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ON THE EULER-STIELTJES CONSTANTS FOR
FUNCTIONS FROM THE GENERALIZED SELBERG CLASS

Almasa Odžak and Medina Zubača

University of Sarajevo, Bosnia and Herzegovina

Abstract. The class S][(σ0, σ1) is a very broad class of L functions

that contains the Selberg class, the class of all automorphic L functions
and the Rankin–Selberg L functions, as well as products of suitable shifts

of those functions. In this paper, we consider generalized Euler-Stieltjes

constants γn(F ) attached to functions F (s) from the class S][(σ0, σ1).
These are coefficients in Laurent series expansion of function F (s) at its

pole. We derive an integral representation and an upper bound for these

constants. The application of the obtained results in the case of product
of suitable shifts of the Riemann zeta function is presented.

1. Introduction

L-functions are among the most significant objects studied in number
theory. The most famous is the Riemann zeta function. Very well known
examples include Dirichlet L, Dedekind, Hecke and Artin L functions, as
well as automorphic and the Rankin-Selberg L functions. In recent research,
there is a growing focus on classes of L functions rather than on individual
functions. Typical examples include the Selberg class, class of functions with a
given degree, extended or modified Selberg class. In this paper we consider L
functions from the class S][(σ0, σ1) introduced in [12]. It is a very broad class
of L functions that contains the Selberg class, the class of all automorphic L
functions and the Rankin–Selberg L functions, as well as products of suitable
shifts of those functions.

We will investigate the coefficients appearing in the Laurent (Taylor) se-
ries representation of an L function from the class S][(σ0, σ1), referred to
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2 A. ODŽAK AND M. ZUBAČA

as generalized Euler-Stieltjes constants. Specifically, we will derive an upper
bound for these coefficients.

L. Euler [13] in 1731 discovered and accurately computed, correct up to
five decimal places, the constant term in the Laurent series expansion of the
Riemann zeta function at s = 1, which is now known as the classical Euler
constant γ.

T. J. Stieltjes [17] in 1885 proved the formula for all the coefficients in
that expansion. Precisely, he proved

(1.1) γk =
(−1)k

k!
lim
x→∞

(∑

n<x

logk n

n
− logk+1 x

k + 1

)
,

where

ζ(s) =
1

s− 1
+ γ +

∞∑

k=1

γk(s− 1)k =
1

s− 1
+
∞∑

k=0

γk(s− 1)k.

Thus, the constants γk (k ≥ 0) are named the Stieltjes constants, the gener-
alized Euler constants or the Euler-Stieltjes constants. Some properties and
a proof of equation (1.1) can be found in [3] and [8].

Closely related to those coefficients are the constants ηk which appear in
the Laurent series expansion of the logarithmic derivative of the Riemann zeta
function at s = 1. Typically, these constants are referred as Euler-Stieltjes
constants of the second kind, while γk are known as Euler-Stieltjes constants
of the first kind (see e.g. [6]).

Both sets of these coefficients are important in theoretical and computa-
tional analytic number theory since they appear in various types of estimations
and asymptotic analysis. Examples includes their use in determining a zero-
free region of the Riemann zeta function near the real axis in the critical strip
[1] and in Li positivity criterion for the Riemann hypothesis [6], [10], [11] and
[21]. Numerical evaluation and estimations of these coefficients are given in
[23] and [19], while some interesting formulas and bounds are derived in [30]
and [5].

This concept has been generalized in various settings. The coefficients
arising in the Laurent (Taylor) series representation of an L function or its
logarithmic derivative are called generalized Euler-Stieltjes constants of the
first and the second kind, respectively.

Examples of results related to the Hurwitz zeta function are given in
[7], for the harmonic Hurwitz zeta function in [20], those for the Dedekind
zeta function in [16] and [31], for the general setting of a non-co-compact
Fuchsian group with unitary representation in [2], for a class of functions
that have an Euler product representation in [15], for a subclass S[ of the
Selberg class in [33], and for the Rankin-Selberg L functions in [26], [27].
Also, some investigations are done in the case of zeta functions with multiple
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variables, introducing multiple Stieltjes constants, for example, see [24] and
[4]. q-analogues of these coefficients are investigated in [9].

Special attention in research is given in derivation of bounds for (gen-
eralized) Euler-Stieltjes constants. Cases of the Riemann and Hurwitz zeta
functions are extensively studied, see for example [3], [25], [37], [14], [29] and
references therein. The bound for Dirichlet L functions are given in [32], for
the extended Selberg class in [18] and for the Rankin-Selberg L functions in
[38].

In this paper, we derive bounds for generalized Euler-Stieltjes constants
attached to functions from the class S][(σ0, σ1). This class consists of all
Dirichlet series converging in some half-plane, such that its meromorphic con-
tinuation is a meromorphic function of a finite order with at most finitely
many poles, satisfying a functional equation of the Riemann type and such
that its logarithmic derivative has a Dirichlet series representation. The class
S][(σ0, σ1) contains Selberg class as its subclass, but it also contains products
of suitable shifts of functions from Selberg class as well as products of shifts
of certain L functions possessing an Euler product representation that are not
in Selberg class such as the Rankin–Selberg L functions.

