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REAL EQUATIONS FOR o-EXTREMAL RIEMANN
SURFACES WITH ABELIAN AUTOMORPHISM

GROUPS

EWA KOZ LOWSKA-WALANIA, PETER TURBEK

Abstract. It is well known that the fixed point set of a
Riemann surface of genus g under the action of a symmetry
is either empty or consists of a disjoint set of at most g + 1
ovals. Bounds on the total number of fixed ovals given by a
set of k non-conjugate symmetries are known. In this paper,
for k ≥ 4, we calculate all the possible topological types of
symmetries in such a maximal configuration, provided that
the symmetries commute. We also find real equations for
the Riemann surfaces that achieve these bounds where the
symmetries are expressed as complex conjugation.

1. Introduction

The study of Riemann surfaces that admit nontrivial groups
of automorphisms has a long history. In general, an emphasis
has been placed on determining maximal situations and we high-
light two of these areas now. One line of investigation has been to
find groups of automorphisms whose orders are maximal given the
genus of the underlying surface. This follows from the work of Hur-
witz who discovered the famous bound that a compact Riemann
surface of genus g ≥ 2 cannot admit a group of automorphisms
of order greater than 84(g − 1). One can also restrict considera-
tion to particular groups of automorphisms, for example, cyclic or
abelian groups, and determine the maximal order of such a group
acting on a Riemann surface of genus g [14, 18]. A second line
of research has been to determine the maximum number of fixed
points admitted by particular automorphism groups of Riemann
surfaces. It is well known that an automorphism of a Riemann
surface of genus g can fix at most 2g + 2 points. In addition, a
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bound for the number of fixed points admitted by k commuting
involutions of a Riemann surface was obtained in [6].

It is natural to extend this second line of research to symmetries
that act on a Riemann surface. In this case, the fixed point set
of a Riemann surface of genus g under the action of a symmetry
is either empty or consists of a disjoint set of at most g + 1 ovals
[13]. A bound on the total number of ovals fixed by k = 3 or 4
non-conjugate symmetries acting on a Riemann surface was found
in [19], for k ≥ 9 a bound was found in [10], and for 5 ≤ k ≤ 8
in [11]. A surface that admits this maximal number of fixed ovals
is called an o-extremal Riemann surface, and we sometimes call
this an o-extremal configuration of k symmetries. The structure
of the 2-group generated by such a configuration of symmetries
was studied and found to be isomorphic to a direct product of
a dihedral group and some number of copies of cyclic groups of
order 2, where non-abelian groups can only occur for k = 4 or
5 (see [4, 11, 12]). Given the extent of knowledge of o-extremal
Riemann surfaces a natural next step is to determine the exact
distribution of the topological types of their symmetries. These
were already found for k = 3 or 4 in [15] and, in the non-abelian
case, for k = 5 in [16]. In this paper we generalize these results
for arbitrary k ≥ 4, provided that the symmetries in question
commute. One can also ask about real equations for o-extremal
surfaces, which were only found for k = 3 symmetries in [17]. In
the latter sections of this paper, we find real equations for all o-
extremal Riemann surfaces with an abelian automorphism group
expressed so that the k ≥ 4 symmetries correspond to complex
conjugation. Along with the previous results mentioned, our work
yields a comprehensive analysis of o-extremal surfaces which have
commuting symmetries.

2. Preliminaries

A symmetry of a Riemann surface X = H/Γ of genus g ≥ 2,
where Γ is a Fuchsian surface group and H is the hyperbolic plane,
is an antiholomorphic involution τ ∈ G = Aut±(X), the group of
conformal and anticonformal automorphisms of X. The set of
points fixed by τ consists of no more than g + 1 disjoint simple
closed curves called ovals, see Harnack [13]. If the set X \Fix(τ) is
disconnected, then we say that τ is separating and we call it non-
separating in the other case. Moreover, we define the topological
type of τ to be the symbol ±t, where t ≥ 0 denotes the number
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of ovals of τ , and the sign depends on the separability of τ : + for
separating, − for a non-separating symmetry.

The main tools used in studying Riemann surfaces and their
groups of conformal automorphisms and symmetries are provided
by the Riemann uniformization theorem and the theory of Fuch-
sian and non-euclidean crystallographic groups (NEC groups for
short). The latter are just the discrete and cocompact subgroups
of the group G of all the isometries of the hyperbolic plane H.

The algebraic structure of such a group Λ is determined by the
signature:
(2.1)
s(Λ) = (h;±; [m1, . . . ,mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk), (−)l}),

where the brackets (ni1, . . . , nisi) are called the period cycles, the
integers nij are the link periods, mi are the proper periods and
finally h is the orbit genus of Λ. We shall also denote s = s1 +
. . .+sk. The algebraic presentation for the group Λ with signature
(2.1) is as follows, where generators used are called canonical:

x1, . . . , xr, ei, cij, 1 ≤ i ≤ k + l, 0 ≤ j ≤ si and a1, b1, . . . , ah, bh if
the sign is + or d1, . . . , dh otherwise. Moreover, we have relators:

xmi
i , i = 1, . . . , r, c2ij, (cij−1cij)

nij , ci0e
−1
i cisiei, i = 1, . . . , k + l, j =

0, . . . , si and

x1 . . . xre1 . . . ek+la1b1a
−1
1 b−1

1 . . . ahbha
−1
h b−1

h or x1 . . . xre1 . . . ek+ld
2
1 . . . d

2
h,

according to whether the sign is + or −. Every element of finite
order in Λ is conjugate either to a canonical reflection or to a
power of some canonical elliptic element xi or else to a power of
the product of two consecutive canonical reflections. An abstract
group with such a presentation can be realized as an NEC group
Λ if and only if the value

2π

(
εh + k + l − 2 +

r∑

i=1

(
1 − 1

mi

)
+

1

2

k∑

i=1

si∑

j=1

(
1 − 1

nij

))
,

where ε = 2 or 1 according to the sign being + or −, is positive.
The value above is just the hyperbolic area µ(Λ) of any funda-
mental region for the group Λ and the Hurwitz-Riemann formula
holds:

[Λ : Λ′] = µ(Λ′)/µ(Λ),

where Λ′ is a subgroup of finite index in an NEC group Λ.

Note that every Riemann surface can be represented as the orbit
space H/Γ for some torsion free Fuchsian group with the complex
structure inherited from the hyperbolic plane. Also, a group G
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of automorphisms of the surface so represented can be seen as
the factor group Λ/Γ for an NEC or Fuchsian group Λ, according
to whether G contains anticonformal automorphisms or not. In
particular, we will mainly be concerned with NEC groups Λ whose
signatures have the form

(2.2) (0; +; [−]; {(2, s. . ., 2)}).

The associated NEC groups are generated by reflections c0, c1, . . . , cs−1

which satisfy the relations
(2.3)
c20 = c21 = · · · = c2s−1 = 1, (c0c1)

2 = (c1c2)
2 = · · · = (cs−2cs−1)

2 = (cs−1c0)
2 = 1.

The reader can find complete details about these NEC groups in
the paper [15].

