SOME NOTES ON *-REGULAR RINGS

Niko Prijatelj, Ljubljana

1.

It is known that a *-regular ring R is a ring with a unit element 1 in which

$$
\begin{equation*}
(\forall a<R)(\exists x \in R)(a=a x a) \tag{1}
\end{equation*}
$$

and in which there is an involutory anti-automorphism $a \rightarrow a^{*}$ with the additional property

$$
\begin{equation*}
a^{*} a=0 \Rightarrow a=0 \tag{2}
\end{equation*}
$$

An element $a<R$ for which $a=a^{*}$ is called Hermitian and an element $e \in R$ which is both Hermitian and idempotent, i. e. $e=e^{*}=e^{2}$, is called a projection.

It was shown [3] that the right (left) principal ideal $a R$ ($R a$) of each element $a<R$ is generated by a uniquely defined projection $e(f)$, which, because of $a=e a=a f$, we call the left (right) projection of the element a.
I. Kaplansky also proved [1]: if e and f are the respective left and right projections of an element $a \in R$, then there exists exactly one element $\bar{a} \in R$ such that $f \bar{a}=\bar{a}$ and $a \bar{a}=e$. The uniquely determined element \bar{a} is called the relative inverse of the element a. Moreover, it is easy to see that $\bar{a} a=f$ and therefore

$$
\begin{equation*}
a=a \bar{a} a, \quad \bar{a}=\bar{a} a \bar{a}, \overline{\bar{a}}=a \tag{3}
\end{equation*}
$$

Consequently, each element $a \in R$ can be written in the form $a=a x a$ in such a way, that $a x$ and $x a$ are the respective left and right projections of a. In wiev of this fact let us examine the general solution of the equation $a=a x a$.

Suppose that an element $a \in R$ is expressed by

$$
a=a x a
$$

where $e=a x$ and $f=x a$ are the respective left and right projections of a. Since

$$
f(f x)=f^{2} x=f x \text { and } a(f x)=(a f) x=a x=e
$$

Ovaj rad je finansirao Sklad Borisa Kidriča, Ljubljana.
it follows that

$$
\begin{equation*}
f x=\bar{a} \tag{4}
\end{equation*}
$$

Therefore we conclude that

$$
f x=\bar{a}=f \bar{a} \Rightarrow f(x-\bar{a})=0 \Rightarrow x-\bar{a}=(1-f) u
$$

and hence

$$
\begin{equation*}
x=\bar{a}+(1-f) u \tag{5}
\end{equation*}
$$

for an element. $u \in R$. But since it must also be

$$
x e=x a x=f x=\bar{a}=\bar{a} a \bar{a}=\bar{a} e,
$$

it follows from (5) that

$$
(1-f) u e=0 \Rightarrow(1-f) u=z(1-e)
$$

or

$$
(1-f) u=(1-f)^{2} u=(1-f) z(1-e)
$$

for an element $z \in R$. So we obtain that x must be of the form

$$
\begin{equation*}
x=\bar{a}+(1-f) z(1-e) . \tag{6}
\end{equation*}
$$

Conversely, it is easy to verify that for any $z \in R$, the element x defined by (6) does satisfy the prescribed conditions. So we can state:

Theorem 1. The general solution of the equation $a=a x a$, with $a x=e$ and $x a=f$ being the respective left and right projections of the element $a \in R$, is given by (6), where z is any element of R.

Let us now take a Hermitian element $h \in R, h=h^{*}$. Since in this case the left and right projections of h are equal, say e, (6) takes the form

$$
\begin{equation*}
x=\bar{h}+(1-e) z(1-e) . \tag{7}
\end{equation*}
$$

Because of $h x=x h=e$, all elements x in (7) commute with h and therefore \bar{h} as well. Accordingly, $h \bar{h}=\bar{h} h=\bar{h}^{*} h=h \bar{h}^{*}$ and from $\bar{h}=\bar{h} h \bar{h}$ we get immediately

$$
\begin{equation*}
\bar{h}^{*}=\bar{h}^{*} h \bar{h}^{*}=\bar{h} h \bar{h}^{*}=\bar{h} h \bar{h}=\bar{h} . \tag{8}
\end{equation*}
$$

Hence the relative inverse of an Hermitian element is also Hermitian. But since $\overline{\bar{h}}=h$, it follows:

Corollary 1. An element $h \in R$ is Hermitian if and only if its relative inverse \bar{h} is Hermitian.

