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DATKO TYPE CHARACTERIZATIONS FOR UNIFORM
DICHOTOMY IN MEAN WITH GROWTH RATES FOR

REVERSIBLE STOCHASTIC SKEW-EVOLUTION
SEMIFLOWS IN BANACH SPACES

T́ımea Melinda Személy Fülöp

West University of Timişoara, România

Abstract. The main aim of this paper is to give characterizations

of Datko type for the uniform dichotomy in mean with growth rates con-
cept for reversible stochastic skew-evolution semiflows in Banach spaces.

As particular cases, we obtain integral characterizations for uniform ex-

ponential dichotomy in mean. The obtained results are generalizations of
well-known theorems about uniform h-dichotomy of variational systems in

deterministic case.

1. Introduction

Over the past few decades, uniform exponential behavior has emerged
as one of the most prominent and widely debated subjects within the field of
dynamical systems. O. Perron first introduced the concept (see [22]) during his
exploration of the link between the conditional stability of the linear equation
ẋ(t) = A(t)x and the existence of bounded solutions to the nonlinear equation
ẋ(t) = A(t)x + f(t, x). The significance of exponential dichotomy for linear
differential equations was solidified by two pivotal monographs: one by J. L.
Massera and J. J. Schäffer in 1966 [15], and another by J. L. Daleckii and
M. G. Krein in 1974 [8]. This topic has since been extensively studied, as
evidenced by works such as [5], [9], [11], and [14].

Research into the asymptotic behavior of stochastic evolution equations
within infinite-dimensional spaces has proven to be an area of considerable in-
tensity and interest. Based on the stochastic equations studied in monographs
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by L. Arnold [1] and D. Prato and J. Zabczyk [23] were born important ex-
amples of stochastic evolution semiflows.

Several researchers have explored the concept of exponential dichotomy
in a stochastic context, including A. M. Ateiwi [2] and T. Caraballo et al. [7].

The notion of skew-evolution semiflow became a front-line topic in the
modern theory of dynamical system and differential equations. In the deter-
ministic setting, this concept can be traced back to the works of M. Megan
and C. Stoica in [17], where it extends and generalizes the notions of evo-
lution operators, semigroups of operators, and skew-product semiflows (see
[1, 11, 18, 16, 20, 19, 23]). The property of dichotomy for stochastic skew-
evolution semiflows in Banach spaces is treated in [13, 24, 25, 26, 27, 29].

Over the years, an important extension of exponential and polynomial
dichotomy was introduced by Pinto in his 1984 work [21], aimed at obtaining
stability results for weakly stable systems under certain perturbations. This
concept is known as dichotomy with growth rates, or h-dichotomy, where the
growth rate refers to a bijective and non-decreasing function h : R+ → [1,∞)
with lim

t→∞
h(t) = ∞.

Datko’s theorem served as the foundation for significant studies on the
uniform exponential stability of evolution equations. Following Datko’s sem-
inal research [12], numerous papers have been dedicated to this subject (see
[10], [28]). Extensions of Datko’s results to polynomial behaviors are pre-
sented in [3, 4, 6].

The main aim of this paper is to adapt the proof methods from the de-
terministic case to the stochastic case. Specifically, we consider the case of
reversible stochastic skew-evolution semiflows, using invariant projection fam-
ilies, and obtain two Datko-type characterizations for uniform dichotomy in
mean with growth rates.

2. Definitions and notations

Let (Ω,B, µ) be a probability space. Let ∆ be the set defined by ∆ =
{(t, s) ∈ R2

+ : t ≥ s ≥ 0} and let T be the set defined by T = {(t, s, t0) ∈
R3

+ : t ≥ s ≥ t0}. For a real or complex Banach space X we denote by B(X)
the Banach algebra of all bounded linear operators on X. We also denote by
L(Ω, X, µ) the Banach space of all Bochner-measurable functions f : Ω → X

such that

∫

Ω

∥f(ω)∥dµ(ω) < ∞.