Now let us recall a few facts concerning defining equations of
a Riemann surface and its symmetries. The field of meromor-

phic functions on a compact Riemann surface, which is an alge-
braic function field in one variable over C, gives us a functorial
equivalence between the following three categories: fields with C-
automorphisms, smooth projective irreducible complex algebraic
curves with birational automorphisms, and compact Riemann sur-
faces with conformal automorphisms. Moreover, we have a bijec-
tive correspondence between real forms of a complex algebraic
curve and symmetries of a compact Riemann surface [1, 2, 3, 8].
Any compact Riemann surface of genus g ≥ 2 can be defined by
an equation F (x, y) = 0 for some polynomial F ∈ C[x, y]. If
complex conjugation σ is an automorphism of X, then X can be
defined by a polynomial with real coefficients, hence a symmetric
Riemann surface can be defined by an equation G(x, y) = 0 where
G ∈ R[x, y]. As we are dealing with real and complex curves, we
should note that equations which give non-isomorphic real curves
can yield the same complex curve. This corresponds to different
symmetries acting on the same Riemann surface which produce
non-isomorphic orbit spaces, in other words, non-isomorphic Klein
surfaces.

It is a difficult task, in general, to find the corresponding equa-
tion for the Riemann surface given by the form H/Γ, unless we
have more information about the automorphism group. For ex-
ample, this problem was solved for the Accola-Maclachlan and
Kulkarni surfaces (see for example [21]). Many useful techniques
and facts concerning the problem of finding equations can be found
in [22]. A procedure to count the number of ovals fixed by complex
conjugation was found in [7] for n-cyclic covers of the sphere. We
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should also mention the important work [3], where all the possible
automorphism groups, topological types of symmetries, explicit
defining equations for the surface and its real forms are given in
the case of hyperelliptic Riemann surfaces. Also, clearly the upper
bound on the total number of ovals of two symmetries is 2g + 2
and it is realized for the pair of symmetries with g + 1 ovals each,
yielding a hyperelliptic Riemann surface and hence the underlying
equations in this case are known.

Suppose that F (x, y) is an irreducible polynomial and F (x, y) =
0 is the defining equation for a Riemann surface X. We can view x
and y as elements of C(X), the field of meromorphic functions on
X. In doing so, C(X) = C(x, y) and we can view F ∈ C(x)[y] as a
polynomial in y over the rational function field C(x). If, in addi-
tion F is monic (in y), then F (x, y) is the minimal polynomial for
y over C(x). Observe that we can also change from one equation
to another when we determine functions t, w ∈ C(x, y) such that
C(x, y) = C(t, w). That is, we can determine G(t, w), the minimal
polynomial for w over C(t), and then G(t, w) = 0 defines the same
Riemann surface as before, since the function fields are the same.
One can think that these two equations give different views of
the same surface, for example one equation might be better when
dealing with some singular points induced by the other one. Now
recall that a point (b, c) of X, being a solution of F (x, y) = 0,
is nonsingular if at least one of Fx(b, c) or Fy(b, c) is non-zero. If
Fx(b, c) ̸= 0 then y − c is a local parameter at (b, c) and similarly,
if Fy(b, c) ̸= 0 then x − b is a local parameter at (b, c). This just
means that the order ord at (b, c) is equal to 1 for y − c or x − b
respectively. Also, if (b, c) is a singular point then there will be
one or more points on the Riemann surface lying above (b, c) and
possibly neither of x − b nor y − c will be a local parameter. In
such a case, it is usually necessary to change the coordinates and
find a function t with the property ord(t) = 1.

In this paper, we will primarily be interested in Riemann sur-
faces X defined by equations of the form

(2.4) y21 − f1(x) = 0, y22 − f2(x) = 0, . . . , y2r − fr(x) = 0,

where each fi is a squarefree polynomial. If b is a root of one of
the polynomials, say f1(x), then for i > 1 we can make a change
of variables by defining yi = yi/y1 if fi also has b as a root and
leaving yi unchanged if b is not a root of fi. In this case the
defining equations in (2.4) become

(2.5) y21 − f1(x) = 0, y22 − q2(x) = 0, . . . , y2r − qr(x) = 0,
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where each qi either equals the polynomial fi or it is the rational
function fi/f1. In either case, qi has neither a root nor a pole at b.
Near x = b a point on X has the coordinates (x, y1, q2, . . . , qr) and
lying over x = b there are the 2r−1 points (b, 0,±c2,±c3, . . . ,±cr)
where each ci is nonzero. The ramification index of X over x = b
is 2 (since there are only 2r−1 points lying over it), so the order of
x − b at any point of X lying over b is 2. Since y2 = f1(x), this
means that y1 has order 1 at points lying over x = b, and therefore
y1 is a local parameter at any point of X lying over x = b.

3. The topological types for k ≥ 4 commuting
symmetries on an extremal Riemann surface

In this section we find all the possibilities for epimorphisms
θ : Λ → G, realizing an o-extremal configuration of symmetries.
Actually we prove that the epimorphism must be of a special type,
which makes it possible to determine all the possible topological
types of the symmetries in the configuration.

Let us remember how we can determine the separability type
of a symmetry. As we are dealing with abelian groups only, we
can easily check if a symmetry is separating by using the word
algorithm given below. Let Λ′ be a normal subgroup of an NEC
group Λ. A canonical generator of Λ is proper (with respect to
Λ′) if it does not belong to Λ′. The elements of Λ expressable as
a composition of proper generators of Λ′ are the words of Λ (with
respect to Λ′). From [5] we have

Lemma 3.1 (c.f. Theorem 2.1.3). Suppose that [Λ : Λ′] is even
and Λ has sign +. Then Λ′ has sign + if and only if no orientation
reversing word belongs to Λ′. If [Λ : Λ′] is even and Λ has the sign
−, then Λ′ has the sign − if and only if either a glide reflection
of the canonical generators of Λ or an orientation reversing word
belongs to Λ′.

Now to compute the number of ovals of symmetries, we use the
following result from [9]. Let C(G, g) denote the centralizer of an
element g in G:

Theorem 3.2. Let X = H/Γ be a Riemann surface and let G =
Aut±(X), G = Λ/Γ for some NEC group Λ and let θ : Λ → G be
the canonical epimorphism. Then the number of fixed ovals of a
symmetry τ of X equals

∑
[C(G, θ(ci)) : θ(C(Λ, ci))],



o-EXTREMAL RIEMANN SURFACES 7

where the sum is taken over a set of representatives of all conjugacy
classes of canonical reflections whose images under θ are conjugate
to τ . □

Remark 3.3. To apply Theorem 3.2 we need to know the order of
the centralizer of a reflection in an NEC group. This was done by
Singerman in [20]. In particular, for NEC groups with presentation
(2.3), the centralizer of an element ci in Λ is generated by ci−1, ci
and ci+1.

3.1. Combinatorial lemma. First, we give a Lemma, which is a
simple adjustment of Lemma 3.1 in [11]. The proof is very similar,
but we present it here for the convenience of the reader. After-
wards we discuss how this lemma can be applied to computing the
number of ovals fixed by a symmetry.

Lemma 3.4. Assume that k ≥ 3 labels are used to label s points
situated on a circle in such a way that no two consecutive points
have the same label. Then at least k − 1 points have neighbors
with distinct labels. Moreover, if two points with distinct labels
also have neighbors with distinct labels, then at least k points have
neighbors with distinct labels.

Proof. The first part was proved in [10] and we shall prove the
second part using induction on s. Observe first that s ≥ k ≥ 3
and the cases s = 3, s = 4 are trivial.

