Glasnik Matematički

SERIJA III

www.math.hr/glasnik

Kalyan Chakraborty, Shubham Gupta and Azizul Hoque
Diophantine $D(n)$-quadruples in $\mathbb{Z}[\sqrt{4 k+2}]$
Manuscript accepted
June 25, 2024.

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. It has not been copyedited, proofread, or finalized by Glasnik Production staff.

DIOPHANTINE $D(n)$-QUADRUPLES IN $\mathbb{Z}[\sqrt{4 k+2}]$

Kalyan Chakraborty, Shubham Gupta and Azizul Hoque
SRM University AP, Harish-Chandra Research Institute and Rangapara College, India

Abstract

Let d be a square-free integer and $\mathbb{Z}[\sqrt{d}]$ a quadratic ring of integers. For a given $n \in \mathbb{Z}[\sqrt{d}]$, a set of m non-zero distinct elements in $\mathbb{Z}[\sqrt{d}]$ is called a Diophantine $D(n)$ - m-tuple (or simply $D(n)$ - m-tuple) in $\mathbb{Z}[\sqrt{d}]$ if product of any two of them plus n is a square in $\mathbb{Z}[\sqrt{d}]$. Assume that $d \equiv 2(\bmod 4)$ is a positive integer such that $x^{2}-d y^{2}=-1$ and $x^{2}-d y^{2}=6$ are solvable in integers. In this paper, we prove the existence of infinitely many $D(n)$-quadruples in $\mathbb{Z}[\sqrt{d}]$ for $n=4 m+4 k \sqrt{d}$ with $m, k \in \mathbb{Z}$ satisfying $m \not \equiv 5(\bmod 6)$ and $k \not \equiv 3(\bmod 6)$. Moreover, we prove the same for $n=(4 m+2)+4 k \sqrt{d}$ when either $m \not \equiv 9(\bmod 12)$ and $k \not \equiv 3(\bmod 6)$, or $m \not \equiv 0(\bmod 12)$ and $k \not \equiv 0(\bmod 6)$. At the end, some examples supporting the existence of quadruples in $\mathbb{Z}[\sqrt{d}]$ with the property $D(n)$ for the above exceptional n 's are provided for $d=10$.

1. Introduction

A set $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ of m distinct positive integers is called a Diophantine m-tuple with the property $D(n)$ (or simply $D(n)$ - m-tuple) for a given non-zero integer n, if $a_{i} a_{j}+n$ is a perfect square for all $1 \leq i<j \leq m$. For $n=1$, such an m-tuple is called Diophantine m-tuple instead of Diophantine m-tuple with the property $D(1)$. The question of constructing such tuples was first studied by Diophantus of Alexandria, who found a Diophantine quadruple of rationals $\{1 / 16,33 / 16,17 / 4,105 / 16\}$ with the property $D(1)$. However, it was Fermat who first found a Diophantine quadruple $\{1,3,8,120\}$ in integers. Later, Baker and Davenport [3] proved that Fermat's quadruple can not be extended to Diophantine quintuple. Dujella [12] proved the nonexistence of Diophantine sextuple and that there are at most finitely many integer Diophantine quintuples. Recently, He, Togbé and Ziegler [24] proved

[^0]the non-existence of integer Diophantine quintuples, and in this way, they solved a long-standing open problem. On the other hand, Bonciocat, Cipu and Mignotte [5] proved a conjecture of Dujella [9], which states that there are no $D(-1)$-quadruples. It is also known due to Trebješanin and Filipin [4] that there do not exist $D(4)$-quintuples. A brief survey on this topic can be found in [15]. We also refer $[6,8,13,14,16]$ to the reader for more information about $D(n)$ - m-tuples.

Let \mathcal{R} be a commutative ring with unity. For a given $n \in \mathcal{R}$, a set $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \subset \mathcal{R} \backslash\{0\}$ is called a Diophantine m-tuple with the property $D(n)$ in \mathcal{R} (or simply $D(n)$ - m-tuple in \mathcal{R}), if $a_{i} a_{j}+n$ is a perfect square in \mathcal{R} for all $1 \leq i<j \leq m$. Let K be an imaginary quadratic number field and \mathcal{O}_{K} be its ring of integers. In 2019, Adžaga [2] proved that there are no $D(1)$ - m-tuples in \mathcal{O}_{K} when $m \geq 42$. Recently, Gupta [23] proved that there do not exist $D(-1)$ - m-tuple for $m \geq 37$. It is interesting to note that $D(n)$ quadruples are related to the representations of n by the binary quadratic form $x^{2}-y^{2}$. In particular, Dujella [9] proved that a $D(n)$-quadruple in integers exists if and only if n can be written as a difference of two squares, up to finitely many exceptions. Later, Dujella [11] proved the above fact in Gaussian integers. Further, the above fact also holds for the ring of integers of $\mathbb{Q}(\sqrt{d})$ for certain $d \in \mathbb{Z}$ (see, $[17,18,19,21,1,26])$. These results motivated Franušić and Jadrijević to post the following conjecture:

Conjecture 1.1 ([22, Conjecture 1]). Let \mathcal{R} be a commutative ring with unity 1 and $n \in \mathcal{R} \backslash\{0\}$. Then a $D(n)$-quadruple exists if and only if n can be written as a difference of two squares in \mathcal{R}, up to finitely many exceptions of n.

This conjecture was verified for rings of integers of certain number fields (cf. $[17,18,19,20,22,21,25,1,26])$.

The following notations will be followed throughout the paper.

- $(a, b)=a+b \sqrt{d}$,
- $k(a, b)=(k a, k b)$ for $k \in \mathbb{Z}$,
- Let $\alpha=(a, b)$. The norm Nm of α is given by

$$
\operatorname{Nm}(\alpha):=(a, b)(a,-b)
$$

- $(x, y) \equiv(a, b)(\bmod (c, e))$ means that $x \equiv a(\bmod c)$ and $y \equiv b$ $(\bmod e)$.
In the rest of paper, we fix $d \equiv 2(\bmod 4)$ to be a square-free positive integer. We set \mathcal{S} and \mathcal{T} in $\mathbb{Z}[\sqrt{d}]$ as follows:

$$
\begin{aligned}
\mathcal{S}:=\{ & (4 m, 4 k+1),(4 m, 4 k+2),(4 m, 4 k+3),(4 m+1,4 k+1),(4 m+1,4 k+3), \\
& (4 m+2,4 k+1),(4 m+2,4 k+3),(4 m+3,4 k+1),(4 m+3,4 k+3)\}, \\
\mathcal{T}:= & \{(4 m, 4 k),(4 m+1,4 k),(4 m+1,4 k+2),(4 m+2,4 k),(4 m+2,4 k+2), \\
& (4 m+3,4 k),(4 m+3,4 k+2)\},
\end{aligned}
$$

where $m, k \in \mathbb{Z}$. It is easy to check that if $n \in \mathbb{Z}[\sqrt{d}]$ then $n \in \mathcal{S} \cup \mathcal{T}$. In [17], Franušić proved that there does not exist any $D(n)$-quadruple in $\mathbb{Z}[\sqrt{d}]$ for $n \in \mathcal{S}$.

Thus, it is natural to ask 'whether there exists any Diophantine quadruple in $\mathbb{Z}[\sqrt{d}]$ for $n \in \mathcal{T}$ '. Very recently, in [7] the present authors answered this question for $n \in \mathcal{T} \backslash\{(4 m, 4 k),(4 m+2,4 k)\}$. More precisely, the authors proved the following result:

Theorem A $([7$, Theorem 1.1]). Assume that $d \equiv 2(\bmod 4)$ is a squarefree positive integer and the equations (1.1) and (1.2) are solvable. Then there exist infinity many quadruples in $\mathbb{Z}[\sqrt{d}]$ with the property $D(n)$ when $n \in\{(4 m+1)+4 k \sqrt{d},(4 m+1)+(4 k+2) \sqrt{d},(4 m+3)+4 k \sqrt{d},(4 m+3)+$ $(4 k+2) \sqrt{d},(4 m+2)+(4 k+2) \sqrt{d}\}$ with $m, k \in \mathbb{Z}$.

As a consequence of Theorem A, we were able to construct some counter examples of Conjecture 1.1. Namely, if $d=10$ and $n=26+6 \sqrt{10}$ or $d=58$ and $n=18+2 \sqrt{58}$, one can easily see that n can not be represented as a difference of two squares in $\mathbb{Z}[\sqrt{d}]$, but there exists a $D(n)$-quadruple in $\mathbb{Z}[\sqrt{d}]$.

In this paper, we consider the above mentioned problem for the remaining values of n. Let $d \equiv 2(\bmod 4)$ be a square-free positive integer such that

$$
\begin{equation*}
x^{2}-d y^{2}=-1 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{2}-d y^{2}=6 \tag{1.2}
\end{equation*}
$$

are solvable in integers. We prove the following results:
Theorem 1.1. Let $d \equiv 2(\bmod 4)$ be a square-free positive integer such that (1.1) and (1.2) are solvable in integers. Let $n=(4 m, 4 k)$ with $m, k \in \mathbb{Z}$ such that $(m, k) \not \equiv(5,3)(\bmod (6,6))$. Then there exist infinitely many $D(n)$ quadruples in $\mathbb{Z}[\sqrt{d}]$.

