi Theorem 13, str. 200 u [9])
i rijeSen je Problem 1, koji se tamo navodi ([9], str. 202).

(Primljeno 23. IX. 1958.)