We have two points with distinct labels such that their neighbors
also have distinct labels. We may assume that, between these
two points, there are no points that have neighbors with distinct
labels. Assume first that we have a sequence of consecutive points
i− 1, i, i+ 1, . . . , i+α+ 2, i+α+ 3, i+α+ 4 with labels 1, 2, 3, α. . .
, 2, 3, 1 respectively, where nothing is prescribed about the labels of
the points in the positions i+2, . . . , i+α+1. Consider the induced
configuration of s− (α + 5) points 1, . . . , i− 1, i + α + 5, . . . , s. If
none of the points in the new configuration has label 2 or 3, then
by the first part of the lemma, at least k − 3 points in the new
configuration have neighbors with distinct labels and in addition
points i, i+α+ 3, i+α+ 4 have neighbors with distinct labels, so
in the former configuration we have k points that have neighbors
with distinct labels.

If, in the new configuration, only one of the labels 2 or 3 is
used, then by the first part of the lemma, at least k − 2 points in
the new configuration have neighbors with distinct labels. Now at
least k − 3 of these points (as the point i − 1 can have distinct
neighbors in the new configuration and the same neighbors in the
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original one) together with i−1, i, i+α+ 3 or i, i+α+ 3, i+α+ 4
give k points with neighbors that have distinct labels.

If, in the new configuration, both of the labels 2 and 3 are used,
then by the first part of the lemma, at least k− 1 of the points in
the new configuration have neighbors with distinct labels. Now at
least k−2 of these points together with i, i+α+3 give k points with
neighbors that have distinct labels in the former configuration.

Assume now that the points i − 1, i, i + 1, . . . , i + α + 2, i +
α+ 3, i+α+ 4 have labels 1, 2, 3, α. . ., 2, 3, 4 and, again, nothing is
known about the labels of the points in the positions i+ 2, . . . , i+
α + 1. Consider an induced configuration of s − (α + 4) points
1, . . . , i− 1, i + α + 4, . . . , s. Now if, in the new configuration, the
points i − 1, i + α + 4 have neighbors with distinct labels, then
we have two consecutive points with distinct neighbors in the new
configuration. Therefore, by the inductive hypothesis, the number
of points with distinct neighbors in the new configuration is greater
than or equal to the number of labels used. So in the former
configuration we have at least k−2 points with distinct neighbors
coming from the new configuration. These points together with
the points i, i + α + 3 give k points with distinct labels in the
original configuration.

If at least one of i − 1, i + α + 4 has neighbors with the same
label in the new configuration, then at least k − 3 of the points
with distinct neighbors in the new configuration together with the
points i− 1, i, i+ α + 3 or i, i+ α + 3, i+ α + 4 give k points with
distinct neighbors in the former configuration. □

Now we can proceed to a Corollary, which is essential in our task
of finding the epimorphisms realizing the maximal configuration
of symmetries.

Corollary 3.5. If exactly k−1 points on the circle have neighbors
with distinct labels, then all these points have the same label and
s is even.

Proof. The first statement of the Corollary is obvious. Now
if all the points with distinct neighbors have the same label, say
1, then necessarily exactly half of the points on a circle have this
label and hence the length of the cycle is even. Indeed, if there
are two consecutive points, say with labels 2, 3, then they have
neighbors with the same label and we obtain a sequence of alter-
nating labels 2, 3, which has to be finished. But then there is at
least one point whose neighbors are labeled with distinct labels, a
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contradiction. □

Remark 3.6. To see how the above Lemma and Corollary are
applied to determine the number of ovals fixed by a symmetry,
recall that, by Remark 3.3 for NEC groups with presentation (2.3),
the centralizer of an element ci in Λ is generated by ci−1, ci and
ci+1. According to Theorem 3.2, we need to calculate the value of
expressions such as

[C(G, θ(ci)) : θ(C(Λ, ci))].

However, the finite groups generated by symmetries that we deal
with will be abelian, so C(G, θ(ci)) = G. To calculate each
θ(C(Λ, ci)), we imagine the symbols c0, c1, . . . , cs−1 as s points
on a circle and we imagine the images of each of these reflections
in G under θ as a label at that point. If ci has distinct neigh-
bors, then θ(ci−1) and θ(ci+1) are distinct, which means that the
group generated by θ(ci−1), θ(ci) and θ(ci+1) has order 8 in G, and
therefore

[C(G, θ(ci)) : θ(C(Λ, ci))] =
|G|
8

.

On the other hand, if ci does not have distinct neighbors, then
θ(ci−1) = θ(ci+1), so the group generated by θ(ci−1), θ(ci) and
θ(ci+1) has order 4 in G, and therefore

[C(G, θ(ci)) : θ(C(Λ, ci))] =
|G|
4

.

3.2. Distribution of ovals. In this subsection we determine the
only types of epimorphisms θ : Λ → G = ⟨τ1, . . . , τk⟩, for which
X = H/Γ is an o-extremal Riemann surface of genus g admitting
k commuting symmetries τ1, . . . , τk. For each τi, we let ∥τi∥ denote
the number of ovals fixed by τi and we let ∥X∥ denote the total
number of ovals fixed by all the symmetries of X.

The bound on the number of ovals fixed by such a Riemann
surface of genus g is given by the following formula. First, if
4 ≤ k ≤ 8, we define r = k and if k ≥ 9, then we define r to be
the smallest integer such that k ≤ 2r−1. Given this definition of
r, the maximal number of ovals fixed by k commuting symmetries
(which yields an o-extremal Riemann surface) is given by

(3.6) ∥X∥ = 2g − 2 + 2r−3(9 − k).

In addition, if k ̸= 9, there is a unique group G generated by
the k commuting symmetries; it is G = Zr

2. If k = 9, then there
are five groups which can occur in an o-extremal configuration:
G = Z5

2, G = Z6
2, . . . , G = Z9

2. Independent of the size of k, we
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define A so that the group G in an o-extremal configuration is
G = ZA

2 . With this notation, we can express the total number of
fixed ovals as
(3.7)

∥X∥ = 2g−2+2r−3(9−k) = 2g−2+(9−k)2A−3 = 2g−2+(9−k)
|G|
8

.

The above results were proved in a series of papers. The case
k = 4, without an assumption on commutativity, was considered
in [15] and the case of 5 non-commuting symmetries was treated in
[16]. Here we generalize this to arbitrary k ≥ 4 in the commuting
case. In [11, 12] we proved that if the k ≥ 6 symmetries on a Rie-
mann surface of genus g have the maximal total number of ovals,
then they commute and generate the entire automorphism group.
Therefore the assumption on commutativity here only concerns
the cases k = 4, 5, for which the potential automorphism groups
are Dn ×Zk−2

2 in the case where the symmetries do not commute.