The rest of the paper is organized as follows. In section 2 we give an
overview of the setting we are dealing with. We introduce necessary notation,
give a precise definition of the class of function under consideration, and
recall some known results that will be used for the proofs. Section 3 contains
some preliminary results about functions from the class S][(σ0, σ1). Precisely,
we derive some asymptotic bounds for F ∈ S][(σ0, σ1) and its functional
equation factor. The main results are stated and proved in sections 4 and 5.
In section 4 we introduce generalized Euler-Stieltjes constants for functions
F ∈ S][(σ0, σ1) and prove an integral representation for these coefficients,
while their bounds are proved in 5. In section 6 we apply derived result to
function ζ(s− h)ζ(s+ h) (that belongs to the class S][(h+ 1, 1)).

2. Preliminaries and notations

The class S][(σ0, σ1) is introduced in [12], it contains functions from the
Selberg class, the class of all automorphic L functions, the Rankin-Selberg L
functions and suitable products of these functions.

Let σ0 and σ1 be real numbers such that σ0 ≥ σ1 > 0. The class
S][(σ0, σ1) is the class of functions F satisfying the following four axioms:

(i’) (Dirichlet series representation) The function F possesses a Dirichlet
series representation

(2.2) F (s) =
∞∑

n=1

aF (n)

ns
,

which converges absolutely for Res > σ0.
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(ii’) (Meromorphic continuation) The function F can be continued to a
meromorphic function on C possessing at most finitely many poles
at points s1, . . . , sN . There are finitely many numbers m1, . . . ,mN ,
smallest positive integers uniquely determined by the poles s1, . . . , sN

respectively, such that
N∏
i=k

(s− sk)mkF (s) is an entire function of finite

order. 1

(iii’) (Functional equation) The function F satisfies the functional equation

(2.3) ξF (s) = ωξF (σ1 − s̄),

where the completed function ξF is defined as

ξF (s) =F (s)QsF

r∏

j=1

Γ(λjs+ µj)

2M+δ(σ1)∏

k=1

(s− sk)mk(2.4)

N∏

k=2M+1+δ(σ1)

(s− sk)mk(σ1 − s− sk)mk ,

with |ω| = 1, QF > 0, r ≥ 0, λj > 0, µj ∈ C, j = 1, . . . , r. The
poles of the function F are arranged so that the first 2M + δ(σ1) poles
(0 ≤ 2M+δ(σ1) ≤ N) are such that s2j−1+s2j = σ1, for j = 1, . . . ,M ,
here δ(σ1) = 1 if σ1/2 is a pole of F in which case s2M+δ(σ1) = σ1/2;

otherwise δ(σ1) = 0. The number dF = 2
r∑
j=1

λj is called the degree of

F .
(v’) (Euler sum) The logarithmic derivative of the function F possesses a

Dirichlet series representation

F ′

F
(s) = −

∞∑

n=2

cF (n)

ns
,

converging absolutely for Res > σ0.

The notion of trivial and non-trivial zeros of the function F ∈ S][(σ0, σ1)
naturally arises from definition of the class S][(σ0, σ1). The zeros of ξF (s)
are called the non-trivial zeros of F (s). All the other zeros of F (s) are called
trivial zeros, and they arise from the poles of the gamma functions appearing
in (2.4). We will denote the set of non-trivial zeros of F (s) by Z(F ). By
the functional equation and the Euler sum representation, follows that all the
non-trivial zeros of F ∈ S][(σ0, σ1) lie in the critical strip σ1−σ0 ≤ Res ≤ σ0.

1If the continuation of F is analytic we put
N∏
i=k

(s− sk)mk = 1.
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It is easy to see that functional equation (2.3) can be written in the
following form

(2.5) F (s) = ΨF (s)F (σ1 − s),
where ΨF (s) is defined by

(2.6) ΨF (s) = ωQσ1−2s
F

r∏

j=1

Γ (λj(σ1 − s) + µj)

Γ (λjs+ µj)

2M+δ(σ1)∏

k=1

(
σ1 − s− sk
s− sk

)mk
.

Function ΨF is called the functional equation factor for F ∈ S][(σ0, σ1).

3. Asymptotic bounds for functions from the class S][(σ0, σ1)
and its functional equation factor

In the following lemmas we give some asymptotic bounds for functions
F (s) from the class S][(σ0, σ1) and its factor ΨF (s) of the functional equation
as |t| → ∞, where s = σ + it. The following notation is used in the sequal.

We write f(t) ∼ g(t) as t→∞ if lim
t→∞

f(t)
g(t) = 1, and f(t) = O(g(t)) as t→∞

if there exist constants C > 0 and t0 such that |f(t)| ≤ C |g(t)| for all |t| ≥ t0.
If constant C appearing in O notation depends on parameter(s) p we write
Op instead of O to emphasize the dependence.

Lemma 3.1. Let ΨF be functional equation factor for a function F ∈
S][(σ0, σ1), then

(3.7) |ΨF (σ + it)| ∼ Qσ1−2σ
F |t|dF (σ12 −σ)

r∏

j=1

λ
λj(σ1−2σ)
j ,

as |t| → +∞.