Definition 2.1. A measurable random field φ : ∆×Ω → Ω is said to be
a stochastic evolution semiflow on Ω if the following properties hold:

• (es1) φ(t, t, ω) = ω, for all (t, ω) ∈ R+ × Ω,
• (es2) φ(t, s, φ(s, t0, ω)) = φ(t, t0, ω), for all t ≥ s ≥ t0 ≥ 0 and all

ω ∈ Ω.
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Definition 2.2. Let Φ : ∆ × Ω → B(X) be a measurable map. We say
that Φ is a stochastic evolution cocycle associated to the stochastic evolution
semiflow φ : ∆× Ω → Ω if the following conditions hold:

• (ec1) Φ(t, t, ω) = I (the identity operator on X), for all (t, ω) ∈
R+ × Ω,

• (ec2) Φ(t, s, φ(s, t0, ω))Φ(s, t0, ω) = Φ(t, t0, ω), for all t ≥ s ≥ t0 ≥ 0
and all ω ∈ Ω.

If Φ represents a stochastic evolution cocycle over a stochastic evolution
semiflow φ, then the pair C = (Φ, φ) is referred to as a stochastic skew-
evolution semiflow.

Definition 2.3. The stochastic evolution cocycle Φ : ∆ × Ω → B(X) is
said to be reversible if for all (t, s, ω) ∈ ∆×Ω, the map Φ(t, s, ω) is bijective.

Definition 2.4. Amap P : R+×Ω → B(X) with the property P 2(s, ω) =
P (s, ω) for all (s, ω) ∈ R+ × Ω is called projections family on X.

Remark 2.1. If P : R+×Ω → B(X) is a projections family, then the map
Q : R+ × Ω → B(X) define as Q(s, ω) = I − P (s, ω) also forms a projections
family. This is referred to as the complementary projections family of P.

Definition 2.5. A projections family P : R+ × Ω → B(X) is said to be
invariant to C = (Φ, φ) if

Φ(t, s, ω)P (s, ω) = P (t, φ(t, s, ω))Φ(t, s, ω),

for all (t, s, ω) ∈ ∆× Ω.

Remark 2.2. If P remains invariant for C = (Φ, φ), we denote by

ΦP (t, s, ω) = Φ(t, s, ω)P (s, ω)

for all (t, s, ω) ∈ ∆× Ω.

Proposition 2.1. If the stochastic evolution cocycle Φ : ∆× Ω → B(X)
is reversible and the projection family P is invariant for C = (Φ, φ) then

P (s, ω)Φ−1(t, s, ω) = Φ−1(t, s, ω)P (t, φ(t, s, ω)),

for all (t, s, ω) ∈ ∆× Ω.

Proof. It arises from Definition 2.3 and Remark 2.2.

Proposition 2.2. If ΦP (t, s, ω) : ∆ × Ω → B(X) and Φ−1
P (t, s, ω) is its

inverse, then:

(i) Φ(t, s, ω)Φ−1(t, s, ω)P (t, φ(t, s, ω)) = P (t, φ(t, s, ω)), for all (t, s, ω) ∈
∆× Ω;

(ii) Φ−1(t, s, ω)Φ(t, s, ω)P (s, ω) = P (s, ω) , for all (t, s, ω) ∈ ∆× Ω;
(iii) Φ−1(t, s, ω)P (t, φ(t, s, ω)) = P (s, ω)Φ−1(t, s, ω)P (t, φ(t, s, ω)), for

all (t, s, ω) ∈ ∆× Ω;
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Proof. It results from Definition 2.3 and Proposition 2.1.

Definition 2.6. A nondecreasing map h : R+ → [1,∞) with lim
t→∞

h(t) =

∞ is called a growth rate.

Definition 2.7. [27] The pair (C,P ) is said to be uniformly h-dichotomic
in mean (u.h.d.m.) if there are some constants N > 1 and ν > 0 such that

(uhd1m) h(t)ν
∫

Ω

∥Φ(t, t0, ω)P (t0, ω)x0(ω)∥dµ(ω) ≤ N ·h(s)ν
∫

Ω

∥Φ(s, t0, ω)P (t0, ω)x0(ω)∥dµ(ω);

(uhd2m) h(t)ν
∫

Ω

∥Φ(s, t0, ω))Q(t0, ω)x0(ω)∥dµ(ω) ≤ N ·h(s)ν
∫

Ω

∥Φ(t, t0, ω))Q(t0, ω)x0(ω)∥dµ(ω),
for all (t, s, t0, ω) ∈ T × Ω and x0 ∈ L(Ω, X, µ);

When we examine the specific cases where h(t) = et and h(t) = t + 1,
we infer the concepts of uniform exponential dichotomy in mean and uniform
polynomial dichotomy in mean respectively.