Theorem 1.2. Let d be as in Theorem 1.1. Then for $n=(4 m+2,4 k)$ with $m, k \in \mathbb{Z}$, there exist infinitely many $D(n)$-quadruples in $\mathbb{Z}[\sqrt{d}]$ such that $(m, k) \not \equiv(9,3),(0,0)(\bmod (12,6))$.

In 1996, Dujella [10] obtained several two-parameter polynomial families for quadruples with the property $D(n)$. Our proofs use the technique presented in [10].

2. Preliminaries

We begin this section with the following lemma that follows from the definition of $D(n)$-quadruples in $\mathbb{Z}[\sqrt{d}]$.

Lemma 2.1. Let $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ be a $D(n)$-quadruple. Then for any nonzero $w \in \mathbb{Z}[\sqrt{d}]$, with a square-free integer d, the set $\left\{w a_{1}, w a_{2}, w a_{3}, w a_{4}\right\}$ is a $D\left(w^{2} n\right)$-quadruple in $\mathbb{Z}[\sqrt{d}]$.

The next lemma helps us to find the conditions under which the set $\{a, b, a+b+2 r, a+4 b+4 r\}$ forms a $D(n)$-quadruple in $\mathbb{Z}[\sqrt{d}]$ for any $n \in \mathbb{Z}[\sqrt{d}]$.

Lemma 2.2 ([7, Lemma 2.5]). The set $\{a, b, a+b+2 r, a+4 b+4 r\}$ of nonzero and distinct elements is a $D(n)$-quadruple in $\mathbb{Z}[\sqrt{d}]$ for any $n \in \mathbb{Z}[\sqrt{d}]$, if $a b+n=r^{2}$ and $3 n=\alpha_{1} \alpha_{2}$ with $\alpha_{1}=a+2 r+\alpha$ and $\alpha_{2}=a+2 r-\alpha$, for some $a, b, r, \alpha \in \mathbb{Z}[\sqrt{d}]$.

The next two lemmas help us to apply Lemma 2.2 in the proofs of Theorems 1.1 and 1.2. Lemma 2.3 is useful for the factorization of $3 n$ in $\mathbb{Z}[\sqrt{d}]$, while Lemma 2.4 is useful to verify that the elements thus found are distinct and non-zero.

Lemma 2.3 ([7, Lemma 3.1]). Let $d \equiv 2(\bmod 4)$ be a square-free integer such that (1.1) and (1.2) are solvable in integers. Then in $\mathbb{Z}[\sqrt{d}]$, the following statements hold:
(i) elements of norm 1 have the form $\left(6 a_{1} \pm 1,6 b_{1}\right)$ and there are infinitely many of them;
(ii) elements of norm -1 have the form $\left(6 a_{1} \pm 3,6 b_{1} \pm 1\right)$ and there are infinitely many such elements;
(iii) $d \equiv 10(\bmod 48)$;
(iv) elements of norm 6 have the form $(12 M \pm 4,6 N \pm 1)$ and there are infinitely many such elements;
(v) elements of norm -6 have the form $(12 M \pm 2,6 N \pm 1)$ and there are infinitely many such elements;
where a_{1}, b_{1}, M and $N \in \mathbb{Z}$.
Lemma 2.4 ([7, Lemma 2.4]). Assume that $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2}, e_{1} \in$ \mathbb{Z} with $a_{1}, a_{2}, b_{1} \neq 0$. Then the following system of simultaneous equations

$$
\left\{\begin{array}{l}
a_{1} x^{2}+b_{1} y^{2}+c_{1} x+d_{1} y+e_{1}=0 \tag{2.1}\\
a_{2} x y+b_{2} x+c_{2} y+d_{2}=0
\end{array}\right.
$$

has only finitely many solutions in integers.

3. Proof of Theorem 1.1

We first factorize $3 n$ by using Lemmas 2.2 and 2.3. We then use this factorization together with Lemma 2.2 to construct Diophantine quadruples of certain forms with the property $D(n)$ under the condition of non-zero and distinctness. Finally these conditions are verified by using Lemma 2.4.