Consequently, each Hermitian element $h \in R$ can be written in the form

$$
\begin{equation*}
h=h x h \text { with } x=x^{*} \text { and } h x=x h \text { a projection. } \tag{9}
\end{equation*}
$$

Suppose conversely that for an element $h \in R$, (9) is valid. Then it is $h^{*}=h^{*} x h^{*}=h x h^{*}=h x h=h$ and hence:

An element $h \in R$ is Hermitian if and only if it can be written according to (9).

It is also obvious that one can take for x in (9) any element defined by (7), which is Hermitian.

A special type of Hermitian elements are elements of the form $a^{*} a$. Let it be $a=a x a$ with $a x=e$ and $x a=f$ as the respective left and right projections of a. From

$$
a^{*} a=a^{*} a f=f a^{*} a \text { and } f=a^{*} x^{*} a^{*} x^{*}=\left(a^{*} a\right) x x^{*}=x x^{*}\left(a^{*} a\right)
$$

it follows that f is at the same time both the left and the right projection of the Hermitian element $a^{*} a$. If \bar{a} is the relative inverse of a, it is easy to see, that $\bar{a} \vec{a}^{*}$ is the relative inverse of $a^{*} a$. In fact

$$
\begin{gathered}
f\left(\bar{a} \bar{a}^{*}\right)=\bar{a} \bar{a}^{*} \quad \text { and } \\
\left(a^{*} a\right) \bar{a} \bar{a}^{*}=a^{*}(a \bar{a}) \bar{a}^{*}=a^{*} e \bar{a}^{*}=a^{*} \bar{a}^{*}=(\bar{a} a)^{*}=f^{*}=f .
\end{gathered}
$$

But since $\bar{a} \bar{a}^{*}=\left(\bar{a}^{*}\right)^{*} \bar{a}^{*}$, we see that the relative inverse of an element of the form $a^{*} a$ has the same form. Because of the reciprocity of the relative inverse, we obtain

Corollary 2. A Hermitian element is of the form $a^{*} a$ if and only if its relative inverse is of the same form.

Hence, any Hermitian element of the form $a^{*} a$ can be written in the form

$$
a^{*} a=a^{*} a x a^{*} a \text { with } x=u^{*} u \text { and } a^{*} a x=x a^{*} a \text { a projection. }
$$

In this case one can obviously take for x any element defined by

$$
\begin{equation*}
x=\bar{a} \bar{a}^{*}+(1-\mathrm{f}) z(1-\mathrm{f}) \tag{10}
\end{equation*}
$$

which can be put into the form $u^{*} u$. It is a routine matter to verify that this is always the case if we take in (10)

$$
z=t^{*}(1-e) t
$$

where e is the left projection of a and t any element of R. Then we get

$$
u=\bar{a}^{*}+(1-e) t(1-f) .
$$

Assume now conversely that for an element $b \in R$ we have $b=b x b$ with $x=u^{*} u$ and $b x=x b$ being a projection. (11) Then it is $b=b u^{*} u b=b^{*} u^{*} u b=(u b)^{*} u b$ and hence:

An element $b \in R$ is of the form $a^{*} a$ if and only if it can be written according to (11).

Since for every projection $p<R$ it is $p=p^{*} p$, let us examine the converse case, when an element of the form $a^{*} a$ represents a projection. Assume that for an element $a \in R$

$$
\begin{equation*}
f=a^{*} a \tag{12}
\end{equation*}
$$

is a projection. Since

$$
\begin{aligned}
& (a f-a)^{*}(a f-a)=\left(f a^{*}-a^{*}\right)(a f-a)= \\
& =f\left(a^{*} a\right) f-\left(a^{*} a\right) f-f\left(a^{*} a\right)+a^{*} a=0
\end{aligned}
$$

we conclude by virtue of (2) that $a f-a=0$ and hence

$$
\begin{equation*}
a=a a^{*} a \tag{13}
\end{equation*}
$$

Since $\left(a a^{*}\right)^{2}=\left(a a^{*} a\right) a^{*}=a a^{*}$, the Hermitian element

$$
\begin{equation*}
e=a a^{*} \tag{14}
\end{equation*}
$$

is a projection too and it is

$$
\begin{equation*}
a=e a=a f \tag{15}
\end{equation*}
$$

From (12), (14) and (15) it follows, that e and f are the respective left and right projections of the element a. Moreover, we see from $f a^{*}=a^{*} a a^{*}=a^{*}$, that

$$
\begin{equation*}
a^{*}=\bar{a} \tag{16}
\end{equation*}
$$

which means that the relative inverse of the element a is identical to its involutoric image a^{*}.

