ON INVERSE LIMITS OF COMPACT SPACES

Sibe Mardešić, Zagreb

In this paper*) we are concerned with inverse systems $\{X_{\alpha}, \pi_{\beta\alpha}\}$ of Hausdorff compact spaces X_{α} ; the systems are taken over arbitrary directed sets $M = \{\alpha\}$. X will always denote the inverse limit of the system and $\pi_{\alpha}: X \to X_{\alpha}$ will be the corresponding natural projections.¹⁾

We first introduce a Hausdorff paracompact space X^* associated to every inverse system and consisting of all the spaces X_a of the system (taken as disjoint sets) and of the limit X. The topology of X^* is such that the subset X is actually the limit (in the sense of the directed set M) of subsets X_a . Several properties of X^* are given. This generalizes a procedure given by H. Freudenthal ([6], p. 153) in the case of inverse sequences of metrizable compacta.

Next we consider the mapping spaces $\langle X, R \rangle$ of all mappings of a Hausdorff compact X into an ANR and we consider the singular homology group $H_q(\langle X, R \rangle; G)$ (with coefficients in an arbitrary Abelian group G) as a contravariant functor of X. Using the properties of X^* we show that $H_q(\langle X, R \rangle; G)$ is continuous with respect to inverse limits (for Hausdorff compacta). This generalizes a previous result of the author ([9], Theorem 13, p. 200) and settles a question raised in the same paper ([9], p. 202).

1. The Space X*

Let

$$X^* = (\bigcup X_a) \bigcup X, \ a \subseteq M, \tag{1}$$

where all X_{α} and their limit X are considered as being disjoint sets. If U_{α} is an open set of X_{α} , let $U_{\alpha}^* \subseteq X^*$ be the set defined by

$$U_{\alpha}^* = \bigcup_{\alpha < \beta} (\pi_{\beta \alpha}^{-1} U_{\alpha}) \quad \bigcup (\pi_{\alpha}^{-1} U_{\alpha}). \tag{2}$$

Let \mathcal{U} be the family of subsets of X^* consisting of all open sets $U_{\alpha} \subset X_{\alpha}$, $\alpha \subset M$, and of all sets U_{α}^* , $\alpha \in M$. Since the sets $\pi_{\alpha}^{-1} U_{\alpha}$

^{*)} This paper has been written while the author held a member-ship at The Institute for Advanced Study in Princeton.

¹⁾ Basic definitions and facts concerning inverse systems and their limits can be found in [5] and [8].

form a basis of open sets for X, it follows that \mathcal{U} is a covering of X^* . Moreover, the intersection of any two members of \mathcal{U} is the union of some members of \mathcal{U} . It suffices to prove this statement for the sets U_{α}^* and $U_{\alpha^{i*}}$, a, $a' \in M$. Let $x \in U_{\alpha^*} \cap U_{\alpha^{i*}}$, if $x \in X_{\beta}$, for a $\beta \in M$, then $\alpha \leq \beta$, $\alpha' \leq \beta$, and x belongs to the set $(\pi_{\beta}\alpha^{-1}U_{\alpha}) \cap (\pi_{\beta}\alpha^{-1}U_{\alpha^{i}})$, which is open in X_{β} and thus belongs to \mathcal{U} . On the other hand, if $x \in X$, then x belongs to the set $(\pi_{\alpha}^{-1}U_{\alpha}) \cap (\pi_{\alpha^{i}}^{-1}U_{\alpha^{i}})$ which is open in X. Therefore, there is a $\beta \in M$ and an open set $U_{\beta} \subset X_{\beta}$ such that $x \in \pi_{\beta}^{-1}U_{\beta} \subset (\pi_{\alpha}^{-1}U_{\alpha}) \cap (\pi_{\alpha^{i}}^{-1}U_{\alpha^{i}})$. One can also achieve that $U_{\beta} \subset U_{\alpha} \cap U_{\alpha^{i}}$, so that $U_{\beta}^* \subset U_{\alpha}^* \cap U_{\alpha^{i*}}$.

We now define the topology of X^* by taking the family \mathcal{U} for a basis of all open sets. The properties that we established above show that \mathcal{U} can be given such a role. Notice that X_a and X inherit from X^* their natural topologies as the relative topologies. X^* is clearly a Hausdorff space if all X_a are Hausdorff spaces; this enables us to use in X^* nets and their limits (see [7], Chapter 2).