Here, $n=(4 m, 4 k)$ with $m, k \in \mathbb{Z}$. Thus $3 n=3(4 m, 4 k)=6(2 m, 2 k)$ and we choose $\alpha_{1}=6$ and $\alpha_{2}=(2 m, 2 k)\left(\alpha_{1}\right.$ and α_{2} as in Lemma 2.2). Now Lemma 2.2 entails,

$$
\begin{equation*}
a+2 r=(m+3, k) . \tag{3.1}
\end{equation*}
$$

We divide the proof into four cases based on the parity of m and k.
Case I: Both m and k are even. Let $a=\left(6 a_{1}+1,6 b_{1}\right)$ with $a_{1}, b_{1} \in \mathbb{Z}$ such that $\operatorname{Nm}(a)=1$. Then by (i) of Lemma 2.3, there exist infinitely many such a 's, and (3.1) can be written as

$$
r=\left(m / 2+1-3 a_{1}, k / 2-3 b_{1}\right)
$$

As both m and k are even, so $r \in \mathbb{Z}[\sqrt{d}]$. We employ these a and r in the equation $a b+n=r^{2}$ (as in Lemma 2.2) to get:

$$
\begin{aligned}
b= & \left(\left(m / 2+1-3 a_{1}\right)^{2}+d\left(k / 2-3 b_{1}\right)^{2}-4 m, 2\left(m / 2+1-3 a_{1}\right)\left(k / 2-3 b_{1}\right)-4 k\right) \\
& \times\left(6 a_{1}+1,-6 b_{1}\right) .
\end{aligned}
$$

These choices of a, b and r give us infinitely many $D(n)$-quadruples $\{a, b, a+$ $b+2 r, a+4 b+4 r\}$ in $\mathbb{Z}[\sqrt{d}]$. Non-zero and distinctness of these elements can easily be verified by Lemma 2.4.

Case II: m is odd and k is even. As in Case I, we choose $a=2\left(6 a_{1}+1,6 b_{1}\right)$ with $a_{1}, b_{1} \in \mathbb{Z}$ and $\operatorname{Nm}(a)=4$. Then (3.1) gives,

$$
2 r=\left(m+1-12 a_{1}, k-12 b_{1}\right) .
$$

We write $m=2 m_{1}+1$ and $k=2 k_{1}$ for some $m_{1}, k_{1} \in \mathbb{Z}$. Then

$$
r=\left(m_{1}+1-6 a_{1}, k_{1}-6 b_{1}\right),
$$

which gives

$$
\begin{aligned}
b= & \frac{1}{2}\left(\left(m_{1}+1-6 a_{1}\right)^{2}+d\left(k_{1}-6 b_{1}\right)^{2}-4 m, 2\left(m_{1}+1-6 a_{1}\right)\left(k_{1}-6 b_{1}\right)-4 k\right) \\
& \times\left(6 a_{1}+1,-6 b_{1}\right) .
\end{aligned}
$$

We are looking for b satisfying $b \in \mathbb{Z}[\sqrt{d}]$, so that m_{1} should be odd and k_{1} should be even. These choices of a, b and r provide infinitely many $D(n)$ quadruples of the form $\{a, b, a+b+2 r, a+4 b+4 r\}$ in $\mathbb{Z}[\sqrt{d}]$.

On the other hand for even m_{1}, we choose $a=4\left(6 a_{1}+1,6 b_{1}\right)$ with $a_{1}, b_{1} \in \mathbb{Z}$ and $\operatorname{Nm}(a)=16$. Then as before we get

$$
r=\left(m_{1}-12 a_{1}, k_{1}-12 b_{1}\right),
$$

which provides

$$
\begin{aligned}
b= & \frac{1}{4}\left(\left(m_{1}-12 a_{1}\right)^{2}+d\left(k_{1}-12 b_{1}\right)^{2}-4 m, 2\left(m_{1}-12 a_{1}\right)\left(k_{1}-12 b_{1}\right)-4 k\right) \\
& \times\left(6 a_{1}+1,-6 b_{1}\right) .
\end{aligned}
$$

Clearly $b \in \mathbb{Z}[\sqrt{d}]$ when k_{1} is even. These give the required elements a, b and r. Utilizing Lemma 2.2, this implies that the set $\mathcal{A}=\{a, b, a+b+2 r, a+$ $4 b+4 r\}$ forms a Diophantine quadruple in $\mathbb{Z}[\sqrt{d}]$ with the property $D(n)$, under the condition that all the elements of \mathcal{A} must be non-zero and distinct from each other. These conditions can be verified by using Lemma 2.4, except $a+4 b+4 r \neq 0$ and $a+2 r \neq 0$. We handle these exceptions separately since they do not fit into Lemma 2.4. We first consider $a+2 r=0$. This gives $m_{1}=-2$ and $k_{1}=0$. This gives $n=-12$. Now if $a+4 b+4 r=0$, then $\left(m_{1}, k_{1}\right)=(0,0)$ or $\left(m_{1}, k_{1}\right)=(4,0)$. This gives $n=1,36$, which are already known.