Remark 2.3. The pair (C,P ) is uniformly h-dichotomic in mean if and
only if there exist N > 1 and ν > 0 with

(uhd
′
1m) h(t)ν

∫

Ω

∥Φ(t, s, ω)P (s, ω)x(ω)∥dµ(ω) ≤ N ·h(s)ν
∫

Ω

∥P (s, ω)x(ω)∥dµ(ω);

(uhd
′
2m) h(t)ν

∫

Ω

∥Q(s, ω)x(ω)∥dµ(ω) ≤ N ·h(s)ν
∫

Ω

∥Φ(t, s, ω)Q(s, ω)x(ω)∥dµ(ω),
for all (t, s, ω) ∈ ∆× Ω and x ∈ L(Ω, X, µ).

Theorem 2.1. The pair (C,P ) is uniformly h-dichotomic in mean with
Φ reversible stochastic evolution cocycle if and only if there are N > 1 and
ν > 0 with:

(uhd
′′′
1 m) h(t)ν

∫

Ω

∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω) ≤

≤ N · h(s)ν
∫

Ω

∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω);

(uhd
′′′
2 m) h(t)ν

∫

Ω

∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω) ≤

≤ N · h(s)ν
∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω),
for all (t, s, t0, ω) ∈ T × Ω and x0 ∈ L(Ω, X, µ);

Proof. It arises from Definition 2.7 and Proposition 2.1.

Definition 2.8. [27] The pair (C,P ) is said to be with uniform h-growth
in mean (u.h.g.m.) if there exist constants M ≥ 1 and α > 0 such that:

(uhg1m) h(s)α
∫

Ω

∥Φ(t, t0, ω)P (t0, ω)x0(ω)∥dµ(ω) ≤ M ·h(t)α
∫

Ω

∥Φ(s, t0, ω)P (t0, ω)x0(ω)∥dµ(ω);

(uhg2m) h(s)α
∫

Ω

∥Φ(s, t0, ω))Q(t0, ω)x0(ω)∥dµ(ω) ≤ M ·h(t)α
∫

Ω

∥Φ(t, t0, ω))Q(t0, ω)x0(ω)∥dµ(ω),
for all (t, s, t0, ω) ∈ T × Ω and x0 ∈ L(Ω, X, µ);
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As specific cases we note that when the growth rate is et, this establishes
the concept of uniform exponential growth in mean and if the growth rate is
t + 1, then we arrive at the concept of uniform polynomial growth in mean
respectively.

Remark 2.4. The pair (C,P ) has uniform h-growth in mean if and only
if there exist M > 1 and α > 0 with

(uhg
′
1m) h(s)α

∫

Ω

∥Φ(t, s, ω)P (s, ω)x(ω)∥dµ(ω) ≤ M ·h(t)α
∫

Ω

∥P (s, ω)x(ω)∥dµ(ω);

(uhg
′
2m) h(s)α

∫

Ω

∥Q(s, ω)x(ω)∥dµ(ω) ≤ M ·h(t)α
∫

Ω

∥Φ(t, s, ω)Q(s, ω)x(ω)∥dµ(ω),
for all (t, s, ω) ∈ ∆× Ω and x ∈ L(Ω, X, µ).

Theorem 2.2. The pair (C,P ) is uniformly h-dichotomic in mean with
Φ reversible stochastic evolution cocycle if and only if there exist M > 1 and
α > 0 with:

(uhg
′′′
1 m) h(s)α

∫

Ω

∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω) ≤

≤ M · h(t)α
∫

Ω

∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω);

(uhg
′′′
2 m) h(s)α

∫

Ω

∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω) ≤

≤ M · h(t)α
∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω),
for all (t, s, t0, ω) ∈ T × Ω and x0 ∈ L(Ω, X, µ);

Proof. The proof utilizes the exact same technique as demonstrated in
Theorem 2.1.