Theorem 1. Let $\{X_a, \pi_{\beta a}\}$, $a \in M$, be an inverse system of nonempty Hausdorff compacta (over a directed set M). Choose for every $a \in M$ an arbitrary point $x_a \in X_a \subset X^*$. Then $\{x_a\}$, $a \in M$, is a net in X^* which has at least one cluster point $x \in X \subset X^*$.

Proof. Let M_{α} denote the set of all $\beta \subseteq M$ with $\alpha \leq \beta$. Then $\{\pi_{\beta\alpha}x_{\beta}\}$, $\beta \subseteq M_{\alpha}$, is a net of X_{α} . Let $A \subseteq X_{\alpha}$ be the set of all cluster points of this net. A is non-empty, because X_{α} is compact. Furthermore, A is closed in X_{α} . Thus the sets $B_{\beta} = \pi_{\beta} \alpha^{-1}(A) \subseteq X_{\beta}$, $\beta \in M_{\alpha}$, and $B = \pi_{\alpha}^{-1}(A) \subseteq X$ are also closed. We shall now prove the following proposition:

(i) The set $B \subseteq X$ is not empty.

Take any $a \subseteq A$ (A is not empty) and any open set $U_a \subseteq X_a$ containing a. Since a is a cluster point of the net $\{\pi_{\beta a} x_{\beta}\}, \beta \in M_a$, for every $\beta \in M_a$ there is a $\gamma \geq \beta$ such that $\pi_{\gamma a} x_{\gamma} \in U_a$. On the other hand, $\pi_{\gamma a} x_{\gamma} = \pi_{\beta a} (\pi_{\gamma \beta} x_{\gamma}) \subseteq \pi_{\beta a} (X_{\beta})$ so that $(\pi_{\beta a} (X_{\beta})) \cap U_a = 0$. Consequently, a is a cluster point of $\pi_{\beta a} (X_{\beta})$ and thus $a \in \pi_{\beta a} (X_{\beta})$, for all $\beta \in M_a (\pi_{\beta a} (X_{\beta}))$ is compact). This proves that the sets $B_{\beta} = \pi_{\beta a}^{-1}(A)$ are non-empty compact spaces. Since obviously $\pi_{\beta'} \beta(B_{\beta'}) \subseteq B_{\beta}$, for $\beta \leq \beta'$, the sets B_{β} form an inverse system. The inverse limit of this system is contained in $B = \pi_a^{-1}(A) \subseteq X$ and is non-empty (see Theorem 3.6, p. 217 of [5]), proving the assertion (i).

Now assume that $\{x_a\}$, $a \in M$, has no cluster points in X. Then for every $x \in X$ one can find an opet set U_a^* (given by (2)) and an $a(x) \in M$ such that U_a^* contains no points of $\{x_\beta\}$, $\beta \in M_{\alpha(x)}$ and $x \in U_a^*$. Since X is compact, there is a finite collection of sets $U_{\alpha(1)}^*$,..., $U_{\alpha(n)}^*$ covering X and disjoint with $\{x_\beta\}$, $\beta \in M_\gamma$, where γ is a suitable element of M, $\gamma \geq a(1), \ldots, a(n)$. Consider now the net $\{\pi_{\beta\gamma}, x_\beta\}$, $\beta \in M_\gamma$, and the open set $U_\gamma = \pi_{\gamma\alpha(1)}^{-1}(U_{\alpha(1)}) \cup \ldots \cup U_{\gamma\gamma\alpha(n)}^{-1}(U_{\alpha(n)})$ of X_γ . Clearly,

$$\pi_{\gamma}^{-1}(U_{\gamma}) \supset X. \tag{4}$$

On the other hand, it is readily seen that U_r^* is contained in the union of the sets $U_{\alpha(1)}^*$, ..., $U_{\alpha(n)}^*$ and therefore contains no points

of $\{x_{\beta}\}$, $\beta \subseteq M$. Consequently, $\{\pi_{\beta\gamma}, x_{\beta}\}$, $\beta \in M_{\gamma}$, is a net entirely contained in the closed set $X_{\gamma} \setminus U_{\gamma}$. Hence, the set A of its cluster points belongs also to $X_{\gamma} \setminus U_{\gamma}$. According to (i) the set $B = \pi_{\gamma}^{-1}(A) \subseteq X$ is not empty and is contained in $\pi_{\gamma}^{-1}(U_{\gamma})$ by (4). Therefore, $(A \cap U_{\gamma}) \supset \pi_{\gamma} B \neq 0$, which is a contradiction to $A \subseteq X_{\gamma} \setminus U_{\gamma}$.