We previously stated that we would only be concerned with
NEC groups with signature (2.2). We now explain why this is
true. Let X = H/Γ be a Riemann surface of genus g admitting
k ≥ 4 commuting symmetries τ1, . . . , τk, which together realize
the maximal total number of ovals. By the analysis from the
proof of Theorem 4.1 in [10], we may assume that the group of
automorphisms G = Λ/Γ for some NEC group Λ with signature

(h;±; [2, v. . ., 2]; {C1, . . . , Cp, (−)l})

where Ci = (2, si. . ., 2) for i = 1, . . . , p with at least one non-empty
period cycle. We may assume, as the symmetries commute, that
all the proper and link periods in the signature of Λ are equal
to 2, which follows from the results in Chapter 2 in [5]. Now we
shall show that, in fact, we may assume that p = 1 and l = 0.
If l > 0, we will now remove one empty period cycle to construct
a surface with a larger number of fixed ovals, contradicting that
X is o-extremal. If the reflection of the empty period cycle is
mapped by the canonical epimorphism θ : Λ → G to τi, then
we adjust the first nonempty period cycle in such a way that it
begins with a reflection mapped by θ to some τj ̸= τi. This can
be done by the usual cyclic permutation, which does not change
the number of ovals of symmetries corresponding to the images of
the canonical reflections of this cycle. Then we remove the empty
period cycle in question and replace the cycle C1 in the signature
of Λ by a nonempty period cycle C ′

1 of length s1 + 4. In such a
way we obtain a new signature and the corresponding NEC group
Λ′. The four additional consecutive reflections are placed in the
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beginning of the cycle and mapped to

τj τi τj τi

by a new epimorphism θ′ : Λ′ → G. Then the cycle continues in
exactly the same way as the original cycle C1, meaning that the
images of consecutive reflections by θ′ are the same as by θ. One
might see this as “gluing” the empty cycle to the beginning of C1.
In such a way we obtained a new signature and the corresponding
new NEC group Λ′ has the same hyperbolic area as the original
group Λ - we lost one cycle, but we obtained 4 link periods equal
to 2. The new epimorphism θ′ differs from θ only slightly, as
one of the empty period cycles vanished and there are four new
reflections in C ′

1. Now when we look at the number of ovals we see,
that τi had at most |G|/2 ovals from the vanishing empty cycle
and now it has |G|/2 ovals from the second and fourth reflections
of the cycle C ′

1. As for the symmetry τj, it might have lost |G|/8
ovals in the process from the fifth reflection of C ′

1, but it gained
at least |G|/8 + |G|/4 ovals from the first and third reflections in
C ′

1. Therefore we obtained a new Riemann surface X ′ = H/ ker θ′

of genus g whose total number of ovals is strictly larger than the
one of X. This is a contradiction, as we assumed that X was
o-extremal. Now let us assume that l = 0 and p > 1. We shall
give a method of gluing two nonempty cycles together, which leads
to a new surface with a strictly larger total number of ovals. As
k ≥ 4, we may assume that C1 ends with a reflection mapped by
θ to τj and the other non-empty period cycle C2 begins with a
canonical reflection mapped by θ to τi ̸= τ1. As in the previous
case, we glue them together by taking C1 first, then inserting a
segment consisting of 4 link periods equal to 2 and then proceeding
with C2. We map the canonical reflections corresponding to the
additional segment to

τi τj τi τj

obtaining a new epimorphism θ′. In this process, the last reflection
of C1 and the first reflection of C2 might have lost |G|/4 ovals
together, but the reflections of the additional segment contribute
with |G| ovals to the total number of ovals of the new surface X ′.
Therefore the total number of ovals is strictly greater for the new
surface X ′, a contradiction again. Hence we may assume, indeed,
that Λ has the signature

(h; [2, v. . ., 2], {(2, s. . ., 2)}).
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However, if h > 0 or v > 0, then by the Hurwitz-Riemann formula

(3.8) s ≤ 8(g − 1)

|G| + 2.

Now the total number of ovals satisfies, by Lemma 3.4,

∥X∥ ≤ (k − 1)
|G|
8

+ (s− k + 1)
|G|
4

≤ 2g − 2 + (5 − k)
|G|
8

,

which, by (3.7), contradicts our assumption that the total number
of ovals is maximal. Notice that, in order to make the total num-
ber of ovals maximal, we want to minimize the number of terms
above that are multiplied by |G|/8; Theorem 3.4 yields that there
must be exactly k − 1 canonical reflections that have neighbors
with distinct images. Therefore we may assume that Λ has the
signature

(3.9) (0; +; [−]; {(2, s. . ., 2)})

and for the epimorphism θ : Λ → G, exactly k−1 of the canonical
reflections have neighbors with distinct images. By the Corollary
3.5, the length of the cycle is even, so s = 2t for some integer
t ≥ k − 1. The lower bound on k follows from the fact that we
have k symmetries and exactly half of the reflections contribute to
just one of them. Therefore

(3.10) g = 2A−2(t− 2) + 1, so
g − 1

2A−2
= t− 2, and

g − 1

2A−2
≥ k− 3

and we see that necessarily 2A−2 divides g − 1 by the Hurwitz-
Riemann formula.

We now look closely at the possible epimorphisms θ : Λ → G.
By Corollary 3.5, we know that there is a single symmetry, say
τ1, for which there exist k − 1 canonical reflections whose neigh-
bors have distinct images under θ and half of the reflections in the
cycle are mapped to τ1. By Theorem 3.2, these k − 1 reflections

contribute |G|
8

ovals to τ1, while all the remaining canonical reflec-

tions contribute |G|
4

ovals to τ1. This basically means, that our
epimorphism is of the form
(3.11)
τ1, τ2, . . . , τ2︸ ︷︷ ︸

2α2

, τ1, τ3, . . . , τ3︸ ︷︷ ︸
2α3

, . . . , τ1, τi, . . . , τi︸ ︷︷ ︸
2αi

, . . . , τ1, τk, . . . , τk︸ ︷︷ ︸
2αk

, τ1

where s =
∑k

i=2 2αi and all such distributions of αi for i = 2, . . . , k
can be realized. Since

k∑

i=2

αi = 2 +
g − 1

2A−2
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it follows that

s = 2
k∑

i=2

αi = 4 +
8(g − 1)

2A
= 4 +

8(g − 1)

|G|

and so one can easily see that τ1 has

(3.12)
(s

2
− k + 1

) |G|
4

+ (k − 1)
|G|
8

= g − 1 + (5 − k)
|G|
8

ovals while for i = 2, . . . , k each symmetry has ∥τi∥ = αi
|G|
4

ovals,
so that these k − 1 symmetries yield a total of

s

2
· |G|

4
= g − 1 +

|G|
2

ovals. Therefore, the total number of ovals fixed by the k symme-
tries is

(3.13) g − 1 + (5 − k)
|G|
8

+ g − 1 +
|G|
2

= 2g − 2 + (9 − k)
|G|
8

.

Given the order of G determined previously in relation to k, we
have proved the following theorem.

Theorem 3.7. Let τ1, . . . , τk for k ≥ 4 be commuting symmetries
that generate a group ZA

2 on a Riemann surface of genus g, which
realize the bound on the maximal total number of ovals given in
(3.13). Then g−1

2A−2 ≥ k − 3 is an integer, one symmetry has g −
1 + (5 − k)2A−3 ovals and each of the remaining symmetries has
αi2

A−3 ovals, where
∑

αi = g−1
2A−2 + 2. Conversely, for all sets of

parameters g, k, αi as above, there exists a Riemann surface which
admits k commuting symmetries with the maximal total number
of ovals, and the number of ovals for each symmetry satisfies the
conditions announced above.

3.3. Distribution of separability. In this subsection we shall
determine the separability of the commuting symmetries consti-
tuting an o-extremal configuration of ovals on a Riemann surface
of genus g. Our study splits naturally into three cases, depending
on if the k symmetries are the minimal generating set for G or
not, whereas the case k = 9 needs special attention as it allows
several possibilities.

Let us first assume that G = Zk
2. This condition clearly concerns

case 4 ≤ k ≤ 8 and fulfills it. However, for k = 9 it is also possible
that the group generated by the symmetries is Z9

2, although it
is not the only possibility. First we assume that if k = 9, then
G = Z9

2.



14 EWA KOZ LOWSKA-WALANIA, PETER TURBEK

Proposition 3.8. The k ≥ 4 symmetries generating the group
G = Zk

2, realize the maximal total number of ovals on a Riemann
surface of genus g, if and only if all the symmetries are separating
(in addition to the conditions of the Theorem 3.7).