The case $n=-12$ gives $3 n=-18 \times 2$. We now choose $\alpha_{1}=-18$ and $\alpha_{2}=2$. As before, we choose $a=4\left(6 a_{1}+1,6 b_{1}\right)$ with $a_{1}, b_{1} \in \mathbb{Z}$ and $\operatorname{Nm}(a)=16$, and thus $r=\left(-2-12 a_{1},-12 b_{1}\right)$. This gives

$$
b=\left(\left(1+6 a_{1}, 6 b_{1}\right)^{2}+3\right)\left(6 a_{1}+1,-6 b_{1}\right)
$$

Owing to the guaranteed existence of infinitely many a 's, there exist infinitely many $D(n)$-quadruples.

The possibility of m_{1} even and k_{1} odd needs to be examined. In this case $n=(16 m+4,16 k+8)=2^{2}(4 m+1,4 k+2)$, and thus the existence of infinitely many $D(n)$-quadruples in $\mathbb{Z}[\sqrt{d}]$ is guaranteed by [7, Theorem 1.1] and Lemma 2.1.

Case III: m is even and k is odd. In this case, we consider $a=\left(6 a_{1}+3,6 b_{1}+1\right)$ with $a_{1}, b_{1} \in \mathbb{Z}$ and $\operatorname{Nm}(a)=-1$. This provides us

$$
\begin{aligned}
b= & \left(\left(m / 2-3 a_{1}\right)^{2}+d\left((k-1) / 2-3 b_{1}\right)^{2}-4 m, 2\left(m / 2-3 a_{1}\right)\left((k-1) / 2-3 b_{1}\right)-4 k\right) \\
& \times\left(-6 a_{1}-3,6 b_{1}+1\right),
\end{aligned}
$$

(for the value of r we use (3.1)). As dealt with in the previous cases, these values of a, b, r will guarantee infinitely many $D(n)$ - quadruples in $\mathbb{Z}[\sqrt{d}]$.

Case IV: Both m and k are odd. This case is bit more involved. Clearly n can be expressed as $n=\left(8 m_{1}+4,8 k_{1}+4\right)$ for some $m_{1}, k_{1} \in \mathbb{Z}$. Then

$$
3 n=6\left(4 m_{1}+2,4 k_{1}+2\right)
$$

Let $\alpha_{1}=6$ and $\alpha_{2}=\left(4 m_{1}+2,4 k_{1}+2\right)$. That would imply (by Lemma 2.2)

$$
\begin{equation*}
a+2 r=\left(2 m_{1}+4,2 k_{1}+1\right) \tag{3.2}
\end{equation*}
$$

In what follows we will apply Lemma 2.3 (iv), (v), with $M, N \in \mathbb{Z}$. First, set $a=(12 M+4,6 N+1)$, with $\operatorname{Nm}(a)=6$. Thus (3.2) implies that

$$
r=\left(m_{1}-6 M, k_{1}-3 N\right)
$$

Employing $a b+n=r^{2}$ and $d \equiv 10(\bmod 48)($ see, (iii) of Lemma 2.3), we get

$$
\begin{aligned}
b= & \frac{1}{6}\left(\left(m_{1}-6 M\right)^{2}+d\left(k_{1}-3 N\right)^{2}-8 m_{1}-4,2\left(m_{1}-6 M\right)\left(k_{1}-3 N\right)-8 k_{1}-4\right) \\
& \times(12 M+4,-6 N-1) .
\end{aligned}
$$

To ensure the existence of b in $\mathbb{Z}[\sqrt{d}]$, we must have,

$$
\left(m_{1}, k_{1}\right) \equiv(0,0),(0,1),(2,0),(2,2),(4,1),(4,2) \quad(\bmod (6,3))
$$