Proof. From (2.6) follows that ΨF (σ + it) can be written as

ΨF (σ + it) = ωQ
σ1−2(σ+it)
F

2M+δ(σ1)∏

k=1

(
σ1 − σ − it− sk
σ + it− sk

)mk

× exp




r∑

j=1

(log Γ (λj(σ1 − σ − it) + µj)− log Γ (λj(σ + it) + µj))


 .

It is easy to see that
∣∣∣
(
σ1−σ−it−sk
σ+it−sk

)mk ∣∣∣ → 1, as |t| → +∞, for all k =

1, . . . , 2M + δ(σ1), so

2M+δ(σ1)∏

k=1

∣∣∣∣
(
σ1 − σ − it− sk
σ + it− sk

)mk ∣∣∣∣→ 1, as |t| → +∞.
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Asymptotic series expansion of function log Γ(z + a) (see e.g. [22, Sec-
tion 2.11, relation (4)]) applied to log Γ (λj(σ + it) + µj), with z = iλjt
and a = λjσ + µj , and to log Γ (λj(σ1 − σ − it) + µj), with z = −iλjt and
a = λj(σ1 − σ) + µj , respectively, for all j = 1, . . . , r, yields (3.7). Note that,
in both cases a depends on σ, so a constant appearing in asymptotic series
expansion of function log Γ(z + a) (see e.g. [22, Section 2.11, relation (4)])
depends on σ. If σ lies in a closed and bounded subset of R, the constant
in asymptotic series expansion is uniform in σ, so the limit is uniform. The
proof is complete.

Lemma 3.2. Let F be a function from the class S][(σ0, σ1), then for an
arbitrary ε > 0,

F (σ + it) =





Oε(1) if σ ≥ σ0 + ε,

Oε

(
|t|

dF
2 (σ0+ε−σ)

)
if σ1 − σ0 − ε < σ < σ0 + ε,

Oε,σ

(
|t|

dF
2 (σ1−2σ)

)
if σ ≤ σ1 − σ0 − ε,

as |t| → +∞.

Proof. For Res = σ ≥ σ0 + ε > σ0 the function F (s) is given by
absolutely convergent Dirichlet series (2.2), so

F (σ + it) = Oε(1),

as |t| → +∞. For Res = σ ≤ σ1 − σ0 − ε < σ1 − σ0, the functional equation
for function F (s) given by (2.3 and relation (3.7) imply

F (σ + it) = Oε,σ

(
|t|

dF
2 (σ1−2σ)

)
,

as |t| → +∞, where dF denotes the degree of function F , introduced in
axiom (iii’). Note that, when σ lies in a closed and bounded subset of R, a
constant in O notation is uniform in σ and depends on ε.

For σ such that σ1 − σ0 − ε < σ < σ0 + ε, Phragmén-Lindelöf theorem
for strips can be used to derive desired result. From the meromorphic contin-
uation axiom, as proved in [12], follows that ξF is an entire function of order
one. When combined with the well known asymptotic properties of reciprocal
of gamma function (see e.g. [34, Theorem 1.6, p. 165]) implies that

|F (σ + it)| = O (exp(exp(δ|t|))) ,
holds true for sufficiently large |t| and any δ > 0. The result [28, Proposi-
tion 8.15] can be applied to the function F ∈ S][(σ0, σ1) in the strip σ1−σ0−
ε ≤ σ ≤ σ0 + ε and it implies

F (σ + it) = Oε

(
|t|

dF
2 (σ0+ε−σ)

)
,

as |t| → +∞. The proof is complete.
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4. Generalized Euler-Stieltjes constants associated to function
F ∈ S][(σ0, σ1) and its integral representation

Let ρ = α + iβ be a pole of function F ∈ S][(σ0, σ1) such that α =
max

k=1,...,N
Resk, let l be a corresponding index of the pole ρ, i.e. ρ = sl and let

m = ml be order of the pole ρ.
Denote by γn(F ) coefficients in Laurent series expansion of function F (s)

from the class S][(σ0, σ1) at pole s = ρ, i.e.

(4.8) F (s) =
∞∑

n=−m
γn(F )(s− ρ)n.

Here, we will derive an integral representation for these coefficients. Classical
method based on contour integrals (see e.g. [35, Sect. 4.14]) is used for the
proof. Cauchy integral formula implies

(4.9) γn(F ) =
1

2πi

∫

C

F (s)

(s− ρ)n+1
ds,

where contour C is positively oriented circle with center s = ρ and radius r
such that it contains s = ρ as the only singularity of the integrand.

Remark 4.1. If a function F ∈ S][(σ0, σ1) does not have a pole, then we
define the Euler-Stieltjes constants γF (n) of function F as the coefficients in
Taylor series expansion at s = σ0

(4.10) F (s) =
∞∑

n=0

γF (n)(s− σ0)n.

Note, by definition, σ0 determines the region of absolute convergence of Dirich-
let series representation for an L function under consideration.