Theorem 2. Let $\{X_{\alpha}, \pi_{\beta\alpha}\}$, $\alpha \subseteq M$, be an inverse system of (non-empty) Hausdorff compacta and let U be an open set in X^* such that $X \subseteq U$. Then there is a $\gamma \subseteq M$ such that $X_{\beta} \subseteq U$, for all $\beta \geq \gamma$.

Proof. Since the sets (2) form a basis for open sets around points of X and since X is compact, it is easy to find an open set V of X^* such that $X \subseteq V \subseteq U$ and that

$$V = U_{\alpha(1)}^* \bigcup \ldots \bigcup U_{\alpha(n)}^*. \tag{5}$$

In order to prove Theorem 2, it sufficies to find a $\gamma \leq M$, $\gamma \geq \alpha(1), \ldots, \alpha(n)$, such that

$$X_{\nu} \subseteq V,$$
 (6)

because (6) will then imply

$$X_{\beta} \subset V \subset U$$
, for all $\beta \geq \gamma$. (7)

Suppose now that no $\gamma \in M$ satisfies (6). Then one could find a point $x_{\gamma} \subset X_{\gamma} \setminus V$ for every $\gamma \in M$. $\{x_{\gamma}\}, \gamma \subset M$, would be a net in X^* , satisfying the conditions of Theorem 1 and contained entirely in $X^* \setminus V$. Hence, this net could not have cluster points in $X \subset V$, which contradicts Theorem 1.

Theorem 3. If $\{X_a, \pi_{\beta a}\}$ is an inverse system of (non-empty) Hausdorff compacta, then the space X^* is Hausdorff and paracompact.

Proof. Let $\{V_{\mu}\}$ be an open covering of X^* . Since X is compact, there is a finite subcollection, consisting of sets $V_{\mu(1)}, \ldots, V_{\mu(n)}$, which covers X. If V denotes the union of this subcollection, then there is an $\alpha \in M$ such that all X_{β} , $\beta \in M_{\alpha}$, are contained in V (Theorem 2). Notice that the set

$$X_{\alpha}^* = (\bigcup_{\beta > \alpha} X_{\beta}) \cup X \tag{8}$$

is an open subset of X^* , because it is of type (2) (with $U_a = X_a$).

Now consider the following collection \mathcal{P} of open sets of X^* : take first the open sets $(X_{\alpha}^*) \cap V_{\mu(1)}, \ldots, (X_{\alpha}^*) \cap V_{\mu(n)}$ for members of \mathcal{P} . Furthermore, for every $\beta \subset M \setminus M_{\alpha}$, consider the open covering $\{X_{\beta} \cap V_{\mu}\}$ of X_{β} and take elements of a finite subcovering as new elements of \mathcal{P} (recall that X_{β} is compact and open in X^*). The family \mathcal{P} of open sets of X^* , which we just defined, is clearly a star-finite covering of X^* which refines the covering $\{V_{\mu}\}$. \mathcal{P} is a fortiori a locally finite refinement of $\{V_{\mu}\}$.

2. Mappings of X into ANR-s

In this section we are concerned with absolute neighborhood retracts R for metric spaces (abbreviated as ANR). Recall that ANR-s can be characterized as neighborhood retracts of convex subsets C of Banach spaces (see [4], p. 363). We shall also use the following theorem due to R. Arens (Theorem 4.1, p. 18 of [3]; see also [2]):

Let C be a convex subset of a Banach space. Every mapping f of a closed subset of a Hausdorff paracompact space into C admits an extension f_* to the whole space (the values of f_* are in C).

The following theorem generalizes a lemma by M. Abe ([1], 2.2, p. 188) and Theorem 11.9, p. 287 of [5].

Theorem 4. Let $\{X_{\alpha}, \pi_{\beta\alpha}\}$, $\alpha \subset M$, be an inverse system of Hausdorff compacta and let $f: X \to R$ be a mapping of their limit into an ANR. Then there is an $\alpha \subset M$ such that for every $\beta \in M_{\alpha}$ one can define a map $f_{\beta}: X_{\beta} \to R$ with the property that $f_{\beta}\pi_{\beta}$ is homotopic to f and $f_{\beta}\pi_{\gamma\beta}$ is homotopic to f_{γ} , for all $\gamma \geq \beta > \alpha$.