As before, we assume $a=(12 M+4,6 N-1)$, with $\operatorname{Nm}(a)=6$. Then we arrive at
$b=\frac{1}{6} \times\left(\left(m_{1}-6 M\right)^{2}+d\left(k_{1}-3 N+1\right)^{2}-8 m_{1}-4,2\left(m_{1}-6 M\right)\left(k_{1}-3 N+1\right)\right.$

$$
\left.-8 k_{1}-4\right) \times(12 M+4,-6 N+1)
$$

As $b \in \mathbb{Z}[\sqrt{d}]$, so that we have additional cases of $\left(m_{1}, k_{1}\right)$, where

$$
\left(m_{1}, k_{1}\right) \equiv(0,2),(4,0) \quad(\bmod (6,3))
$$

Similarly, we set $a=(12 M+2,6 N+1)$ with $\operatorname{Nm}(a)=-6$ to get
$b=\frac{-1}{6} \times\left(\left(m_{1}+1-6 M\right)^{2}+d\left(k_{1}-3 N\right)^{2}-8 m_{1}-4,2\left(m_{1}+1-6 M\right)\left(k_{1}-3 N\right)\right.$

$$
\left.-8 k_{1}-4\right) \times(12 M+2,-6 N-1)
$$

For b to be in $\mathbb{Z}[\sqrt{d}]$,

$$
\left(m_{1}, k_{1}\right) \equiv(1,0),(1,1),(3,2),(5,0),(5,2) \quad(\bmod (6,3))
$$

Again we choose $a=(12 M+2,6 N-1)$, with $\operatorname{Nm}(a)=-6$, which gives

$$
\begin{aligned}
b= & \frac{1}{-6} \times\left(\left(m_{1}-6 M+1\right)^{2}+d\left(k_{1}-3 N+1\right)^{2}-8 m_{1}-4,2\left(m_{1}-6 M+1\right)\right. \\
& \left.\times\left(k_{1}-3 N+1\right)-8 k_{1}-4\right)(12 M+2,-6 N+1)
\end{aligned}
$$

Thus for $b \in \mathbb{Z}[\sqrt{d}]$,

$$
\left(m_{1}, k_{1}\right) \equiv(1,2),(3,0),(3,1) \quad(\bmod (6,3))
$$

Finally for $a=(12 M-2,6 N-1)$ one gets the same values for $\left(m_{1}, k_{1}\right)$ as in the case $a=(12 M+2,6 N+1)$. This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

The proof of Theorem 1.2 goes along the lines of that of Theorem 1.1, except the factorization of $3 n$. However, we provide the outlines of the proof for convenience to the readers. The notations α_{1} and α_{2} are as in $\S 3$. Assume that $n=(4 m+2,4 k)$, where $m, k \in \mathbb{Z}$.

Case I : Both m and k are even. Let $M, N \in \mathbb{Z}$, and let
$3 n=6(2 m+1,2 k)$

$$
=(12 M+4,-6 N-1)(12 M+4,6 N+1)(2 m+1,2 k) \quad(\text { Using Lemma } 2.3(\mathrm{iv}))
$$

(4.1)

$$
=\alpha_{1} \alpha_{2}
$$

where
$\left\{\begin{array}{l}\alpha_{1}=(12 M+4,-6 N-1), \\ \alpha_{2}=(24 M m+12 M+8 m+4+d(12 N k+2 k), 24 M k+8 k+12 N m+2 m+6 N+1) .\end{array}\right.$
Now, $a=4\left(6 a_{1}+1,6 b_{1}\right)$ with $a_{1}, b_{1} \in \mathbb{Z}$ and $\operatorname{Nm}(a)=16$, which gives
$r=\left(6 M m+6 M+2 m+(d / 2)(6 N k+k)-12 a_{1}, 6 M k+2 k+3 N m+(m / 2)-12 b_{1}\right)$
and

$$
\begin{aligned}
b= & \frac{1}{4}\left\{\left(6 M m+6 M+2 m+(d / 2)(6 N k+k)-12 a_{1}\right)^{2}+d(6 M k+2 k+3 N m+(m / 2)-\right. \\
& \left.12 b_{1}\right)^{2}-4 m-2,2\left(6 M m+6 M+2 m+(d / 2)(6 N k+k)-12 a_{1}\right)(6 M k+2 k+3 N m+ \\
& \left.\left.\left.(m / 2)-12 b_{1}\right)-4 k\right) \times\left(6 a_{1}+1,-6 b_{1}\right)\right\}
\end{aligned}
$$

Now for $r, b \in \mathbb{Z}[\sqrt{d}]$, since $d \equiv 2(\bmod 4)$, we must have $m \equiv 2(\bmod 4)$.
Assume that

$$
(\alpha, \beta)=(6 M m+6 M+2 m+(d / 2)(6 N k+k), 6 M k+2 k+3 N m+m / 2)
$$

Then $r=\left(\alpha-12 a_{1}, \beta-12 b_{1}\right)$.
Now if $a+4 b+4 r=0$, then

$$
\begin{array}{r}
4+\alpha^{2}+d \beta^{2}-4 m-2+4 \alpha=0 \\
2 \alpha \beta-4 k+4 \beta=0
\end{array}
$$