Theorem 4.2. Let F ∈ S][(σ0, σ1), for some fixed σ0 ≥ σ1 > 0 and
let ρ = α + iβ be a pole of function F (s) such that α = max

k=1,...,N
Resk, let

l be a corresponding index of the pole ρ, i.e. ρ = sl. Let n be a positive
integer and a be a real number such that σ0 < σ0 + ε < a < n+1

dF
+ σ1

2 and

λj(σ1 − a) + Reµj /∈ Z for all j = 1, . . . , r. Then,

(4.11) γn(F ) =
(−1)n

2πi

a+i∞∫

a−i∞

F (s)GF (s)

(s− σ1 + ρ)n+1
ds−

N∑

k=1
k 6=l

Res
s=sk

F (s)

(s− ρ)n+1
,
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where

GF (s) = ω
Q2s−σ1

F

πr

2M+δ(σ1)∏

k=1

(
s− sk

σ1 − s− sk

)mk
(4.12)

×
r∏

j=1

(Γ (λjs+ µj) Γ (1− λj(σ1 − s)− µj) sinπ (λj(σ1 − s) + µj)) .

Proof. The proof is based on the integral representation (4.9). The
contour C is deformed to a suitable rectangular Ra,A,T and the integral is
decomposed into integrals over its sides.

Let A and T be sufficiently large positive numbers such that A ≥ σ0 + 1
and T > max

k=1,...,N
|Imsk|. Let Ra,A,T be positively oriented rectangle deter-

mined by vertices −a+σ1− iT , A− iT , A+ iT and −a+σ1 + iT . Additional
contributions, compared to the integral (4.9) over C, are from poles s = sk
for k ∈ {1, 2, . . . , N} \ {l} of the function F (s). By Cauchy’s formula, we can
write

1

2πi

∫

Ra,A,T

F (s)

(s− ρ)n+1
ds = γn(F ) +

N∑

k=1
k 6=l

Res
s=sk

F (s)

(s− ρ)n+1
.

Therefore,

(4.13) γn(F ) =
1

2πi

∫

Ra,A,T

F (s)

(s− ρ)n+1
ds−

N∑

k=1
k 6=l

Res
s=sk

F (s)

(s− ρ)n+1
.

Now, integral over Ra,A,T can be written as a sum of integrals over line
segments L1, L2, L3 and L4 joining −a + σ1 + iT , −a + σ1 − iT , A − iT ,
A+ iT and −a+ σ1 + iT , respectively.

For integral over L2, we will use decomposition of real parts based on
Lemma 3.2

∫

L2

F (s)

(s− ρ)n+1
ds =

A−iT∫

−a+σ1−iT

F (s)

(s− ρ)n+1
ds

=




σ1−σ0−ε−iT∫

−a+σ1−iT

+

σ0+ε−iT∫

σ1−σ0−ε−iT

+

A−iT∫

σ0+ε−iT


 F (s)

(s− ρ)n+1
ds.
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The asymptotic bounds proved in Lemma 3.2 imply
∣∣∣∣∣∣

σ1−σ0−ε−iT∫

−a+σ1−iT

F (s)

(s− ρ)n+1
ds

∣∣∣∣∣∣
= Oε

(∣∣∣∣
T

T + β

∣∣∣∣
n+1

|T |dF (a−σ12 )−n−1

)
,

∣∣∣∣∣∣

σ0+ε−iT∫

σ1−σ0−ε−iT

F (s)

(s− ρ)n+1
ds

∣∣∣∣∣∣
= Oε

(∣∣∣∣
T

T + β

∣∣∣∣
n+1

|T |dF (σ0+ε−σ12 )−n−1

)
,

and ∣∣∣∣∣∣

A−iT∫

σ0+ε−iT

F (s)

(s− ρ)n+1
ds

∣∣∣∣∣∣
= Oε

(
1

|T + β|n+1 (A− σ0 − ε)
)
.

as |T | → ∞. Hence, for a under consideration and for n ≥ dF
2 (2a − σ1) we

have ∫

L2

F (s)

(s− ρ)n+1
ds→ 0, as |T | → ∞.

Analogous procedure yields analogous asymptotic bound for the integral over
L4, i.e. ∫

L4

F (s)

(s− ρ)n+1
ds→ 0, as |T | → ∞.

For the integral over L3, notice that s = A + it, and by the choice of A,
we are in the region of absolute convergence of function F (s). Lemma 3.2 and
substitution u = t− β imply

∣∣∣∣∣∣

∫

L3

F (s)

(s− ρ)n+1
ds

∣∣∣∣∣∣
≤ 2K

+∞∫

0

du

((A− α)2 + u2)
n+1
2

,

where K is a positive constant such that |F (A+ it)| ≤ K. Since, for the
integrand

fA(t) =
1

((A− α)2 + t2)
n+1
2

,

and function

g(t) =

{
1 if 0 ≤ t ≤ 1,

1
tn+1 if t > 1,

the following properties are satisfied fA(t) ≤ g(t) on [0,+∞), for a positive
integer n, g(t) is integrable, and lim

A→+∞
fA(t) = 0, Lebesgue’s convergence

theorem my be applied. It implies that the contribution of the integral over
L3 tends to zero, as |T | → ∞, for all positive integers n.