Proof. By Lemma 3.1, a symmetry is non-separating if it can
be presented as a product of other symmetries that are images of
some canonical reflections under the epimorphism θ : Λ → G. By
looking carefully at the epimorphism given in (3.11) we see that the
images of canonical reflections are solely and exactly the symme-
tries τ1, . . . , τk. Therefore all these symmetries in the construction
must be separating, as any of them is independent from the oth-
ers. Moreover, as the epimorphism was the only one possible, we
see that, in fact, we have necessary and sufficient conditions here.

□

The situation becomes dramatically different if the number of
symmetries is greater than the minimal number of generators.
Now let us assume that G = Zr

2 = ⟨τ1, . . . , τr⟩, where r is the small-
est integer such that k ≤ 2r−1. We may assume that τ1, . . . , τr are
among our k symmetries. We can view the symmetries in G as ori-
entation reversing words in alphabet τ1, . . . , τr, where we omit the
order of the letters as the symmetries commute. Now observe that
the number of symmetries, which are words with an odd number
of letters on an alphabet consisting of r− 1 letters, is 2r−2 by the
properties of the Newton’s symbol. Therefore, as k ≥ 2r−2 + 1, we
must in fact use all the r letters while defining our symmetries as
the images of canonical reflections. Now every appearance of the
word

τi1 . . . τiv ,

for some odd integer v, as an image of some canonical reflection of
an NEC group Λ, clearly forces the symmetries used τi1 , . . . , τiv to
become non-separating. As actually all the letters must be used,
also all the symmetries are in fact non-separating. We have proved
the following result

Proposition 3.9. The k ≥ 9 symmetries generating the group
G = Zr

2, where r is the smallest integer such that k ≤ 2r−1, realize
the maximal total number of ovals on a Riemann surface of genus
g, if and only if all the symmetries are non-separating (in addition
to the conditions of the Theorem 3.7).

Now the only case to be considered is the one concerning k = 9
symmetries, where G = ZA

2 for A = 6, 7, 8. Let first A = 8, so
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we have 8 generating symmetries in G and one additional sym-
metry τ = τi1 . . . τiv , where v is odd, and so can be equal to 3, 5
or 7. Observe, as in the previous case, that the appearance of
such a word as an image of the canonical reflection, makes sym-
metries τi1 , . . . , τiv non-separating and clearly symmetry τ is also
non-separating, by Lemma 3.1. Hence, as v is odd, we have 4, 6
or 8 non-separating symmetries in our set.

Similarly, if A = 7, then we use all the generating symmetries
and in addition two more, say τ = τi1 . . . τiv and τ ′ = τ ′i1 . . . τ

′
iv′

,

where v, v′ are odd. Clearly τ, τ ′ are non-separating. Now the
lengths of τ, τ ′ as words can again be equal to 3, 5 or 7. By choosing
appropriately letters constituting τ and τ ′, we can make exactly 4,
5, 6 or 7 of the generating symmetries non-separating. Therefore
the number of non-separating symmetries is between 6 and 9 and
all these values are realized.

Finally, if A = 6, then we use all the generating symmetries and,
in addition, three more. These three are obviously non-separating,
again by Lemma 3.1. In an analogous way as in the previous cases,
we may choose these three symmetries to use different letters of
our choice in the alphabet τ1, . . . , τ6. Here at least 4 generat-
ing symmetries must become non-separating and hence the total
number of non-separating symmetries is between 7 and 9 and all
these values are in fact realized. Summing up, we have proved the
following result.

Proposition 3.10. The 9 symmetries in the group G = ZA
2 , where

A = 6, 7, 8, realize the maximal total number of ovals on a Rie-
mann surface of genus g, if and only if:
1. at least 7 of them are non-separating for A = 6;
2. at least 6 of them are non-separating for A = 7;
3. 4, 6 or 8 of them are non-separating for A = 8. All the possible
values are realized (in addition to the conditions of the Theorem
3.7), that is for each of the values we can construct the appropriate
Riemann surface.

4. Real equations for an extremal Riemann surface
admitting k ≥ 4 commuting symmetries

We now find equations for the o-extremal Riemann surfaces and
their real forms. Here we have k ≥ 4 real forms, where the group
generated is G = ZA

2 , where A is as introduced in the previous
section for various values of k. Observe that we actually proved
that in the case of an extremal Riemann surface X, the orbit space
X/G is a disk, that G+ = ⟨τ1τi, i = 2, . . . , k⟩ ∼= ZA−1

2 where X/G+
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is the Riemann sphere, and that the projection X → X/G+ is
ramified over s = g−1

2A−3 + 4 points a1, . . . , as lying over the bound-
ary of X/G, with respect to the canonical covering X/G+ → X/G.
Now by using the appropriate conjugation by a Möbius transfor-
mation, we may assume that the boundary component of X/G is
in fact the extended real line R∗ and that complex conjugation is
a symmetry of X.

By the above facts, we can choose the coordinates on the Rie-
mann sphere such that a1, . . . , as have the real coordinates respec-
tively
(4.14)

x = b1, x = b2, . . . , x = bs−2 = 0, x = bs−1 = 1, x = bs = ∞,

where b1 < b2 < . . . < bs−3 < 0. Observe that we can arbitrarily
choose the coordinates for three points. Recall the definition of
α2, . . . , αk defined in (3.11); in addition, we define α1 = 0. We can
assume that τ1τi, for i = 2, . . . , k, fixes a2(α1+···+αi−1)+1, . . . , a2(α1+···+αi).
Recall that k ≥ A; if this is a strict inequality, we rename the sym-
metries τ2, . . . τk−1, if necessary, so that the last A − 1 elements
τ1τk−A+2, . . . , τ1τk generate the entire group G+ = ZA−1

2 . To sim-
plify subscripts, define γ = k − A + 2, so that G+ = ⟨τ1τi, i =
γ, . . . , k⟩, and define γ̂ = 2(α1 + · · ·+αγ−1)+1, which is the index
of the smallest aj that is fixed by τ1τγ.

The function field of the Riemann surface X/G+ is C(x), where

(4.15) [C(X) : C(x)] = 2A−1,

and the group G+ acts on C(X) and yields C(x) as its fixed
field. Since G+ is not cyclic, we cannot obtain an equation of
the form z2

A−1 − f(x) = 0. However, corresponding to each
subgroup Gi = ⟨τ1τγ, . . . , τ̂1τi, . . . , τ1τk⟩, of G+, where ·̂ means
that the corresponding generator is removed, there is a subfield
C(X)Gi of C(X) consisting of the elements fixed by each auto-
morphism in Gi with the property that [C(X)Gi : C(x)] = 2.
Corresponding to each subgroup of G+ there is a Fuchsian group
and an associated Riemann surface. Since [C(X)Gi : C(x)] = 2,
for each i with γ ≤ i ≤ k, we obtain that C(X)Gi ∼= C(x, yi)
where y2i − fi(x) = 0 for some polynomial fi(x). We denote
the corresponding surface X/Gi by Xi. Obviously Xi is a dou-
ble cover of the Riemann sphere. Since τ1τi /∈ Gi, the 2αi points
a2(α1+···+αi−1)+1, . . . , a2(α1+···+αi) are ramified in the field extension
C(x, yi) of C(x). Define g1(x) = 1, and we define the polynomials
(4.16)
gi(x) = (x−b2(α1+···+αi−1)+1) · · · (x−b2(α1+···+αi)), for 2 ≤ i < k and
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(4.17) gk(x) = (x− b2(α1+···+αk−1)+1) · · · (x− b2(α1+···+αk)−1).