Definition 2.9. Let C = (Φ, φ) be a stochastic skew-evolution semiflow.
We say that C is strongly measurable if, for all (t0, x) ∈ R+ × L(Ω, X, µ), the
mapping

s 7→
∫

Ω

∥Φ(s, t0, ω)x0(ω)∥dµ(ω), is measurable on [t0,∞).

We denote by H the set of all growth rates h : R+ → [1,∞) with the
following properties:

• there exists H > 1 satisfying h(t+ 1) ≤ Hh(t), ∀ t ≥ 0.

• for all β < 0 there exists H1 > 1 with

∞∫

s

h(t)βdt ≤ H1 h(s)β , ∀ s ≥ 0.

• for all β > 0 there exists H2 > 1 with

t∫

0

h(s)βds ≤ H2 h(t)β , ∀ t ≥ 0.

Remark 2.5. If h(t) = et, then h ∈ H.
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3. Main results

Theorem 3.1. We assume that C = (Φ, φ) is a strongly measurable sto-
chastic skew-evolution semiflow, (C,P ) with uniform h-growth in mean and
h ∈ H. The pair (C,P ) is uniformly h-dichotomic in mean with Φ reversible
stochastic evolution cocycle if and only if there exist constants D ≥ 1 and
d ∈ (0, 1) such that

(uhD1
1m)

∞∫

s

h(t)d∫
Ω
∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω)

dt ≤

≤ D h(s)d∫
Ω
∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω)

for all (t, s, t0, ω) ∈ T×Ω and x0 ∈ L(Ω, X, µ) with P (s, φ(s, t0, ω))x0(ω) ̸=
0;

(uhD1
2m)

∞∫

s

h(t)d
(∫

Ω

∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω)
)
dt ≤

≤ D h(s)d
∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω),
for all (t, s, t0, ω) ∈ T × Ω and x0 ∈ L(Ω, X, µ).

Proof. Necessity. To establish (uhd
′′′
1 m) =⇒ (uhD1

1m), we need to
consider d ∈ (0, ν), resulting in:

∞∫

s

h(t)d∫
Ω
∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω)

dt ≤

≤ N

∞∫

s

(
h(t)

h(s)

)−ν
h(t)d∫

Ω
∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω)

dt =

=
N h(s)ν∫

Ω
∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω)

∞∫

s

h(t)d−νdt ≤

≤ N h(s)νH1h(s)
d−ν

∫
Ω
∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω)∥dµ(ω)

=

=
NH1h(s)

d

∫
Ω
∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω)

≤

≤ Dh(s)d∫
Ω
∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω)∥dµ(ω)

,

where D = N ·H1



DATKO TYPE FOR U.H.D.M. 7

For (uhd
′′′
2 m) =⇒ (uhD1

2m), we have

∞∫

s

(∫

Ω

∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω)
)
dt ≤

≤ N

∞∫

s

(
h(t)

h(s)

)−ν

h(t)d
(∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω)
)
dt ≤

≤ N h(s)ν
∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω)
∞∫

s

h(t)d−νdt ≤

≤ N h(s)ν
∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω)h(s)d−νH1 ≤

≤ Dh(s)d
∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω),

where D = N ·H1

Sufficiency. For (uhD1
1m) =⇒ (uhd

′′′
1 m), firstly, we consider (t, s, t0, ω) ∈

T × Ω. There are two cases to be considered:
Case I.1. When t ≥ s+ 1 we arrive at

h(t)d∫
Ω
∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω)

=

=

t∫

t−1

h(t)d∫
Ω
∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω)

dτ ≤

≤ M

t∫

t−1

h(t)d
(
h(t)

h(τ)

)α
1∫

Ω
∥Φ−1(τ, t0, ω)P (τ, φ(t, t0, ω))x0(ω)∥dµ(ω)

dτ =

= M

t∫

t−1

(
h(t)

h(τ)