It follows that the only contribution to the integral given in (4.13), when
|T | → ∞, for all n under consideration is from the integral over L1.
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Simple substitution s = σ1 − u in the integral over L1, when |T | → ∞,
yields

−a+σ1−i∞∫

−a+σ1+i∞

F (s)

(s− ρ)n+1
ds = (−1)n

a+i∞∫

a−i∞

F (σ1 − u)

(u− σ1 + ρ)n+1
du.

Integrand in the last integral can be transformed using functional equation (2.5)
and functional equation factor given by (2.6). Follows that

F (σ1 − s) =F (s)
Q2s−σ1

F

ω

r∏

j=1

Γ(λjs+ µj)

Γ(λj(σ1 − s) + µj)
(4.14)

2M+δ(σ1)∏

k=1

(
s− sk

σ1 − s− sk

)mk
.

The application of Euler reflection formula for gamma function

Γ(z)Γ(1− z) =
π

sinπz
,

valid for all z /∈ Z, implies that (4.14) can be written as

F (σ1 − s) = F (s)GF (s),

where GF (s) is defined by (4.12), whenever λj(σ1−s)+µj /∈ Z for all integers
j = 1, . . . , r. Now, the representation (4.11) follows from (4.13), passing to
the limit as |T | → ∞, for all positive integers n such that n ≥ dF

2 (2a − σ1).
This completes the proof.

Remark 4.3. When function F ∈ S][(σ0, σ1) does not have a pole, inte-
gral representation formula is reduced, i.e. γF (n) defined by (4.10) are given
by

γn(F ) =
(−1)n

2πi

a+i∞∫

a−i∞

F (s)GF (s)

(s− σ1 + σ0)n+1
ds,

where

GF (s) = ω
Q2s−σ1

F

πr

r∏

j=1

[Γ (λjs+ µj) Γ (1− λj(σ1 − s)− µj)

× sinπ (λj(σ1 − s) + µj)]

for a positive integer n and a real number a such that σ0 < σ0 + ε < a <
n+1
dF

+ σ1

2 and λj(σ1 − a) + Reµj /∈ Z for all j = 1, . . . , r.
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5. Bounds for the generalized Euler-Stieltjes constants
associated to function F ∈ S][(σ0, σ1)

In this section, we prove the main result of the paper, the theorem that
gives an upper bound for the Euler-Stieltjes coefficients γn(F ) defined by (4.8).
The proof is based on the integral representation (4.11) and an appropriate
bound for the function GF (s), proved in the following lemma.

Before we state the lemma, some notation needs to be introduced. For
F ∈ S][(σ0, σ1), let us denote λM = max

j=1,...,r
λj , λm = min

j=1,...,r
λj , µM =

max
j=1,...,r

Reµj , µm = min
j=1,...,r

Reµj and αM = max
j=1,...,r

|Imµj |, where λj and µj ,

for j = 1, · · · , r, are parameters defined in the functional equation axiom (iii’)
of the class S][(σ0, σ1). Also, axiom (iii’) implies that poles of F (s) are
arranged such that s2j−1 + s2j = σ1, for j = 1, . . . ,M , i.e. s2j−1 and s2j

are symmetric with respect to the line Res = σ1/2. So it implies that one of
them is with real part less or equal to σ1/2. Let assume that they correspond
to indices 2j − 1 for j = 1, . . . ,M and that those with real parts strictly less
than σ1/2 are with indices 2j − 1 for j = 1, . . . ,M ′ ≤M .

Lemma 5.1. Let F ∈ S][(σ0, σ1) and let λm, λM , µm, µM and αM be as
above. Let ν = max {|µm| , |µM | − 1}. The following bound for function GF ,

defined by (4.12), holds true for a > max
{
σ0 + 1,−µmλm ,

µM−1
λm

+ σ1

}
,

|GF (a+ it)| ≤Q2a−σ1

F CF (a)(5.15)

×
(

(1 + λMa+ ν)
2

+ (λM |t|+ αM )
2
) dF

4 (2a−σ1)

,

where QF is a positive constant, an analytic conductor of the function F ,
appearing in axiom (iii’) and CF (a) is constant given by

CF (a) =2r exp


 1

12

r∑

j=1

1 + λj(2a− σ1)

(λja+ Reµj)(1 + λj(a− σ1)− Reµj)




× (1 + 2σ0 − σ1)

M′∑
j=1

m2j−1

.