Note that for i < k the degree of gi(x) is even and equals 2αi, while
the degree of gk is odd since it lacks the root b2(α1+...+αk) = bs = ∞.
In the equation y2i − fi(x) = 0, we have that gi(x) divides fi(x)
because the roots of gi(x) are fixed by τ1τi. Clearly no point other
than b1, . . . , bs−1 can be a root of any fi(x) because ramification in
the cover X → X/G+ only occurs at these points and at bs = ∞.

In the case 4 ≤ k ≤ 8, we have that A = k and γ = k−A+2 = 2,
so we obtain k − 1 distinct double covers of the Riemann sphere
with defining equations

(4.18) y22 − f2(x) = 0, y23 − f3(x) = 0, . . . , y2k − fk(x) = 0,

and the Riemann surface X is defined by the common solutions
to the equations (4.18). In this case, if i ̸= j, then τ1τj ∈ Gi and
τ1τi ∈ Gj, which implies that fi(x) and fj(x) have no nontrivial
common factors, and therefore each fi(x) = gi(x).

We now deal with the case k > A. In this case we have A − 1
equations

(4.19) y2γ − fγ(x) = 0, y2γ+1 − fγ+1(x) = 0, . . . , y2k − fk(x) = 0,

which yield A − 1 double covers of the Riemann sphere. In ad-
dition, since G+ = ⟨τ1τi, i = γ, . . . , k⟩, we see that C(X) =
C(x, yγ, yγ+1, . . . , yk). However, the points a1, a2, . . . , aγ̂−1 must
also be ramified in the covering X → C(x). Therefore for each
root u of a polynomial gj(x) with j < γ, there must be an fi(x)
with γ ≤ i which also has u as a root. To analyze this correctly, we
make the following observations: since G+ ∼= ZA−1

2 is generated by
the A−1 elements τ1τγ, τ1τγ+1, . . . , τ1τk, each element in G+ can be
expressed uniquely as a product of the τ1τγ, τ1τγ+1, . . . , τ1τk. Sup-
pose now that j < γ and when τ1τj is uniquely expressed in terms
of these generators, the generator τ1τi, with i ≥ γ appears. This
means that τ1τj /∈ Gi (because the generator τ1τi is not an element
of Gi) and therefore in the cover of C(x) by C(x, yi), ramification
must occur at the points fixed by τ1τj. This means that the poly-
nomial gj(x) must divide the polynomial fi(x). In addition, it
must do that for each generator τ1τγ, τ1τγ+1, . . . , τ1τk that appears
in the expression of τ1τj in terms of these generators. Therefore
we have proved the form that the defining equations of X must
possess.

Proposition 4.1. In addition to the notation developed above,
define C = {g1(x) = 1, g2(x), . . . , gγ−1(x)}. Then the polynomials
fγ(x), . . . , fk(x) which define the extremal surface X must have
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the following form:

y2γ − fγ(x) = 0, where fγ(x) is a product of gγ(x) and some polynomials in C,
y2γ+1 − fγ+1(x) = 0, where fγ+1(x) is a product of gγ+1(x) and some polynomials in C,

...

y2k − fk(x) = 0, where fk(x) is a product of gk(x) and some polynomials in C.
Since ramification must occur at each of the points b1, . . . , bγ̂−1,

each polynomial g2(x), . . . , gγ−1(x) must be a factor of some fi(x)
with γ ≤ i in the above list. The list of restrictions on the poly-
nomials above is given by the following proposition.

Proposition 4.2. If gj, with j < γ divides some fi, with γ ≤ i ≤
k, then there is some u, with u ̸= i and γ ≤ u ≤ k, for which fu is
also divisible by gj. In addition, none of these polynomials fi that
are divisible by gj(x) are divisible by gj+1(x). Finally no other gj′,
divides precisely the same polynomials among the fγ, . . . , fk that
gj divides.

We will provide the justification for the proposition when we
examine the action of the individual symmetries on the surface
defined by the equations. A key feature will be that for j =
2, . . . , k, the symmetry τj has αj2

A−3 ovals which are provided by
the roots of gj. This yields the restrictions stated in Proposition
4.2, since without these restrictions we could obtain symmetries
with (αi + αj)2

A−3 ovals, for example, where i ̸= j.
Finally, we note that the above list of polynomials in Proposition

4.1 subsumes the case 4 ≤ k ≤ 8, where A = k, because we had
previously defined g1(x) = 1 and in this case, for 2 ≤ i ≤ k, we
have that fi(x) = gi(x) · g1(x). Therefore, we may assume that
the above list of polynomials holds independently of k.

We now examine the common real solutions to the equations
in Proposition 4.1. For any polynomial equation y2 − f(x) = 0
with real coefficients, a real solution (x, y) will be obtained if and
only if x is to the left of an even number of roots of f(x). In
subsequent sections we will make changes of variables and obtain
real equations of the form y2 + f(x) = 0; they will have real
solutions if and only if x is to the left of an odd number of roots
of f(x). A key feature of all of our arguments is that the degrees
of gk and fk are odd while the degrees the remaining gj’s and fi’s
are even. In addition, recall that if j < i, then all of the roots of
gj(x) are smaller than any of the roots of gi(x).

Using the above facts, the following closed real intervals given
by the roots of gk(x) contain solutions in common to all of the
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equations defining X:
(4.20)
I1 = [bs−2αk+1, bs−2αk+2], . . . , Iαk−1 = [bs−3, bs−2] = [bs−3, 0], Iαk

= [1,∞],

where s = 2(α2 + · · · + αk). More solutions would be obtained if
it were the case that, for some j < γ, gj|fk and gj did not divide
any fi for γ ≤ i < k. We will see below, when we consider the
number of ovals fixed by complex conjugation, that this cannot
happen. A generic point on X has the coordinates (x, yγ, . . . , yk)
and a point with real coordinates on X will have x in one of the
closed intervals given in (4.20). This means that X possesses an
automorphism group G+ of order 2A−1 generated by ⟨ργ, . . . , ρk⟩,
where

(4.21) ρi(x) = x, ρi(yi) = −yi and ρi(yj) = yj for j ̸= i.

Note that complex conjugation σ is clearly a symmetry of X.
We now want to identify all of the symmetries of X and determine
their number of fixed ovals. From our analysis in Section 3.2,
we know that X has the symmetries {τ1, . . . , τk} (which are the
only symmetries that contain fixed points), and the number of
ovals fixed by each of these symmetries has been determined. On
the other hand, using the defining equations of X, we have the
symmetries {ρσ | ρ ∈ G+}. We will now determine which of
these symmetries correspond to the symmetries τi by tracing fixed
ovals on the surface X defined by the polynomials above. An
example of this technique used in a simpler context is found in [7].
That paper also contains figures to help visualize the process of
traversing a fixed oval on a Riemann surface defined by equations.

