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THE GENERAL SOLUTION OF TWO FUNCTIONAL EQUATIONS
BY REDUCTION TO FUNCTIONS ADDITIVE IN TWO
VARIABLES AND WITH THE AID OF HAMEL BASES

Janos Aczel, Koln

In this paper we give the general solutions of two important
functional equatJions with the aid of general antisymmetric resp.
symmetric additive functions of two variables, wich are then
represented with the aid of HameL bases. It is remarkable, that
though the seoond equation is one for an unknown function of
one variable, still it lea&S to a functi'onal equation for functions
of two variables. This reflects the connection between norms and
inner products.

1. S. K ure pa [15J (ef. also [22J, [23J, [24], [lOJ) has solved the
functional equation for real functions

F (x + y, z) + F (x, y) = F (y, z) + F (x, y + z), (1)

which is closely connected with the notion of the second homo·logy
group (ef. e. g. (21J) under differentiabiLity suppooitions. J. Er d (5 s
has proved in (5J that the general symmetric solution of (1) among
functions with varia'bles in an arbitrary abelian group and values
in an arbitrary divisible abeMan group is of the form

F (x, y) = f (x + y) - f (x) - f (y) (2)

and he reproduced in the same paper an argument of the pre
sent author which proves that, under continuity or weaker (say,
boundedness) conditions, (2) is the most general solution of (1).
Recently M. H o s s z li. [11J has proved, relying upon the above
mentioned result 'OfJ. Erd5s, that without any suppositions (except
the above restrictions on domain and range) the general solution
of (1) is

F (x, y) = f (x + y) - f (x) - f (y) + G (x, y) ,

where G is an arbitrary antisymmetric function

G(x, y) =- G(y, x),

which is additive in its single variables:

G(x + z, y) = G(x, y) + G(z, y)

(3)

(4)

(5)

(the additivity in the other variable is a consequence of (4) and (5)).
Now we show that this last result follows amo from OUT con

siderations published in [5J (and give then also explicitly, in the
caseof real functions, the general solution of (1».



For this purpose we repeat that argument: Define

G (x, y) = _F_(x_,_y_)-_F_(_y,_x_) .
2

(6)

(7)

(8)

This is evidentily an antisymmetric function (ef. (4». In oroer to
pr-ove(5) we change the role of x and y in (1) and get

F (x + y, z) + F (y, x) = F (x, z) + F (y, x + z) .

Similarly we change z and y in (1) and get

F (x + z, y) + F (x, z) = F (z, y) + F (x, y + z) .

By subtraeting (1) from the \Sumof (7) and (8)we obtain

F (x + z, y) - F (y, x + z) = F (x, y) - F (y, x) + F (z, y) - F (y, z) ,

which by (6) yields the equa:tion (5) to be proved. On the other
hand with F (x, y) also

H( )_F(x,y)+F(Y,x)x, y - -------
2

(9)

satisf,ies equation (1) and is symmetric, thus by the quoted result
of J. Erdos [5] ~sof the form

H(x, y) = i (x + y) - f{x) - i (y) . (10)

(11)

(12)

(6), (9) and (10) show that, as asserted, every soIution of (1) is of
the fom (3)while we have proved that also (4) and (5) hold.

On the otheThand, (3)with (4) and (5) evidently always satisfies
(1) ((3) alwayssatisfies (1) even ii G is only additive in both
variables), which proves our above statement.

The statement just proved reduces the solution of the func
tional equation (1) to the pair of functional equations (4), (5). The
question arrses how to represent the general solution of the latter,
at least :uorreal funclions. As G. Ham el [6] has pToved, there
exist 'subsetJsB of rea.l numbeTSsuch that every real number x can
be represented in a unique way as

n
X = Z rk bk

k=1

with bk <E: B and.Mth rational coefficients rk. Let the similar repre
sentation of y be

m
y = Z si bi

;=1

(bi <E: B, si rational) and take into consideration that (4) and (5)
imply, as already mentioned, also

G (x, y1 + y2) = G (x, YI) + G (x, y2) . (13)
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From (5) and (13) by induction
n n

G( L: Xk, y) = L: G(Xk, y)
/(~1 /(=1

and
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(14)

(15)
n n

G (X, L: Yk) = L: G (x, Yk)
/(=1 /(~1

follow. Furthermore, with XI = X2 = ... = Xn = X, YI = Y2 = ... =
=y,,=Y

G (nx, y) = nG (X, y) = G (x, ny)

m
and for t = - x, that is nt = mx,

n

nG (t, y) = G (nt, y) = G (mx, y) = mG (x, y)
or

G (~ x, Y) =~ G (x, y).,n n

As (5) also implies (with z = O)

G(O, y) = O

and (with z =- x)
G(-x, y) =- G(x, y),

(16)

the equation (16) -remains also valid for nonpositive integers m.
The same argument applies to the second variable and so we have
for aH rational r and for all real x, y

G (rx, y) = rG (x, y) = G (x, ry) .