Proof. From axiom (iii’) we know that |ω| = 1 and QF > 0, so defini-
tion (4.12) of function GF (s) for s = a+ it, (a, t ∈ R) implies

|GF (a+ it)| =Q2a−σ1

F

πr

2M+δ(σ1)∏

k=1

∣∣∣∣
a+ it− sk

σ1 − a− it− sk

∣∣∣∣
mk

(5.16)

r∏

j=1

[|Γ (λj(a+ it) + µj) Γ (1− λj(σ1 − a− it)− µj)|

× |sinπ (λj(σ1 − a− it) + µj)|] .
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Let us firstly consider product over poles sk of function F . Using the
assumption for the parameter a and the fact that σ0 > σ1 simple calculations
yield ∣∣∣∣

a+ it− sk
σ1 − a− it− sk

∣∣∣∣
mk

≤ 1,

for all poles sk such that Resk ≥ σ1/2. Thus, the main contribution in
this product comes from the poles such that Resk < σ1/2. Using notation
introduced just before the formulation of the theorem, these are poles with
the indices 2j − 1 for j = 1, . . . ,M ′ ≤M . It follows

2M+δ(σ1)∏

k=1

∣∣∣∣
a+ it− sk

σ1 − a− it− sk

∣∣∣∣
mk

≤
M ′∏

j=1

∣∣∣∣
a+ it− s2j−1

σ1 − a− it− s2j−1

∣∣∣∣
m2j−1

(5.17)

≤
M ′∏

j=1

∣∣∣∣
a− Res2j−1

σ1 − a− Res2j−1

∣∣∣∣
m2j−1

≤ (1 + 2σ0 − σ1)

M′∑
j=1

m2j−1

,

since σ1 − σ0 ≤ Res2j−1 < σ1/2, for all j = 1, . . . ,M ′ and a > σ0 + 1.
Factors in the last product in (5.16) will be bounded separately. Us-

ing simple representation of sinus function in terms of exponential functions
follows that |sin z| ≤ e|Imz| for z ∈ C, so

(5.18) |sinπ (λj(σ1 − a− it) + µj)| ≤ exp (π |λjt− Imµj |),
for all j = 1, . . . , r. Bounds for the factors containing gamma functions will
be derived using Binet formula [36, p. 258] combined with the inequality

Imz · arctan

(
Imz

Rez

)
+ Rez ≥ π

2
|Imz| ,

which holds true for Rez > 0. We obtain the following inequality

log |Γ(z)| ≤
(

Rez − 1

2

)
log |z| − π

2
|Imz|+ 1

2
log(2π)(5.19)

+Re




+∞∫

0

(
1

2
− 1

t
+

1

et − 1

)
e−tz

t
dt


 ,

valid for Rez > 0, which can be simplified using some properties of the func-

tion g(t) =
(

1
2 − 1

t + 1
et−1

)
1
t . Specially, the function g(t) attains its maxi-

mum 1/12, at t = 0. So

Re




+∞∫

0

(
1

2
− 1

t
+

1

et − 1

)
e−tz

t
dt


 ≤ 1

12Rez
,
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and (5.19) implies

(5.20) log |Γ(z)| ≤
(

Rez − 1

2

)
log |z| − |Imz| π

2
+

1

2
log(2π) +

1

12Rez
,

for Rez > 0.
For z = λj(a+ it)+µj and z = 1−λj(σ1−a− it)−µj by the assumption

for parameter a follows that

Re (λj(a+ it) + µj) > 0 and Re (1− λj(σ1 − a− it)− µj) > 0,

for all j = 1, . . . , r, thus inequality (5.20) may be applied for the gamma
factors in (5.16).

In addition, definition of numbers ν, λM and αM implies the following
inequalities

(λjt− Imµj)
2 ≤ (λM |t|+ αM )

2
,

(λja+ Reµj)
2 ≤ (λMa+ |µM |)2 ≤ (1 + λMa+ ν)2,

(1− λj(σ1 − a)− Reµj)
2 ≤ (1 + λMa+ |µm|)2 ≤ (1 + λMa+ ν)2,

j = 1, . . . , r and from (5.20) we obtain

log |Γ (λj(a+ it) + µj)|+ log |Γ (1− λj(σ1 − a− it)− µj)|

≤ λj(2a− σ1)

2
log
(

(1 + λMa+ ν)
2

+ (λM |t|+ αM )
2
)

+
1

12

1 + λj(2a− σ1)

(λja+ Reµj)(1 + λj(a− σ1)− Reµj)

+ log 2π − π |λjt− Imµj | ,
for all j = 1, . . . , r. This bound combined with (5.18) implies

|Γ (λj(a+ it) + µj)| |Γ (1− λj(σ1 − a− it)− µj)|
× |sinπ (λj(σ1 − a− it) + µj)|

≤ exp

[
λj(2a− σ1)

2
log
(

(1 + λMa+ ν)
2

+ (λM |t|+ αM )
2
)

+
1

12

1 + λj(2a− σ1)

(λja+ Reµj)(1 + λj(a− σ1)− Reµj)
+ log 2π

]
.

Substituting the last relation and (5.17) into (5.16), we obtain (5.15), and
the proof is complete.

The following theorem is the main result of the paper, it gives a bound
for generalized Euler-Stieltjes constants attached to functions from the class
S][(σ0, σ1).

Theorem 5.2. Let F ∈ S][(σ0, σ1) and ρ = α + iβ be a pole of function
F (s) such that α = max

k=1,...,N
Resk and let l be a corresponding index of the
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pole ρ, i.e. ρ = sl. Let numbers λM , λm, µM , µm, αM and ν be as in
Lemma 5.1 and ϑM = max{ν + λM (σ1 − α), αM + λM |β|}.