Conversely it follows immediately from (16), that $a^{*} a$ and $a a^{*}$ are the respective right and left projections of the element a. So we obtain

Corollary 3. An element of the form $a^{*} a$ is a projection if and only if $a^{*}=\bar{a}$. In this case $a^{*} a$ and $a a^{*}$ are the respective right and left projections of the element a.

2.

Suppose that in a *-regular ring R there exists a set of n equivalent, pairwise orthogonal projections $e_{11}, e_{22}, \ldots, e_{n n}$ with

$$
\begin{equation*}
e_{11}+e_{22}+\ldots+e_{n n}=1 \tag{17}
\end{equation*}
$$

Because of the orthogonality, it is

$$
e_{i i} e_{k k}=\left\{\begin{array}{l}
e_{i i}, \text { if } i=k \tag{18}\\
0, \text { if } i \neq k
\end{array}\right.
$$

and owing to the equivalence there are elements

$$
\begin{equation*}
e_{1 i} \leqslant e_{11} R e_{i i} \text { and } e_{i 1} \leqslant e_{i i} R e_{11} \tag{19}
\end{equation*}
$$

such that

$$
\begin{equation*}
e_{11}=e_{i i} e_{i 1} \quad \text { and } e_{i i}=e_{i 1} e_{1 i} \tag{20}
\end{equation*}
$$

for each $i=1,2, \ldots, n$. If we set

$$
\begin{equation*}
e_{i j}=e_{i 1} e_{1 j}, \quad i, j=1,2, \ldots, n \tag{21}
\end{equation*}
$$

we see at once, that

$$
e_{i j} e_{k h}=\left\{\begin{array}{lll}
e_{i h}, & \text { if } j=k \tag{22}\\
0, & \text { if } j \neq k
\end{array}, i, j, k, h=1,2, \ldots, n\right.
$$

It follows from (17) and (22) [2] that the elements $e_{i j}$, with $i, j=1,2, \ldots, n$, form a system of matrix units of the order n. Since the element e_{11} is a projection, we know [1], that the set

$$
e_{11} R e_{11}
$$

is a *-regular subring of the ring R with e_{11} as the unit element. And finally, it was shown [2] that the ring R is isomorphic to the ring

$$
\left(e_{11} R e_{11}\right)_{n}
$$

of all square matrices of the order n with elements in $e_{11} R e_{11}$, under the mapping

$$
\begin{equation*}
x \in R \rightarrow\left(x_{i j}\right), \quad \text { where } x_{i j}=e_{1 i} x e_{j 1} \tag{23}
\end{equation*}
$$

Since the subring $e_{11} R e_{11}$ is regular, the ring of matrices ($\left.e_{11} R e_{11}\right)_{n}$ is regular too [2]. But on the basis of the isomorphism (23) it is obvious, that the map induced in the ring ($\left.e_{11} R e_{11}\right)_{n}$ by the involutory anti-automorphism of the ring R is at the same time an involutory anti-automorphism in ($e_{11} R e_{11}$) n with the additional property (2). Let us find out the form of this map.

For this purpose we form the elements

$$
\begin{equation*}
t_{i}=e_{i 1} * e_{i 1}, \quad i=1,2, \ldots, n \tag{24}
\end{equation*}
$$

which are obviously Hermitian elements of the subring $e_{11} R e_{11}$. Moreover, all these elements are in $e_{11} R e_{11}$ regular, with

$$
\begin{equation*}
t_{i}-^{-1}=e_{1 i} e_{1 i^{*}}, \quad i=1,2, \ldots, n \tag{25}
\end{equation*}
$$