)α+d
h(τ)d∫

Ω
∥Φ−1(τ, t0, ω)P (τ, φ(t, t0, ω))x0(ω)∥dµ(ω)

dτ ≤

≤ M

t∫

t−1

(
h(t)

h(t− 1)

)α+d
h(τ)d∫

Ω
∥Φ−1(τ, t0, ω)P (τ, φ(t, t0, ω))x0(ω)∥dµ(ω)

dτ ≤

≤ MHα+d

∞∫

s

h(τ)d∫
Ω
∥Φ−1(τ, t0, ω)P (τ, φ(t, t0, ω))x0(ω)∥dµ(ω)

dτ ≤

≤ MHα+dD
h(s)d∫

Ω
∥Φ−1(s, t0, ω)P (t, φ(s, t0, ω))x0(ω)∥dµ(ω)

.
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Case I.2. If t ∈ [s, s+ 1) we obtain

h(t)d
∫

Ω

∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω) ≤

≤ Mh(t)d
(
h(t)

h(s)

)α ∫

Ω

∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω) =

= M

(
h(t)

h(s)

)α+d

h(s)d
∫

Ω

∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω) ≤

≤ MHα+dh(s)d
∫

Ω

∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω).

It is a consequence of Case I.1. and Case I.2., that there exist N = 1 +
MHα+dD and ν = d such that (uhd

′′′
1 m) holds for all (t, s, t0, ω) ∈ T ×Ω and

all x0 ∈ L(Ω, X, µ).

To prove (uhD1
2m) =⇒ (uhd

′′′
1 m) we take into account two cases as well:

Case II.1. If t ≥ s+ 1 we are provided with

h(t)d
∫

Ω

∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω) =

= h(t)d
t∫

t−1

(∫

Ω

∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω)
)
dτ ≤

≤ M

t∫

t−1

h(t)d
(
h(t)

h(τ)

)α (∫

Ω

∥Φ−1(τ, t0, ω)Q(τ, φ(τ, t0, ω))x0(ω)∥dµ(ω)
)
dτ =

= M

t∫

t−1

h(τ)d
(
h(t)

h(τ)

)α+d (∫

Ω

∥Φ−1(τ, t0, ω)Q(τ, φ(τ, t0, ω))x0(ω)∥dµ(ω)
)
dτ ≤

≤ MHα+d

∞∫

s

h(τ)d
(∫

Ω

∥Φ−1(τ, t0, ω)Q(τ, φ(τ, t0, ω))x0(ω)∥dµ(ω)
)
dτ ≤

≤ DMHα+dh(s)d
∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω).

Case II.2. If t ∈ [s, s+ 1) we observe

h(t)d
∫

Ω

∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω) ≤

≤ Mh(t)d
(
h(t)

h(s)

)α ∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω) =
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= Mh(s)d
(
h(t)

h(s)

)α+d ∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω) ≤

≤ Mh(s)d
(
h(s+ 1)

h(s)

)α+d ∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω) ≤

≤ MHα+dh(s)d
∫

Ω

∥Φ−1(s, t0, ω)Q(t, φ(s, t0, ω))x0(ω)∥dµ(ω).

Combining Case II.1. with Case II.2., we can conclude that there exist N =
1+MHα+dD and ν = d such that (uhd

′′′
2 m) holds for all (t, t0, ω) ∈ ∆×Ω and

all x0 ∈ L(Ω, X, µ). Hence, we have shown that (C,P ) is u.h.d.m., completing
the proof.

Corollary 3.1. We suppose that C = (Φ, φ) is a strongly measurable
stochastic skew-evolution semiflow, (C,P ) with uniform exponential growth in
mean. The pair (C,P ) is uniformly exponentially dichotomic in mean with
Φ reversible stochastic evolution cocycle if and only if there exist constants
D ≥ 1 and d ∈ (0, 1) with

(ueD1
1m)

∞∫

s

edt∫
Ω
∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω)

dt ≤

≤ D eds∫
Ω
∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω)

;

for all (t, s, t0, ω) ∈ T×Ω and x0 ∈ L(Ω, X, µ) with P (s, φ(s, t0, ω))x0(ω) ̸=
0;

(ueD1
2m)

∞∫

s

edt
(∫

Ω

∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω)
)
dt ≤

≤ D eds
∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω),
for all (t, s, t0, ω) ∈ T × Ω and x0 ∈ L(Ω, X, µ).