For a real number a such that a > max
{
σ0 + 1,−µmλm ,

µM−1
λm

+ σ1

}
and

λj(σ1 − a) + Reµj /∈ Z for all j = 1, . . . , r we have

|γn(F )| ≤ DF (a)

(a− σ1 + α)n

(
1 +

1

n− dF
2 (2a− σ1)

)
(5.21)

+
N∑

k=1
k 6=l

Res
s=sk

∣∣∣∣
F (s)

(s− ρ)n+1

∣∣∣∣ ,

where constant DF (a) is given by

DF (a) = exp


 1

12

r∑

j=1

1 + λj(2a− σ1)

(λja+ Reµj)(1 + λj(a− σ1)− Reµj)




× 2
dF
4 (2a−σ1)+rQ2a−σ1

F

π

1 + λM + ϑM
λM

(1 + 2σ0 − σ1)

M′∑
j=1

m2j−1

× ((1 + λM + ϑM )(a− σ1 + α))
dF
2 (2a−σ1)

(
+∞∑

k=1

|aF (k)|
ka

)
.

for all positive integere n such that n > dF
2 (2a− σ1) .

Proof. The proof is based on the integral representation of generalized
Euler-Stieltjes coefficients given in Theorem 4.2 and the bound derived in
Lemma 5.1. Simple substitution in integral in (4.11) and (5.15) yield

|γn(F )| ≤ CF (a)
Q2a−σ1

F

2π

+∞∫

−∞

(
(1 + λMa+ ν)

2
+ (λM |t|+ αM )

2
) dF

4 (2a−σ1)

×

∣∣∣F (a− it)
∣∣∣

((a− σ1 + α)2 + (t+ β)2)
n+1
2

dt

+

N∑

k=1
k 6=l

∣∣∣∣Res
s=sk

F (s)

(s− ρ)n+1

∣∣∣∣ ,

where CF (a) is defined in Lemma 5.1. For a > σ0 + 1 > σ0, it hold true

∣∣∣F (a− it)
∣∣∣ ≤

∞∑

k=1

|aF (k)|
ka

< +∞,
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by Dirichlet series representation axiom (i’). Hence,

(5.22) |γn(F )| ≤ CF (a)
Q2a−σ1

F

2π

∞∑

k=1

|aF (k)|
ka

I +
N∑

k=1
k 6=l

∣∣∣∣Res
s=sk

F (s)

(s− ρ)n+1

∣∣∣∣ ,

where

I =

+∞∫

−∞

(
(1 + λMa+ ν)

2
+ (λM |t|+ αM )

2
) dF

4 (2a−σ1)

((a− σ1 + α)2 + (t+ β)2)
n+1
2

dt.

Thus, it is left to derive a bound for the integral I. Depending on the sign of
β, we examine two cases.

Let β ≥ 0. Then

I =

+∞∫

0

(
1

((a− σ1 + α)2 + (t− β)2)
n+1
2

+
1

((a− σ1 + α)2 + (t+ β)2)
n+1
2

)
(5.23)

×
(

(1 + λMa+ ν)
2

+ (λM t+ αM )
2
) dF

4 (2a−σ1)

dt.

The interval of integration we split into two parts (0, B) and (B,+∞), where
B = 1

λM
+ a − σ1 + α + β. Denote by I1 and I2 corresponding integrals,

respectively. For I1 we have

(5.24) I1 ≤ B
2
dF
4 (2a−σ1)+1

a− σ1 + α

(1 + λM (a− σ1 + α) + ϑM )
dF
2 (2a−σ1)

(a− σ1 + α)n
,

where ϑM = max{ν + λM (σ1 − α), αM + λMβ} > 0.
By the assumptions of the theorem, it holds true B

a−σ1+α ≤ 1+q+ 1
λM

and

1+λM (a−σ1 +α)+ϑM ≤ (λM + 1 + ϑM ) (a−σ1 +α), so from relation (5.24)
we obtain the following bound for the integral I1

(5.25) I1 ≤
2
dF
4 (2a−σ1)+1

λM
(λM +1+ϑM )

dF
2 (2a−σ1)+1(a−σ1 +α)

dF
2 (2a−σ1)−n.

Therefore, I1 → 0, as n→ +∞.
In order to bound I2, note that for t ≥ B and the following inequalities

hold true 1 + λMa + ν ≤ 1 + λM (a − σ1 + α) + ϑM ≤ λM (t − β) + ϑM and
λM t+ αM ≤ λM (t− β) + ϑM , so

(1 + λMa+ ν)2 + (λM t+ αM )2 ≤ 2(λM (t− β) + ϑM )2.
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Hence,

I2 ≤
+∞∫

B

2

(t− β)n+1

(
2 (λM (t− β) + ϑM )

2
) dF

4 (2a−σ1)

dt

=2
(
2λ2

M

) dF
4 (2a−σ1)

+∞∫

B−β

(
1 +

ϑM
λMu

)n+1(
u+

ϑM
λM

) dF
2 (2a−σ1)−n−1

du.