In fact it is

$$
t_{i} t_{i}^{-1}=e_{i 1}^{*} e_{i 1} e_{1 i} e_{1 i}^{*}=e_{i 1}^{*} e_{i i} e_{1 i}^{*}=\left(e_{1 i} e_{i i} e_{i 1}\right)^{*}=e_{11}
$$

and

$$
t_{i}^{-1} t_{i}=e_{1 i} e_{1 i}^{*} e_{i 1}^{*} e_{i 1}=e_{1 i}\left(e_{i 1} e_{1 i}\right)^{*} e_{i 1}=e_{1 i} e_{i i} e_{i 1}=e_{11}
$$

Further, we see also that

$$
\begin{equation*}
t_{1}=t_{1}-1=e_{11} \tag{26}
\end{equation*}
$$

Now, we represent the situation in the form of a diagram

where the dotted arrow represents the map in question. By (23), (22), (19), (24) and (25) we see, that this map is defined by

$$
\begin{aligned}
\left(x^{*}\right)_{i j}=e_{1 i} x^{*} e_{j 1} & =\left(e_{j 1}{ }^{*} x e_{1 i}{ }^{*}\right)^{*}=\left(e_{j 1}^{*} e_{j 1} e_{1 j} x e_{i 1} e_{1 i} e_{1 i}^{*}\right)^{*}= \\
& =\left(t_{j} x_{j i} t_{i}-1\right)^{*}=t_{i}^{-1} x_{j i} t_{i}^{*} t_{j},
\end{aligned}
$$

so that we obtain

$$
\begin{equation*}
\left(x_{i j}\right) \cdots--\longrightarrow\left(t_{i}{ }^{-1} x_{i i^{*}} t_{j} t_{j}\right) . \tag{27}
\end{equation*}
$$

If we denote the diagonal matrices ($x_{i i}=t_{i}$) and ($x_{i i}=t_{i}{ }^{-1}$) simply by $\left(t_{i}\right)$ and $\left(t_{i}{ }^{-1}\right)$ and take into account that $\left(t_{i}{ }^{-1}\right)=\left(t_{i}\right)^{-1}$, it is easily seen that

$$
\left(t_{i}{ }^{-1} x_{j i}{ }^{*} t_{j}\right)=\left(t_{i}\right)^{-1}\left(x_{j i}{ }^{*}\right)\left(t_{i}\right),
$$

so that (27) can be put into the form

$$
\begin{equation*}
\left(x_{i j}\right) \cdots\left(t_{i}\right)^{-1}\left(x_{j i}{ }^{*}\right)\left(t_{i}\right) . \tag{28}
\end{equation*}
$$

It follows that the induced involutory anti-automorphism in the ring of all square matrices ($\left.e_{11} R e_{11}\right)_{n}$ is expressible as the composite of two well-known matrix operations: »taking the adjoint and »transforming into a similar matrix«. Therefore, we have:

Theorem 2. Every ${ }^{*}$-regular ring R, having a set of n equivalent, pairwise arthogonal projections $e_{11}, e_{22}, \ldots, e_{n n}$ with $e_{11}+$ $+e_{22}+\ldots+e_{n n}=1$, is isomorphic to the ${ }^{*}$-regular ring of all square matrices of the order n with elements in the subring $e_{11} R e_{11}$, where the induced involutory anti-automorphism is defined by (28).

The regular element $\left(t_{i}\right)$ is evidently Hermitian. Now, let us examine still the question: under which additional conditions is the induced involutory anti-automorphism in the ring $\left(e_{11} R e_{11}\right)_{n}$ given only by the operation of »taking the adjoint«? This means, that for any element $\left(x_{i j}\right)$ there must be $\left(t_{i}\right)^{-1}\left(x_{j i}\right)\left(t_{i}\right)=\left(x_{j i}{ }^{*}\right)$, which is equivalent to

$$
\begin{equation*}
\left(x_{i j}\right)\left(t_{i}\right)=\left(t_{i}\right)\left(x_{i j}\right) \tag{29}
\end{equation*}
$$

From (29) it follows

$$
\begin{equation*}
x_{i j} t_{j}=t_{i} x_{i j}, \quad i, j=1,2, \ldots, n \tag{30}
\end{equation*}
$$

for any element $x_{i j} \in e_{11} R e_{11}$. If we take $x_{i j}=e_{11}$, we obtain $t_{j}=t_{i}$ and by (26) it follows that

$$
\begin{equation*}
e_{11}=t_{i}=e_{i 1} * e_{i 1}, \quad i=1,2, \ldots, n \tag{31}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
e_{1 i}=e_{11} e_{1 i}=e_{i 1}^{*} e_{i 1} e_{1 i}=e_{i 1}^{*} e_{i i}=e_{i 1}^{*}, \quad i=1,2, \ldots, n \tag{32}
\end{equation*}
$$