By Lemma 2.4, we conclude that there exist only finitely many α and β which satisfy the above system of equations. We now rewrite α and β as follows,

$$
\begin{aligned}
\alpha & =6 M(m+1)+N(3 d k)+2 m+(d / 2) k \\
\beta & =6 M k+3 N m+(m / 2)+2 k
\end{aligned}
$$

These can be written as

$$
\binom{\alpha-2 m-(d / 2) k}{\beta-(m / 2)-2 k}=\left(\begin{array}{cc}
6(m+1) & 3 d k \\
6 k & 3 m
\end{array}\right)\binom{M}{N}
$$

Since $m \equiv 2(\bmod 4), k$ is even, and $d \equiv 2(\bmod 4)$, so that the determinant of

$$
\left(\begin{array}{cc}
6(m+1) & 3 d k \\
6 k & 3 m
\end{array}\right)
$$

is non-zero. As we have infinitely many choices for M and N, so that there exist infinitely many α and β for which $a+4 b+4 r \neq 0$. Hence we can
take such M and N for which $a+4 b+4 r \neq 0$. Using these values of a, b and r, we can get infinitely many quadruples with the property $D(n)$ from Lemma 2.2 , since we have infinitely many choices of a, by using Lemma 2.3 (i) and for checking the condition of non-zero and distinct elements of the set $\{a, b, a+b+2 r, a+4 b+4 r\}$ (given in Lemma 2.2), we use Lemma 2.4.

In the case $m \equiv 0(\bmod 4)$, we replace n by $n=\left(16 m_{1}+2,8 k_{1}\right)$ and then consider (4.1) with

$$
\begin{aligned}
\alpha_{1}= & (-12 M-2,6 N+1) \\
\alpha_{2}= & \left(96 M m_{1}+12 M+16 m_{1}+2+d\left(24 N k_{1}+4 k_{1}\right), 48 M k_{1}+8 k_{1}+48 N m_{1}\right. \\
& \left.+8 m_{1}+6 N+1\right)
\end{aligned}
$$

where $m_{1}, k_{1} \in \mathbb{Z}$. This gives by utilizing $a=\left(12 a_{1}+4,6 b_{1}+1\right)$ with $a_{1}, b_{1} \in \mathbb{Z}$ and $\operatorname{Nm}(a)=6$,
$r=\left(24 M m_{1}+4 m_{1}+d\left(6 N k_{1}+k_{1}\right)-6 a_{1}-2,12 M k_{1}+2 k_{1}+12 N m_{1}+2 m_{1}+3 N-3 b_{1}\right)$
and

$$
\begin{aligned}
b= & \frac{1}{6}\left\{\left(\left(24 M m_{1}+4 m_{1}+d\left(6 N k_{1}+k_{1}\right)-6 a_{1}-2\right)^{2}+d\left(12 M k_{1}+2 k_{1}+12 N m_{1}+\right.\right.\right. \\
& \left.2 m_{1}+3 N-3 b_{1}\right)^{2}-16 m_{1}-2,2\left(24 M m_{1}+4 m_{1}+d\left(6 N k_{1}+k_{1}\right)-6 a_{1}-2\right)\left(12 M k_{1}+\right. \\
& \left.\left.\left.2 k_{1}+12 N m_{1}+2 m_{1}+3 N-3 b_{1}\right)-8 k_{1}\right) \times\left(12 a_{1}+4,-6 b_{1}-1\right)\right\} .
\end{aligned}
$$

Using $d \equiv 10(\bmod 48)($ from Lemma $2.3(i i i))$, these further imply that

$$
\left(m_{1}, k_{1}\right) \equiv(0,1),(0,2),(1,0),(1,1),(2,0),(2,2) \quad(\bmod (3,3))
$$