Furthermore, since function g(t) = 1 + ϑM
λM t

is monotonically decreasing for

t ≥ B − β = a − σ1 + α + 1
λM
≥ 1, g(t) ≥ 1 and lim

t→+∞
g(t) = 1 follow that

maximal value of g(t) is at point t = B − β. Thus,

1 ≤ g(t) ≤ g(B − β) =
1 + λM (a− σ1 + α) + ϑM

1 + λM (a− σ1 + α)
,

hence,

I2 ≤2
(
2λ2

M

) dF
4 (2a−σ1)

(
1 + λM (a− σ1 + α) + ϑM

1 + λM (a− σ1 + α)

)n+1

×
+∞∫

B−β

(
u+

ϑM
λM

) dF
2 (2a−σ1)−n−1

du.

For all n under consideration, i.e. n > dF
2 (2a−σ1) the above integral converges

and yields

I2 ≤
2
dF
4 (2a−σ1)+1

n− dF
2 (2a− σ1)

(1 + λM (a− σ1 + α) + ϑM )
dF
2 (a−σ1)+1

λM (a− σ1 + α)
n+1 .

Additionally, since 1+λM (a−σ1+α)+ϑM
a−σ1+α ≤ 1 + λM + ϑM , we obtain

I2 ≤
2
dF
4 (2a−σ1)+1(1 + λM + ϑM )

dF
2 (2a−σ1)+1

λM
(
n− dF

2 (2a− σ1)
)(5.26)

(a− σ1 + α)
dF
2 (2a−σ1)−n

.

Substituting (5.25) and (5.26) into (5.23), combined with (5.22) implies (5.21)
and the proof is completed in this case.

When β < 0 procedure is completely analogous as in the previous case,
after simple substitution β1 = −β > 0. This completes the proof of theorem.

Remark 5.3. Bound for coefficients γF (n) in the case when function
F ∈ S][(σ0, σ1) does not have a pole can be derived completely analogously
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as in previous theorem. Thus, for γF (n) defined by (4.10) follows that

|γn(F )| ≤ DF (a)

(a− σ1 + σ0)n

(
1 +

1

n− dF
2 (2a− σ1)

)
,

where

DF (a) = exp


 1

12

r∑

j=1

1 + λj(2a− σ1)

(λja+ Reµj)(1 + λj(a− σ1)− Reµj)




× 2
dF
4 (2a−σ1)+rQ2a−σ1

F

π

1 + λM + ϑM
λM

× ((1 + λM + ϑM )(a− σ1 + σ0))
dF
2 (2a−σ1)

(
+∞∑

k=1

|aF (k)|
ka

)
,

for all positive integere n such that n > dF
2 (2a− σ1) and a is a real number

such that a > max
{
σ0 + 1,−µmλm ,

µM−1
λm

+ σ1

}
and λj(σ1 − a) + Reµj /∈ Z

for all j = 1, . . . , r. Numbers λM , λm, µM , µm, αM and ν are same as in
Lemma 5.1 and ϑM = max{ν + λM (σ1 − σ0), αM}.

6. Numerical examples

Examples of functions from the class S][(σ0, σ1) (not in the Selberg class)
are products of suitably shifted Riemann zeta functions. In [12] it is proved
that H(s) = ζ(s − h)ζ(s + h) for some real h > 0 is an element of the class
S][(h + 1, 1). In this section we will demonstrate an application of derived
result to the function H(s). We will derive a bound for the Euler-Stieltjes
constants attached to H(s) implied by Theorem 5.2.

Using properties of the Riemann zeta function we can easily deduce that
axioms of the class S][(σ0, σ1) are satisfied with the following parameters:
N = 2, s1 = 1 − h, s2 = 1 + h, m1 = m2 = 1, QH = π−1, ω = 1, r = 2,
λ1 = λ2 = 1/2, µ1 = h/2, µ2 = −h/2 and the degree of function H(s) is
dH = 2. For h 6= 1/2 easily follows that M = 0 and δ(σ1) = δ(1) = 0, while
for h = 1/2 it follows that M = 0 and δ(σ1) = δ(1) = 1.

In both cases for generalized Euler-Stieltjes constants defined by (4.8),
with ρ = 1 + h, i.e. α = 1 + h, β = 0 the following bound holds true

(6.27) |γn(H)| ≤ DH(a)

(a+ h)n

(
1 +

1

n− 2a+ 1

)
+ Res
s=1−h

∣∣∣∣
H(s)

(s− h− 1)n+1

∣∣∣∣ ,
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where constant DH(a) is given by

DH(a) = exp

(
1 + 2a

6

(
1

(a− h)(a+ h+ 1)
+

1

(a− h+ 1)(a+ h)

))

× 2−a+ 5
2

(
3

π

)2a

(a+ h)
2a−1

(
+∞∑

k=1

|aF (k)|
ka

)
,

since λM = λm = 1/2, µM = h/2, µm = −h/2, αM = 0, ν = h/2 and ϑM = 0.
Here, real number a is such that a > h + 2 and 1

2 (1 − a) ± h
2 /∈ Z and the

bound (6.27) is valid for all n such that n > 2h+ 3. Additionally, by the fact
that the residuum of Riemann zeta function at pole s = 1 is 1 implies that

contribution from the pole 1− h in (6.27) is equal to |ζ(1−2h)|
(2h)n+1 .
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