Proof. Consider R as a neighborhood retract of a convex set C of a Banach space. Let V be a neighborhood of retraction of R in C and let $\Theta: V \to R$ be a retraction. Consider f as a mapping of X into C. Since X is a closed subset of X^* and X^* is Hausdorff and paracompact (Theorem 3), we can apply the theorem of Arens and obtain a mapping $f_*: X^* \to C$ extending f.

Choose now, for every $x \in X$, a convex open set V(x) of C such that $f(x) \subset V(x) \subset V$ and choose an open set $U_{\alpha(x)}^*$ of type (2) such that $x \subset U_{\alpha(x)}^* \subset f^{*-1}(V(x))$. Notice that $X \cap U_{\alpha(x)}^* = \pi_{\alpha(x)}^{-1} U_{\alpha(x)}$, so that for $\beta \in M_{\alpha(x)}$, we get

$$\pi_{\beta}(X \cap U_{\alpha(x)}^*) \subset \pi_{\beta\alpha(x)}^{-1}(U_{\alpha(x)}) \subset U_{\alpha(x)}^* \subset f_*^{-1}(V(x)). \tag{9}$$

Thus, for $\beta \subset M_{a(x)}$,

404

$$f_*\pi_{\beta}(X \cap U_{\alpha(x)}^*) \subseteq V(x). \tag{10}$$

The collection $\{U_a(x)^*\}$, $x \subset X$, is an open covering of X and we can choose a finite subcovering consisting of sets $U_{a(1)}^*, \ldots, U_{a(n)}^*$, where $a(i) = a(x_i), x_i \in X$. If we denote the convex set $V(x_i)$ by V_i , then (10) goes over into

$$f_*\pi_{\beta}(X \cap U_{\alpha(i)}^*) \subset V_i, \ i = 1, \ldots, n, \tag{11}$$

and is valid for all β larger than $\alpha(1), \ldots, \alpha(n)$.

Now define a homotopy in C, connecting f and $f_*\pi_{\beta}$, $\beta \geq a$, by joining points f(x) and $f_*\pi_{\beta}(x)$ by a line segment, obviously lying in C. We want to show that this segment lies actually in the retraction neighborhood V. Given any $x \leq X$, there is an $i \in \{1, \ldots, n\}$ such that $x \in U_{\alpha(i)}^* \subset f_*^{-1}(V_i)$. Thus, $f(x) = f_*(x) \leq V_i$. On the other hand, (11) shows that $f_*\pi_{\beta}(x) \leq V_i$. Since V_i is convex and is lying in V, it follows that the segment joining f(x) and $f_*\pi_{\beta}(x)$ is contained in V_i and thus in V too. In other words, for $\beta \geq \alpha(1), \ldots, \alpha(n)$,

we have a homotopy in V connecting f(x) and $f_*\pi_{\beta}(x)$. Choose now an $\alpha \geq \alpha(1), \ldots, \alpha(n)$ such that all $X_{\beta}, \beta \subset M_{\alpha}$, lie in $U_{\alpha(1)} * \bigcup \ldots \bigcup U_{\alpha(n)} * \subset f_*^{-1}(V)$; this is possible due to Theorem 2. Now define

$$f_{\beta} = \Theta f_{*} | X_{\beta}, \ \beta \subset M_{\alpha}.$$
 (12)

We have obtained already a homotopy, connecting f and $f_*\pi_{\beta}$ in V, for all $\beta \subset M_{\alpha}$. Composing this homotopy with the retraction Θ , we now get a homotopy connecting f and $\Theta f_*\pi_{\beta} = f_{\beta}\pi_{\beta}$ in R. A similar argument shows that $f_{\beta}\pi_{\gamma\beta}$ and f_{γ} are homotopic in R, for all $\gamma \geq \beta \geq \alpha$.

Theorem 5. Let $\{X_{\alpha}, \pi_{\beta\alpha}\}$ and $\{Y_{\alpha}, \sigma_{\beta\alpha}\}$, $\alpha \in M$, be two inverse systems of Hausdorff compacta and let $X_{\alpha} \subset Y_{\alpha}$, $\sigma_{\beta\alpha} \mid X_{\beta} = \pi_{\beta\alpha}$; let $X \subset Y$ be the corresponding limits. Let R be an ANR and let, for a fixed $\alpha \subset M$, $f_{\alpha}: X_{\alpha} \to R$ be a given mapping such that $f_{\alpha}, \pi_{\alpha}: X \to R$ is extendible to Y. Then there is a $\beta \subset M_{\alpha}$ such that $f_{\alpha}, \pi_{\beta\alpha}: X_{\beta} \to R$ is extendible to Y_{β} .