Conversly, (31) follows immediately from (32).
These conditions being evidently also sufficient, we have
Corollary 4. The induced involutory anti-automorphism in the ring ($\left.e_{11} R e_{11}\right)_{n}$ is reduced to the only operation of staking the adjoint" if and only if the elements $e_{1 i}$ and $e_{i 1}$ used in establishing the equivalence of the projections e_{11} and $e_{i i}$ are mutually adjoint.

3.

I. Vidav showed [4], that if a *-regular ring R satisfies instead of (2) the stronger requirement

$$
\begin{equation*}
a_{1}^{*} a_{1}+a_{2}^{*} a_{2}+\ldots+a_{p}^{*} a_{p}=0 \Rightarrow a_{1}=a_{2}=\ldots=a_{p}=0 \tag{33}
\end{equation*}
$$

for any $p \in N$, then this ring R is an algebra over the field of rational numbers. Moreover, it is possible to define in a natural way the notion of boundedness of an element $a \in R$ and to assign to each bounded element a norm which has nearly the same properties as the norm in a C^{*}-algebra.

In view of this fact it is reasonable to investigate the conditions on which a *-regular ring R fulfills the requirement (33). We wish to give in the sequel only some preliminary remarks in connection with this problem.

Suppose, that there exist, contrary to (33), in a *-regular ring $R p$ non-null elements $a_{1}, a_{2}, \ldots, a_{p}$ such that

$$
\begin{equation*}
a_{1}^{*} a_{1}+a_{2}^{*} a_{2}+\ldots+a_{p}^{*} a_{p}=0 \tag{34}
\end{equation*}
$$

with $p \geqq 2$.Since, by (2), from $a_{i} \neq 0$ it follows $a_{i}{ }^{*} a_{i} \neq 0$, all members on the left side in (34) are non-null. If we write

$$
\begin{equation*}
-a_{p}^{*} a_{p}=a_{1}^{*} a_{1}+a_{2}^{*} a_{2}+\ldots+a_{p-1}^{*} a_{p-1} \tag{35}
\end{equation*}
$$

and choose, in agreement with Theorem 1 , an element $x \in R$ such that

$$
a_{p}=a_{p} x a_{p} \text { and } a_{p} x=x^{*} a_{p}^{*}=e
$$

where e is the left projection of a_{p}, then, by multiplying both sides of (35) first with x^{*} from the left and then with x from the right, we find

$$
-e=x^{*} a_{1}^{*} a_{1} x+x^{*} a_{2}^{*} a_{2} x+\ldots+x^{*} a_{p-1}^{*} a_{p-1} x .
$$

If we put $b_{i}=a_{i} x$, we obtain

$$
-e=b_{1}^{*} b_{1}+b_{2}^{*} b_{2}+\ldots+b_{p-1}^{*} b_{p-1}
$$

Since $e \neq 0$, all b_{i} are certainly not null and it can be concluded that:

If in a *-regular ring R the equality (34) is fulfilled for p non-null elements, then there exist less than p non-null elements $b_{1}, b_{2}, \ldots, b_{m}$ of this ring such that

$$
\begin{equation*}
b_{1}^{*} b_{1}+b_{2}^{*} b_{2}+\ldots+b_{m}^{*} b_{m}=-e \tag{36}
\end{equation*}
$$

where e is a non-null projection.
Since e is a non-null projection if and only if $1-e$ is a projection different from 1, we can also say that

$$
\begin{equation*}
1+b_{1}^{*} b_{1}+b_{2}^{*} b_{2}+\ldots+b_{m}^{*} b_{m} \tag{36a}
\end{equation*}
$$

is a projection different from 1.
The converse is immediate, since any projection e can be written as $e^{*} e$. Therefore, we obtain

Theorem 3. The additional requirement (33) is valid in exactly those *-regular rings, in which no element of the form $b_{1}{ }^{*} b_{1}+b_{2}{ }^{*} b_{2}+\ldots+b_{m}{ }^{*} b_{m}$ is the opposite of a non-null projection.