Now by (11), (14), (15) and (17), we have with

G (bk, bj) = akj:

(17)

(18)
n m n m

G (x, y) = G (L: rk bk, L: Si bi) = L: rk G(bk, L: Si bi) =
k~l j=l k~l j~l

n m n m
= 2: L: rlo'Si G (bk, bi) = L: L: akj rk Sj.

/(=lj~l k=lj~l

So we have proved the following
L e mrna. The general real solution of the pair (5), (13) of

functional equations iS

where

G (x, y) = L: akj rlo'Sj ,
k, j

x= L: rkbk, y= L: Sjbi,
k j

(19)



the Tk, Sj being ration·a.l while the bj are elements of a Hamel basis
B and the aloj arbitrarily depending upon bk and bj. In any of these
sums only fini te number of terms may be diffe1'ent from zero.

(The matrix aloj is infinite, even not-countable, but in (19) only
a finite segment of it figures.)

If we also take (4) into consideration, we get from (18)

akj = G (bk, bj) = - G (bj, bk) = - ajk

and have thus the

Cor o Il ary 1. The general real solution of the pair (4), (5)
of functional equations is

G (x, y) = .E akj rk Sj
k, i

whe1"e 1"/" Sj are the rational coefficients figuring in (11), (12),
while the akj are elements of an arbitrary antisymmet1"ic matria',
depend'ing upon the basis elements bk, bi figuring there.'

If we compare this with (3), (4) and (5) we get the following
The ore mLThe general solution of

(1)

among functions defined on arbitrary abelian groups and with
values in an arbitrary abelian group, where every equation nx = c
has a unique solution x (n being apositive integer), is of the form

F (x, y) = f (x + y) - f (x) - f (y) + G (x, y) (3)

with arbitrary f and with G fulfilling (4) and (5) 01' for real numbers
explicitly with

G (x, y) = .E alojriosi ,
k, i

where

x = Z rio bk, Y = 2: Sj bj

k i

and the akj a1"e elements of an arbitrary (antisymmetric) matrix,
depending upon bk and bj (TI" Sj rational, bk, bj elements of a Hamel
basis).

(The theorem remains true both if we leave the matrix Il akj II

arbitrary and if we state that it is antisymmetric.)
As there is no continuous function satisfying (4) and (5) except

that identicaLIy O (as - for G continuous in x, (5) implies G(x, y) =
= c (y) x see [1] and ef. (17», while (4) gives c(y) x = - c (x) y, thus
c(x) c(y)-- = -. -- = constant = O), so we have also (ef. [5]) the

x y

1 In this sum as well as in other sums of this paper only finite
number of terms may be =i= O"
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Cor o Il ary 2. The general continuous rea~ solution of (1) is

F (x, y) = f (x + y) - f (x) - f (y)

with arbitral'y continuous f.
The continuity condition can be considerably weakened (to

boundedness, measurability, etc.).
2. The functional equation

9 (x + y) + 9 (x - y) = 2g (x) + 2g (y) (20)

is very important a·s it serves in certain abstract spaces for the
definition of the norm (resp. of the square of the norm). It was
repeatedly examined ([12], [13], [26], [3], [7], 114], [8], [25], [16], [17],
[9], [1], [18], [2], [4], [19], [20], [27]) and we will also make use here
of some of these results.

In order to solve ar reduce (20), we define a function H of two
variables (this corresponds to the inner product) by

4H (x, y) = 9 (x + y) - 9 (x - y) .

We first prove, that if 9 satisfies (20), then H is symmetric

H (x, y) = H (y, x) ,
additive

H (x, y + z) = H (x, y) + H (x, z)
and

9 (x) = H (x, x) .

(20)

(22)

(23)

(24)

We register some consequences of (20). By substituting y = O,
we get

and, for x = O,
9 (O) = O

g(-y) = g(y),

(25)

(26)

that is, 9 is even. Finally, with y = x, (20) gives

(27)

(27) and (25),

9 (2x) = 4g (x) .

Now, from (26) we have (22); (24) follows from
while from (20) and (21) we have (23):

4H (x, y + z) = g(x + y + z) - g(x-y-z) = 9 (x + y + z) +
+ g(x + y-z) - g(x-z + y) -g (x-z- y) =
= 2g (x + y) + 2g (z) - 2g (x - z) - 2g (y) =
= 9 (x + y) + 9 (x + y) - 2g (y) + 2g (z) -

- 9 (x - z) - 9 (x - z) = 9 (x + y) + 2g (x) -

- 9 (x - y) + 9 (x + z) - 2g (x) - 9 (x - z) =
= 4H (x, y) + 4H (x, z) ,

as asserted.



Un the other hand, (24) always satisfies (20), if H is additive in
both variables:

g~+~+g~-~=H~+~x+~+H~-~x-~=
=H~x+~+H~x+~+H~x-~-H~x-~=
=H~~+H~~+H~~+H~~+H~~
-H~~-H~~+H~~=m~~+m~~=
= 2g (x) + 2g (y) .