Proof. It follows from Theorem 3.1 for h(t) = et.

Theorem 3.2. Consider C = (Φ, φ) as a strongly measurable stochastic
skew-evolution semiflow, (C,P ) has uniform h-growth in mean and h ∈ H.
The pair (C,P ) is uniformly h-dichotomic in mean with Φ reversible stochastic
evolution cocycle if and only if there exist constants D ≥ 1 and d ∈ (0, 1) such
that

(uhD2
1m)

t∫

t0

∫
Ω
∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω)

h(s)d
ds ≤

≤ D
∫
Ω
∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω)

h(t)d
;
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for all (t, s, t0, ω) ∈ T × Ω and x0 ∈ L(Ω, X, µ);

(uhD2
2m)

t∫

t0

h(s)−d

∫
Ω
∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω)

ds ≤

≤ D h(t)−d

∫
Ω
∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω)

,

for all (t, s, t0, ω) ∈ T×Ω and x0 ∈ L(Ω, X, µ) with Q(t, φ(t, t0, ω))x0(ω) ̸=
0.

Proof. Necessity. For (uhd
′′′
1 m) =⇒ (uhD2

1m), let d ∈ (0, ν) and we
obtain:

t∫

t0

∫
Ω
∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω)

h(s)d
ds ≤

≤
t∫

t0

N

(
h(t)

h(s)

)−ν ∫
Ω
∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω)

h(s)d
ds ≤

≤ N
∫
Ω
∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω)

h(t)ν

t∫

t0

h(s)ν−dds ≤

≤ NH2

∫
Ω
∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω)

h(t)ν
h(t)ν−d ≤

≤ NH2

∫
Ω
∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω)

h(t)d
≤

≤ D
∫
Ω
∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω)

h(t)d
,

where D = N ·H2

Simillarly, for (uhd
′′′
2 m) =⇒ (uhD2

2m), let d ∈ (0, ν) and we have:

t∫

t0

h(s)−d

∫
Ω
∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω)

ds ≤

≤
t∫

t0

N

(
h(t)

h(s)

)−ν
h(s)−d

∫
Ω
∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω)

ds =

=
Nh(t)−ν

∫
Ω
∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω)

t∫

t0

h(s)ν−dds ≤
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≤ NH2h(t)
−ν

∫
Ω
∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω)

h(t)ν−d ≤

≤ Dh(t)−d

∫
Ω
∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω)

,

where D = NH2

Sufficiency. For (uhD1
2m) =⇒ (uhd

′′′
1 m), let (t, s, t0, ω) ∈ T × Ω. We can

distinguish between two cases:
Case I.1. When t ≥ s+ 1 we figure out∫
Ω
∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω)

h(s)d
=

=

s+1∫

s

∫
Ω
∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω)

h(s)d
dτ ≤

≤ M

s+1∫

s

∫
Ω
∥Φ−1(τ, t0, ω)P (τ, φ(τ, t0, ω))x0(ω)∥dµ(ω)

h(s)d

(
h(τ)

h(s)

)α

dτ =

= M

s+1∫

s

(
h(τ)

h(s)

)α+d ∫
Ω
∥Φ−1(τ, t0, ω)P (τ, φ(τ, t0, ω))x0(ω)∥dµ(ω)

h(τ)d
dτ ≤

≤ MHα+d

t∫

t0

∫
Ω
∥Φ−1(τ, t0, ω)P (τ, φ(τ, t0, ω))x0(ω)∥dµ(ω)

h(τ)d
dτ ≤

≤ DMHα+d

∫
Ω
∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω)

h(t)d
.