For that reason in particular, for no element a of such a ring R the product $a^{*} a$ can be the opposite of a non-null projection. But by an argument quite similar to the one used in the proof of Corollary 3 in 1 ., it can be shown that $a^{*} a$ is the opposite of a projection if and only if $a^{*}=-\bar{a}$. Hence,

Corollary 5. A necessary cordition for (33) is given by $a^{*} \neq-\bar{a}$, which must hold for every non-null element a of the ring R.

Concerning the case studied in 2., let us first state that because of the isomorphism (23) an element of the form $a^{*} a$ is represented by

$$
\begin{align*}
& \left(\left(a^{*} a\right)_{i j}\right)=\left(e_{1 i} a^{*} a e_{j 1}\right)=\left(e_{1 i} e_{i i}^{*} a^{*} a e_{j 1}\right)=\left(e_{1 i}\left(e_{i 1} e_{1 i}\right)^{*} a^{*} a e_{j 1}\right)= \\
& \left(e_{1 i} e_{1 i} e_{i 1}^{*} a^{*} a e_{j 1}\right)=\left(t_{i}^{-1}\left(a e_{i 1}\right)^{*}\left(a e_{j 1}\right)\right)=\left(t_{i}\right)^{-1}\left(\left(a e_{i 1}\right)^{*}\left(a e_{j 1}\right)\right) . \tag{37}
\end{align*}
$$

From this we see that the diagonal elements in the matrix $\left(\left(a e_{i 1}\right)^{*}\left(a e_{j 1}\right)\right)$ are of the form $u_{i}^{*} u_{i}$, where $u_{i}=a e_{i 1}$. Since $e_{i 1}=$ $=e_{i 1} e_{11}$ and $e_{11}=e_{1 i} e_{i 1}$, it is $R e_{i 1}=R e_{11}$ and so it follows that the elements u_{i} belong to the left ideal of the projection e_{11}. Therefore we have

Corollary 6. In a^{*}-regular ring R, having a set of n equivalent, pairwise orthogonal projections $e_{11}, e_{22}, \ldots, e_{n n}$ with $e_{11}+$ $+e_{22}+\ldots+e_{n n}=1$, the requirement (33) is fulfilled as soon as it is fulfilled for the elements of the left ideal of the projection e_{11}.

In fact it follows immediately from (37) that the equality

$$
a_{1}^{*} a_{1}+a_{2}{ }^{*} a_{2}+\ldots+a_{p}^{*} a_{p}=0
$$

after multiplying it from the left with $\left(t_{i}\right)$, can be written as

$$
\left(\sum_{k=1}^{p}\left(a_{k} e_{i 1}\right)^{*}\left(a_{k} e_{j 1}\right)\right)=0
$$

Because of the hypothesis we get at once from the diagonal elements of this matrix $a_{k} e_{j 1}=0$ for $k=1,2, \ldots, p$ and $j=1,2, \ldots, n$, which means, owing to (23), that $a_{1}=a_{2}=\ldots=a_{\rho}=0$.

REFERENCES:

[1] I. Kaplansky, Any orthocomplemented complete modular lattice is a continuous geometry, Annals of Mathematics 61 (1955), 524-541,
[2] F. Maeda, Kontinuierliche Geometrien, Springer Verlag, 1958,
[3] J. von Neumann, Continuous geometry, Princeton University Press, 1960,
[4] I. Vidav, On some *-regular rings, Publ. Inst. Math. Serbe Sci. 13 (1959), 73-80.
(Received January 14, 1969)
Institute of Mathematics
Physics and Mechanics, Ljubljana

NEKE ZABELESKE 0 *-REGULARNIM PRSTENIMA

> Niko Prijatelj, Ljubljana

Sadržaj

1. Izvodi se opšte rešenje jednačine $a=a x a$ u *-regularnim prstenima, pod uslovom, da su $a x$ i $x a$ levi i desni projektor elementa a. Ovaj rezultat primenjuje se za karakterizaciju hermitskih elemenata i projektora.
2. Svaki *-regularan prsten sa n ekvivalentnih i ortogonalnih projektora, kojih je zbir jednak 1, izomorfan je *-regularnom prstenu kvadratnih matrica reda n. Za taj primer se izvodi matrična reprezentacija involutornog anti-automorfizma.
3. Date su neke opšte napomene u vezi sa dodatnim zahtevom Vidava (33).