Thus, every function of the form (24) with H (x, y) additive in
both variables satisfies the functional equation (20), but already (24)
with symmetric additive H gives the general solution of (20) among
the functions defined on abel·ian groups with values in {Lbelian
groups in which equations of the form 4x = c have unique solu
tions x.

Answering a problem raised by S. Kurepa at the Second Oher
wolfach Symposium on Functional Equations [4], we give here the
general real solution of (20). By the above Lemma, H being additive
in both variables, has to be of the form

n m
H(x, y) = ~ ~ a..kjTiJ•. Sj

k~1 ;=1

n m
(x = Z 7'" bk, Y = ~ Sj bi) ,

k~1 ;~1

where the rk, Sj are rational while the bj are elements of aRameI
basis B and the aki = H (bk, bi) arbitrarily depending upon bk and
bi. If H is symmetric, the n

and we have similary to Corol1ary 1 the
Cor o Il ary 3. The most general real symmetric additive

functions are of the form

H (x, y) = H (~ 7'kbk, .I Sj bj) = .I a/;jrk Si ,
k ; k,;

where the akj, a7'e elements of an arbit7'ary symmetric matrix,
depending upon the elements b", bj of the Hamel basis B.

Summarizing, and taking (24) into consideration, we have the
The ore m 2. The general solution oj

9 (x + y) + 9 (x - y) = 2g(x) + 2g (y) (20)

among functions defined on arbitrary abelian groups and with
values in an arbitrary abelian group, where every equation 4x = c
has a unique solution x, is of the form

9 (x) = H (x, x) , (24)
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where H fulfms (22) and (23) or for real numbers explicitly

g (x) = ~ akj rk rj ,
k,;

where

71

(28)

x = ~ rk bk
k

and the akj are elements of an arbitrary (symmetric) matrix,
depending upon bk and bj (1'", rj rational, bk, bj elements of a
Hamel basis).

(By methads of [18] the suppositions concerning the range of
g might still be somewhat redueed.)

The general eontinuous real solution of (22) and (23) evidently
is (ef. [17] or [1])

H(xy)=cxy

and so, by (24), we have the following
Cor o Il ary 4. The general continuous real soltition of (20) is

g(x) = ex2,

where c is an arbitrary constant.

Here again the continuity supposition can be considerably
weakened. It is so mueh the more supprising, that although cx2 =
= a (bx)2, h{x) = bx being the general continuous real solution of
the additive functional equation h(x + y) = h(x) + h{y), whose gene-

1t n
ral real solution ([6]) is h (x) = h ( ~ rk b,,) = ~ rk h (bk), the general

k~l k~l

real solution of (20) is not
n n

g(x)=a(~ rkh(bk»2= ~ ah(b,,)h{bj)rkrj,
k=l k,;~l

but (ef. (28»:
g (x) = ~ H (bk, bj) 1'krj .

k,;

The author is indebted to J. Erd6s for some valuable remarks.
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OPCE RJEŠENJE DVIJU FUNKCIONALNIH JEDNADZBI
REDUKCIJOM NA FUNKCIJE ADITIVNE U DVIJE VARIJABLE I

POMOCU HAMELOVE BAZE

J. AczEd, KaIn

Sadržaj

Autor dokazuje slijedeca dva teorema:
T e ore mL Opce rješenje funkcionalne jednadžbe

F (x + Y, z) + F (x, y) = F (y, z) + F (x, y + z) (1)

u skupu funkcija definiranih na proizvoljnoj Abelovoj grupi i
s vrijednostima u Abelovoj grupi u kojoj je djeljenje s prirodnim
brojevima definirano ima oblik

F (x, y) = f (x + y) - f (x) - f (y) + G (x, y) , (3)

gdje je f proizvoljna funkcija, a G je antisimetricna i aditivna u
obadvije varijable, tj. G zadovoljava (4), (5).

U slucaju da su spomenute grupe realni brojevi, G ima oblik
(19), gdje je (akj) proizvoljna antisimetricna matrica s konacno ele
menata razlicitih od nule u svakom retku i svakom stupcu, a akj je
vrijednost funkcije G na paru elemenata Hamelove baze.

T eo rem 2. Opce rješenje funkcionalne jednadžbe (20), gdje
je g definirano na proizvoljnoj Abelovoj grupi s vrijednostima u
Abelovoj grupi u kojoj je djeljenje s 2 izvedivo ima oblik g (x) =
= H (x, x), gdje je 2H (x, y) = g (x + y) - g (x) - 9 (y) simetricna i u
obadvije varijable aditivna funkcija. U slucaju da su spomenute
grupe realni brojevi, g je dano s (28) pomocu svojih vrijednosti alrj
na Hamelovoj bazi.

(Primljeno 4. XI 1964.)