Consequently, we obtain

h(t)d
∫

Ω

∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω) ≤

≤ DMHα+dh(s)d
∫

Ω

∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω).
Case I.2. If t ∈ [s, s+ 1) we reach

h(t)d
∫

Ω

∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω) ≤

≤ Mh(s)d
(
h(t)

h(s)

)α+d ∫

Ω

∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω) ≤

≤ Mh(s)d
(
h(s+ 1)

h(s)

)α+d ∫

Ω

∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω) ≤

≤ MHα+dh(s)d
∫

Ω

∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω).
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Accordingly, we derive

h(t)d∫
Ω
∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω)

≤

≤ MHα h(t)d∫
Ω
∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω)

=

= MHα

(
h(t)

h(s)

)d
h(s)d∫

Ω
∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω)

≤

≤ MHα+d h(s)d∫
Ω
∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω)

.

Hence, we arrive at

h(t)d
∫

Ω

∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω) ≤

≤ MHα+dh(s)d
∫

Ω

∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω).

From Case I.1. and Case I.2. the conclusion follows.
For the second relation, we initially consider (t, s, t0, ω) ∈ T × Ω. Moreover,
we can distinguish between two cases:
Case II.1. When t ≥ s+ 1 we deduce

h(s)−d

∫
Ω
∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω)

=

=

s+1∫

s

h(s)−d

∫
Ω
∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω)

dτ ≤

≤ M

s+1∫

s

(
h(τ)

h(s)

)α+d
h(τ)−d

∫
Ω
∥Φ−1(τ, t0, ω)Q(τ, φ(τ, t0, ω))x0(ω)∥dµ(ω)

dτ ≤

≤ M

s+1∫

s

(
h(s+ 1)

h(s)

)α+d
h(τ)−d

∫
Ω
∥Φ−1(τ, t0, ω)Q(τ, φ(τ, t0, ω))x0(ω)∥dµ(ω)

dτ ≤

≤ MHα+d

s+1∫

s

h(τ)−d

∫
Ω
∥Φ−1(τ, t0, ω)Q(τ, φ(τ, t0, ω))x0(ω)∥dµ(ω)

dτ ≤

≤ DMHα+d h(t)−d

∫
Ω
∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω)

.

Case II.2. If t ∈ [s, s+ 1), we have

h(t)d
∫

Ω

∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω) ≤
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≤ Mh(s)d
(
h(t)

h(s)

)α+d ∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω) ≤

≤ Mh(s)d
(
h(s+ 1)

h(s)

)α+d ∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω) ≤

≤ MHα+dh(s)d
∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω).

Accordingly, we derive

h(t)d
∫

Ω

∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω) ≤

≤ MHα

∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω) ≤

≤ MHα

(
h(t)

h(s)

)d

h(s)d
∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω) ≤

≤ MHα+dh(s)d
∫

Ω

∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω).

From Case II.1. and Case II.2. the conclusion follows.

Corollary 3.2. Let C = (Φ, φ) be a strongly measurable stochastic skew-
evolution semiflow, (C,P ) has uniform exponential growth in mean. The
pair (C,P ) is uniformly exponentially dichotomic in mean with Φ reversible
stochastic evolution cocycle if and only if there exist some constants D ≥ 1
and d ∈ (0, 1) such that

(ueD2
1m)

t∫

t0

∫
Ω
∥Φ−1(s, t0, ω)P (s, φ(s, t0, ω))x0(ω)∥dµ(ω)

eds
ds ≤

≤ D
∫
Ω
∥Φ−1(t, t0, ω)P (t, φ(t, t0, ω))x0(ω)∥dµ(ω)

edt
;

for all (t, s, t0, ω) ∈ T × Ω and x0 ∈ L(Ω, X, µ);

(ueD2
2m)

t∫

t0

e−ds

∫
Ω
∥Φ−1(s, t0, ω)Q(s, φ(s, t0, ω))x0(ω)∥dµ(ω)

ds ≤

≤ D e−dt

∫
Ω
∥Φ−1(t, t0, ω)Q(t, φ(t, t0, ω))x0(ω)∥dµ(ω)

,

for all (t, s, t0, ω) ∈ T×Ω and x0 ∈ L(Ω, X, µ) with Q(t, φ(t, t0, ω))x0(ω) ̸=
0.

Proof. It follows from Theorem 3.2 for h(t) = et.
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