This theorem generalizes Lemma 8, p. 199 of [9]. Disposing of Theorem 2 and other properties of the spaces X^* and Y^* it is easy to carry on the necessary modifications in the proof given in [9] in order to obtain a proof of Theorem 5. Notice in particular that the space X_a^* , defined in (8), is a closed subset of the corresponding space Y_a^* . Furthermore, let $\pi_a^*: X_a^* \to X_a$ be a mapping coinciding with $\pi_{\beta a}$ on X_{β} , $\beta \geq a$, and coinciding with π_a on X. The fact that the sets (2) are open in X^* insures the continuity of π_a^* .

3. Continuity Theorem for Homology of Function Spaces

Let X be a Hausdorff compact and Y a metrizable space. We denote by $\langle X,Y\rangle$ the space of all continuous mappings $f:X\to Y$; $\langle X,Y\rangle$ is given the compact-open topology (e. g., see [7], p. 221). If X' is another Hausdorff compact and $g:X'\to X$ is a mapping, then the transformation $G:\langle X,Y\rangle\to\langle X',Y\rangle$ defined by

$$G(f) = f g, (13)$$

i.e. by composing f and g. If C' is a closed subset of X', then C' and g(C') are compact. If U is an open set of Y, then

$$G^{-1}\left\{f'\mid f'\leqslant \langle X',Y\rangle\;,\;\;f'(C)\subseteq U\right\}=\left\{f\mid f\leqslant \langle X,Y\rangle\;,\;\;fg(C')\subseteq U\right\}. \tag{14}$$

This shows that G is continuous.

Now consider an inverse system of Hausdorff compact spaces $\{X_a, \pi_{\beta a}\}$, $\alpha \subset M$, and a metrizable space Y. Let $H_{\alpha \beta}: \langle X_a, Y \rangle \to \langle X_\beta, Y \rangle$ be the induced mappings. Let $H_q(\langle X_\alpha, Y \rangle, G)$ denote the q-th singular homology group of $\langle X_\alpha, Y \rangle$ with coefficients in the group G and let $\Pi_{\alpha \beta ::}$ be the homomorphism induced by $\Pi_{\alpha \beta}$. Then $\{H_q(\langle X_\alpha, Y \rangle, G), \Pi_{\alpha \beta ::}\}$, $\alpha \subset M$, is a direct system of groups. Furthermore, if X is the limit of X_a , then the mappings $\pi_\alpha: X \to X_\alpha$

induce mappings $\Pi_a: \langle X_a, Y \rangle \to \langle X, Y \rangle$ and we have homomorphisms $\Pi_{a, \star}: X_q(\langle X_a, Y \rangle, G) \to H_q(\langle X, Y \rangle, G)$, which induce a natural homomorphism π of the direct limit of $H_q(\langle X_q, Y \rangle, G)$ into $H_q(\langle X, Y \rangle, G)$.

Theorem 6. Let $\{X_a, \pi_{\beta a}\}$, $a \subseteq M$, be an inverse system of Hausdorff compacta and let R be an absolute neighborhood retract. Then π establishes a natural isomorphism between the direct limit of $H_q(\langle X_a, R \rangle, G)$ and the group $H_q(\langle X, R \rangle, G)$, where X is the inverse limit of $\{X_a, \pi_{\beta a}\}$ and G is any group of coefficients (the homology is taken in the sense of singular theory).

The proof is carried on first by interpreting singular homology of the mapping spaces $\langle X, R \rangle$ as X-homology of R, in the sense of [9] (see I. 4, p. 190). Obvious modifications of the arguments on p. 200-202 of [9] give a proof of Theorem 6. Notice that the Lemma of Abe and Lemma 8 of [9] have to be replaced by the above Theorems 4 and 5.