4.1. Determining the symmetry corresponding to τk. We
first determine the number of ovals fixed by complex conjugation
σ. Out of the αk intervals in (4.20), the determination of the
number of ovals corresponding to each of them is the same, except
for the last. We will give an argument for the second to last
(to simplify notation) and then give the argument for Iαk

. On
the closed interval Iαk−1 = [bs−3, 0], when x = bs−3, yk = 0 but
yγ, . . . , yk−1 are all nonzero; assume a point on X lying over this
point has coordinates (bs−3, qγ, . . . , qk−1, 0), where all but the last
coordinate is nonzero. As x increases, the values of the q’s do not
change sign, and there are two choices for value of yk; assume we
choose yk > 0. When x reaches the right endpoint of Iαk−1, namely
x = 0, yk again returns to 0, all of the q’s retain the sign they
previously had. As we continue along the oval, x must decrease,
since there are no real points with x between 0 and 1, and the



20 EWA KOZ LOWSKA-WALANIA, PETER TURBEK

value of yk must become negative, because yk is a local parameter
at the right endpoint of Iαk−1, and being locally analytic to X
there, the fixed oval must pass through the point where yk = 0
and proceed to where yk < 0. Finally, as x decreases back to
the left endpoint, yk returns to 0 and all of the other coordinates
return to their previous values, and the loop is closed. The key
feature is that all of the points in Iαk−1 lie to the right of any of
the roots of fγ(x), . . . , fk−1(x), therefore none of the corresponding
yi can change sign. Therefore we have one loop corresponding to
each choice of qγ, . . . , qk−1. Recall that γ = k − A + 2, this yields
2A−2 distinct ovals, each lying over Iαk−1, given by alternating
the signs of qγ, . . . , qk−1. Since the same is true for the intervals
I1, . . . , Iαk−1, this gives (αk − 1)2A−2 distinct ovals so far.

We now determine the number of fixed ovals lying on Iαk
which

is the interval 1 ≤ x ≤ ∞. For i = γ, . . . , k − 1, define di =
deg(fi)/2 and define dk = (deg(fk) + 1)/2. For each yi with i =
γ, . . . , k, we make the change of variables t = 1/x, ui = yi/x

di .
Since the degree of each of fγ, . . . , fk−1 is even, in the coordinates
(t, ui) there are two points over infinity: (0, 1) and (0,−1). Since
the degree of fk is odd, there is only one point lying over x = ∞,
corresponding to (t, uk) = (0, 0), however in this case uk is a local
parameter at this point. Assume x starts at the left endpoint of
Iαk

, namely x = 1. Lying over this point is a point (x, yγ, . . . , yk) =
(1, qγ, . . . , qk−1, 0). As x increases, we assume qk is positive and
as x approaches ∞, we switch coordinates and at x = ∞, we
reach a point with (0, u2, u3, . . . , uk) = (0,±1,±1, . . . , 0). Note
that the signs are the same as the signs of the qγ, . . . , qk−1. As
we cross this point, all of the uγ, . . . , uk−1 keep the same sign,
x decreases (because there are no solutions with x less than the
negative number b1, and uk, being a local parameter, switches
sign to become negative. This means that we have points with
coordinates (x, yγ, . . . , yk), where x > 1 and yk < 0. When x
reaches x = 1, we return to the point (1, qγ, . . . , qk−1, 0) which
closes the loop. Therefore, we obtain one loop for each choice
of the signs of the qγ, . . . , qk−1. This yields 2A−2 distinct ovals.
Combining this with the (αk − 1)2A−2 found above, we obtain
that complex conjugation σ fixes αk2A−2 ovals, which means that
σ should correspond to τk. However, to ensure that this happens,
it must be true that if a gj, with j < γ divides fk, then the roots
corresponding to gj do not yield intervals with real solutions. If
they did yield real solutions, then the number of fixed ovals for
complex conjugation would be a sum of αk2A−2 and terms of the
form αj2

A−2, for various j with j < γ. Since X does not have a
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symmetry with such a number of fixed ovals, this cannot occur.
Since, for γ ≤ i < k, the degree of each fi is even, the only way
that common real solutions will not be obtained is if there is an
fi, with γ ≤ i < k, which is also divisible by gj. Therefore, we
obtain the following restriction on fk(x):

Lemma 4.3. If gj, with j < γ divides fk, then there is some fi,
with γ ≤ i < k, that is also divisible by gj.

4.2. Determining the symmetry corresponding to τj with
j ≥ γ. Let γ ≤ j < k; we determine the ovals of the symmetry
ρjρkσ. Note that if yj is pure imaginary, say yj = ib where b is
real, then ρjρkσ(yj) = ρjρk(−yj) = yj, so yj is fixed by ρjρkσ. A
similar result holds if yk is pure imaginary. Therefore we make the
change of coordinates yj = iyj and yk = iyk, so that the defining
equations for X are the same as those in Proposition 4.1 except
that they contain

(4.22) y2j + fj(x) and y2k + fk(x)

instead of the original equations for indices j and k. With this
change of variables, ρjρkσ is exhibited as complex conjugation.
Note that the intervals
(4.23)
[b2(α1+···+αj−1)+1, b2(α1+···+αj−1)+2)], . . . , [b2(α1+···+αj)−1, b2(α1+···+αj)],

yield a common set of real solutions; we are using the fact that
none of the fi for γ ≤ i ̸= j have roots in the above intervals.
Due to this fact, the determination of the number of ovals is anal-
ogous to the (bs−3, 0) case above. This yields 2A−2 fixed ovals
corresponding to each interval, which yields αj2

A−2 ovals in total
corresponding to ρjρkσ. Therefore, ρjρkσ should correspond to τj.
However, to ensure that it does not possess more fixed ovals, we
see that if a gu divides fj with u < γ, then in order for the roots
of gu to not yield more common real solutions, we must have that
there is a w ̸= j with w ≥ γ for which fw is also divisible by gu.
We are using that real solutions of y2 + fj(x) and y2 + fk(x) must
occur to the left of an odd number of roots; real solutions of the
remaining polynomials y2−fi(x) must occur to the left of an even
number of roots and all of the gu’s and fi’s have even degree ex-
cept for gk and fk. Therefore, we obtain the following restriction
that extends Lemma 4.3:

Lemma 4.4. If gj, with j < γ divides some fi, with γ ≤ i ≤ k,
then there is some u, with u ̸= i and γ ≤ u ≤ k, for which fu is
also divisible by gj.
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4.3. Determining the symmetry corresponding to τj with
2 ≤ j < γ. Now assume 2 ≤ j < γ. In this case, there exists
some fn which is divisible by gj. However, from Lemma 4.3 there
exist at least two polynomials of the fγ, . . . , fk that are divisible
by gj. To avoid this, choose n to be the first index with γ ≤ n ≤ k
for which gj(x)|fn(x). We make the following change of variables:
ŷi = yi, if i = n or if gj does not divide fi and ŷi = yi/yn otherwise.
Note that this is a real change of variables. When the polynomials
in Proposition 4.1 are expressed in terms of the ŷi we obtain

(4.24) ŷ2γ − qγ(x) = 0, ŷ2γ+1 − qγ+1(x) = 0, . . . , ŷ2k − qk(x) = 0,

where some of the qi(x) may be polynomials in x and others are
rational functions, since qi(x) may have the form fi(x)/fn(x) how-
ever, the important fact is that qn = fn(x) is the only function out
of the polynomials or rational functions appearing in the defini-
tion of X that has a root (or pole) appearing as an endpoint in the
list of intervals in (4.23); recall that these endpoints correspond
to the roots of gj(x). In addition, the total number of roots (or
roots and poles in the case of rational functions) is even for each
qi(x) except for qk(x). For γ ≤ i ≤ k, define the automorphisms
ρ̂i which fix x and for which ρ̂i(ŷi) = −ŷi and ρ̂i(ŷt) = ŷt for t ̸= i.