RÉFÉRENCES:

- [1] M. Abe, Über die Methode der Polyederentwicklung der Kompakten und ihre Anwendungen auf die Abbildungstheorie, Compositio Math.
- 7 (1940), 185—193. [2] G. Aquaro, Sopra talune estensioni del teorema di prolungamento di Uryshon — Tietze, Rivista Mat. Univ. Parma 6 (1955), 111—115.
- [3] R. Arens, Extensions of functions on fully normal spaces, Pacific J. Math. 2 (1952), 11-22.
- [4] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353--367.
- [5] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton, 1952.
- [6] H. Freudenthal, Entwicklungen von Räumen und ihre Gruppen,

- Compositio Math. 4 (1937), 145—234.
 [7] J. L. Kelley, General topology, New York, 1955.
 [8] S. Lefschetz, Algebraic topology, New York, 1942.
 [9] S. Mardešić, On the homology of function spaces, Glasnik Mat.-fiz. i astr. 11 (1956), 169—242.

O INVERZNIM LIMESIMA KOMPAKTNIH PROSTORA

Sibe Mardešić, Zagreb

Sadržai

U ovom članku se promatraju inverzni¹⁾ sistemi $\{X_a, \pi_{\beta a}\}$ Hausdorffovih kompaktnih prostora X_a i to nad proizvoljnim usmjerenim skupovima $M = \{a\}$. Relacijom (1) se uvodi u razmatranje skup sastavljen od svih članova sistema (koje smatramo disjunktnima)

¹⁾ Osnovne definicije i svojstva inverznih sistema izloženi su na pr. u [5] i [8].

i od graničnog skupa X. U skup X^* se uvodi topologija time, što se definira jedna baza otvorenih skupova \mathcal{U} na ovaj način. \mathcal{U} se sastoji iz svih skupova $U_{\alpha} \subset X_{\alpha}$, koji su otvoreni u X_{α} , $\alpha \subset M$, te iz svih skupova oblika (2); pri tome je $\pi_{\alpha}: X \to X_{\alpha}$ prirodno preslikavanje, koje pripada promatranom sistemu.

Pokazuje se više svojstava prostora X^* . Napose se pokazuje da svaki otvoreni skup U iz X^* , koji sadrži X, sadrži i sve X_{β} , počevši od nekog dovoljno velikog $\alpha \subset M$ (Theorem 2.). Kao posljedica dobiva se da je X^* Hausdorffov i parakompaktan. Ove činjenice omogućuju da se primijeni jedan teorem R. A r e n sa o proširivanju neprekidnih preslikavanja, koja su definirana na nekom zatvorenom dijelu nekog parakompaktnog prostora, a vrijednosti im leže u nekom konveksnom dijelu nekog Banachovog prostora. Služeći se tim teoremom dokazuje se na primjer ovo (Theorem 4):

Neka je $\{X_{\alpha}, \pi_{\beta\alpha}\}$ jedan inverzni sistem Hausdorffovih kompakata, neka je R jedan apsolutni okolinski retrakt (za metričke prostore) i neka je dano neprekidno preslikavanje $f: X \to R$. Tada postoji $\alpha \in M$ sa svojstvom da je, za svaki $\beta \geq \alpha$, moguće definirati jedno neprekidno preslikavanje $f_{\beta}: X_{\beta} \to R$ i to na takav način, da je preslikavanje $f_{\beta} \pi_{\beta}$ homotopno sa f_{γ} , za sve $\gamma \geq \beta \geq \alpha$.

Služeći se ovim i još jednim sličnim rezultatom (Theorem 5) dokazuje se glavni rezultat radnje:

Neka je R jedan apsolutni okolinski retrakt a $\langle X_a, R \rangle$ i $\langle X, R \rangle$ neka su prostori svih neprekidnih preslikavanja od X_a u R, odnosno od X u R. Neka je G neka Abelova grupa, a $H_q(Y,G)$ neka označuje q-dimenzionalnu singularnu grupu homologije prostora $_iY$ s koeficijentima u G. Tada inverznom sistemu $\{X_a, \pi_{\beta\,a}\}$ pripada direktni sistem grupa $\{H_q(\langle X_a, R \rangle, G)\}$. Direktni limes ovog sistema je grupa izomorfna grupi $H_q(\langle X, R \rangle, G)$.

Ovaj teorem, dakle, pokazuje da je funktor homologije funkcionalnog prostora $\langle X_a, R \rangle$ neprekidan s obzirom na prijelaz varijable X_a na inverznu granicu. Time je dobiveno poopćenje jednog teorema iz autorove disertacije (vidi Theorem 13, str. 200 u [9]) i riješen je Problem 1, koji se tamo navodi ([9], str. 202).

(Primljeno 23. IX. 1958.)