We continue to assume j < γ and that fn(x) is the only polyno-
mial or rational function that has roots (or poles) that correspond
to the roots of gj(x). In this case, the argument mirrors that of
Subsection 4.2. We determine the ovals of the symmetry ρ̂nρ̂kσ.
Note that if ŷn or ŷk is pure imaginary then this symmetry fixes
it. Therefore we make the change of coordinates ŷn = iŷn and
ŷk = iŷk, so that the defining equations for X are the same as
those in (4.24) except that they contain

(4.25) ŷ2n + fn(x) = 0 and ŷ2k + qk(x) = 0

instead of the original equations for indices j and k. The common
set of real solutions are the identical to the intervals listed above
in (4.23) where we are using the fact that none of the qt for t ̸= n
have roots nor poles in the above intervals. Due to this fact,
the determination of the number of ovals is the same as in the
(bs−3, 0) case above. This yields 2A−2 fixed ovals corresponding to
each interval, which yields αj2

A−2 ovals in total corresponding to
ρ̂nρ̂kσ. Therefore, we see that ρ̂nρ̂kσ corresponds to τj. However,
to ensure that this symmetry does not possess more fixed ovals,
we see that if a gu divides fn with j ̸= u < γ, then in order for the
roots of gu to not yield more common real solutions, we must have
that there is a w ̸= n with w ≥ γ for which qw is also divisible (in
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the sense that its numerator or denominator is divisible) by gu.
This means that either fw is divisible by gj but not gu (so that qw
now has poles at the roots of gu), or that gu, but not gj divides
fw. A more concise was of saying this is the following: No other gu
divides precisely the same polynomials among the fγ, . . . , fk that
gj divides. Therefore, we obtain the following restriction that
extends Lemma 4.4:

Lemma 4.5. If gj, with j < γ divides some fi, with γ ≤ i ≤ k,
then there is some u, with u ̸= i and γ ≤ u < k, for which fu is
also divisible by gj. In addition, no other gj′, divides precisely the
same polynomials of fγ, . . . , fk that gj divides.

To express this symmetry in terms of the ρ’s and σ, we note
that

ρ̂n =
∏

gj |fi

ρi, and ρ̂k = ρk, so ρ̂nρ̂kσ = ρk


∏

gj |fi

ρi


σ.

4.4. Determining the symmetry corresponding to τ1. We
finally determine the symmetry associated with τ1, whose number
of ovals has a distinct form from the others. We make the change
of variables yk = iyk and note that this is fixed by the symmetry
ρkσ. Under this change of variables, the defining equations for X
are the same as those in (4.24) except that they contain

(4.26) y2k + fk(x) = 0.

From (4.14), the common real solutions in this case are the inter-
vals:

(−∞, b1), . . . , (b2n, b2n+1), . . . , (0, 1),

where 1 ≤ n ≤ (s−4)/2. Out of these s/2 intervals, k − 1 of them,
specifically, (−∞, b1) and the ones of the form (b2(α1+···+αi), b2(α1+···+αi)+1))
occur when we skip from a root of a gi to a root of gi+1. This was
not the case before and we shall see that each of these intervals
yield 2A−3 ovals. We will see that the remaining αj − 1 intervals
corresponding to the remaining roots of gj will each yield 2A−2

ovals, analogous to what we have seen above for the (bs−3, 0) case.
Summing up, we obtain (s/2 − k + 1)2A−2 + (k − 1)2A−3 ovals
which, from (3.12), yields g − 1 + 2A−3(5 − k) ovals, the correct
number for τ1.

We justify the above claims. If γ ≤ j < k, then in the equation
y2j − fj(x) = 0, yj is a local parameter at each root of gj; see the
discussion following (2.4) and (2.5) for details. Similarly yk is a
local parameter at each root of gk. Complications arise only for
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roots of gj, where j < γ. In this case, from Proposition 4.5 for
each j < γ, gj divides several fi’s with γ ≤ i ≤ k. For any root
of gj, we can take one of the polynomials fi which is divisible by
gj and divide the remaining polynomials in fγ, . . . , fk which are
divisible by gj by fi to obtain a change of variables for which yi
is a local parameter at each root of gj and the resulting equations
y2u − qu(x) do not have a root of gj as a root or pole of qu(x). As-
sume that none of the polynomials fk divisible by gj are divisible
by gj+1. We repeat the process for gj+1: there exists an fi′ which
is divisible by gj+1 and we divide the remaining polynomials in
fγ, . . . , fk which are divisible by gj+1 by fi′ to obtain a change of
variables for which yi′ is a local parameter at each root of gj+1 and
the resulting equations y2u − q′u(x) do not have a root of gj+1 as
a root or pole of q′u(x). The important point is that yi is a local
parameter at the left endpoint of the interval, but is nonzero at
the right endpoint. Similarly yi′ is a local parameter at the right
endpoint and is nonzero at the left endpoint. Using the above
changes of variables and the local parameters they create, each of
the αj − 1 intervals that do not involve an interval connecting a
root of gj with a root of gj+1 can be analyzed as in the (bs−3, 0)
case as above to yield 2A−2 ovals each. We now determine the
number of ovals corresponding to intervals defined by the largest
root of a gj and the smallest root of gj+1. We present here a
calculation for one of these intervals, (b2α2 , b2α2+1), to present the
technique. For convenience of notation only, we assume i < i′.
Observe that on the surface X, over b2α2 we have points of the
form (x, yγ, . . . , yi, . . . , yi′ , . . . , yk) = (b2α2 ,±, . . . ,±, 0yi ,±, . . . ,±)
(using the coordinates in which yi is a local parameter) and above
b2α2+1 there are points (x, yγ, . . . , yi, . . . , yi′ , . . . , yk) = (b2α2+1,±, . . . ,±, 0yi′ ,±, . . . ,±)
(where these coordinates have yi′ as a local parameter). We start
tracing the oval for b2α2 < x < b2α2+1 by moving through the points
of the form (x, y+γ , . . . , y

+
k ). We reach the point (b2α2+1,+, . . . ,+, 0yi′ ,+, . . . ,+),

where yi′ changes sign but yi does not. We now continue to the
points of the form (x,+, . . . ,+,−yi′ ,+, . . . ,+) for b2α2 < x <
b2α2+1. We reach the point (b2α2 ,+, . . . ,+, . . . , 0yi ,+, . . . ,+,−yi′ ,+, . . . ,+),
where yi changes sign but yi′ does not. We let x increase again and
see that now points have the form form (b2α2 ,+, . . . ,+, . . . ,−yi ,+, . . . ,+,−yi′ ,+, . . . ,+).
Now after reaching the right endpoint yi′ changes sign again, and
when x reaches the left endpoint again, yi changes sign. Hence we
obtain one oval for every combination of the signs of the functions
yγ, . . . , yk that are not yi or yi′ ; this clearly yields 2A−3 combi-
nations. Therefore we obtain 2A−3 ovals from each of the k − 1
special intervals. Note that for the interval (−∞, b1) we use the
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same change of coordinates as before in Section 4.1 for the points
over ∞.

Recall that we assumed that none of the polynomials fi divisible
by a gj with j < γ, are divisible by gj+1. If this did not occur and
fi were divisible by both gj and gj+1, then yi would be a local
parameter at both the largest root of gj and the smallest root of
gj+1, in other words, at both endpoints of one of the k− 1 special
intervals we were considering above. This would have yielded 2A−2

ovals for the interval, which does not match the number of ovals
required for τ1. This yields the final restriction on the gj and
completes the proof of Proposition 4.2.
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