Similarly, for $a=\left(12 a_{1}-4,6 b_{1}+1\right)$ with $a_{1}, b_{1} \in \mathbb{Z}$ and $\operatorname{Nm}(a)=6$, we have

$$
r=\left(24 M m_{1}+4 m_{1}+d\left(6 N k_{1}+k_{1}\right)-6 a_{1}+2,12 M k_{1}+2 k_{1}+12 N m_{1}+2 m_{1}+3 N-3 b_{1}\right)
$$

and

$$
\begin{aligned}
b= & \frac{1}{6}\left\{\left(\left(24 M m_{1}+4 m_{1}+d\left(6 N k_{1}+k_{1}\right)-6 a_{1}+2\right)^{2}+d\left(12 M k_{1}+2 k_{1}+12 N m_{1}+2 m_{1}+\right.\right.\right. \\
& \left.3 N-3 b_{1}\right)^{2}-16 m_{1}-2,2\left(24 M m_{1}+4 m_{1}+d\left(6 N k_{1}+k_{1}\right)-6 a_{1}+2\right)\left(12 M k_{1}+\right. \\
& \left.\left.\left.2 k_{1}+12 N m_{1}+2 m_{1}+3 N-3 b_{1}\right)-8 k_{1}\right)\right\} \times\left(12 a_{1}-4,-6 b_{1}-1\right)
\end{aligned}
$$

For b to be in $\mathbb{Z}[\sqrt{d}]$,

$$
\left(m_{1}, k_{1}\right) \equiv(1,2) \quad(\bmod (3,3))
$$

The factorization (4.1) with

$$
\left\{\begin{aligned}
\alpha_{1}= & (12 M+2,6 N+1) \\
\alpha_{2}= & \left(-96 M m_{1}-12 M-16 m_{1}-2+d\left(24 N k_{1}+4 k_{1}\right),-48 M k_{1}-8 k_{1}+48 m_{1} N+\right. \\
& \left.8 m_{1}+6 N+1\right)
\end{aligned}\right.
$$

as well as $a=\left(12 a_{1}+4,6 b_{1}-1\right)$ with $a_{1}, b_{1} \in \mathbb{Z}$ and $\operatorname{Nm}(a)=6$ provides
$r=\left(-24 M m_{1}-4 m_{1}+d\left(6 N k_{1}+k_{1}\right)-6 a_{1}-2,-12 M k_{1}-2 k_{1}+12 m_{1} N+2 m_{1}+3 N+1-3 b_{1}\right)$
and

$$
\begin{aligned}
b= & \frac{1}{6}\left\{\left(-24 M m_{1}-4 m_{1}+d\left(6 N k_{1}+k_{1}\right)-6 a_{1}-2\right)^{2}+d\left(-12 M k_{1}-2 k_{1}+12 m_{1} N+2 m_{1}+3 N+1\right.\right. \\
& \left.-3 b_{1}\right)^{2}-16 m_{1}-2,2\left(-24 M m_{1}-4 m_{1}+d\left(6 N k_{1}+k_{1}\right)-6 a_{1}-2\right)\left(-12 M k_{1}-2 k_{1}+12 m_{1} N\right. \\
& \left.\left.+2 m_{1}+3 N+1-3 b_{1}\right)-8 k_{1}\right\} \times\left(12 a_{1}+4,-6 b_{1}+1\right) .
\end{aligned}
$$

For $b \in \mathbb{Z}[\sqrt{d}]$,

$$
\left(m_{1}, k_{1}\right) \equiv(2,1) \quad(\bmod (3,3))
$$

Finally, owing to Lemma 2.3, there are infinitely many choices of M and N, and hence there are infinitely many choices for such a, b and r.

To conclude this case, we have covered all possibilities for (m_{1}, k_{1}), except $\left(m_{1}, k_{1}\right) \not \equiv(0,0)(\bmod (3,3))$. Hence, there exist infinitely many Diophantine quadruples in $\mathbb{Z}[\sqrt{d}]$ with the property $D\left(16 m_{1}+2,8 k_{1}\right)$, where $\left(m_{1}, k_{1}\right) \not \equiv$ $(0,0)(\bmod (3,3))$.

Case II: m is even and k is odd. In this case too we work with the factorization (4.1). We use
$\left\{\begin{array}{l}\alpha_{1}=(12 M+4,-6 N-1), \\ \alpha_{2}=(24 M m+12 M+8 m+4+d(12 N k+2 k), 24 M k+8 k+12 N m+2 m+6 N+1)\end{array}\right.$
and $a=2\left(6 a_{1}+1,6 b_{1}\right)$ with $a_{1}, b_{1} \in \mathbb{Z}$ and $\operatorname{Nm}(a)=4$. These provide
us,
$r=\left(6 M m+6 M+2 m+2+(d / 2)(6 N k+k)-6 a_{1}-1,6 M k+2 k+3 N m+(m / 2)-6 b_{1}\right)$
and

$$
\begin{aligned}
b= & \frac{1}{2}\left\{\left(6 M m+6 M+2 m+2+(d / 2)(6 N k+k)-6 a_{1}-1\right)^{2}+d(6 M k+2 k+3 N m+\right. \\
& \left.(m / 2)-6 b_{1}\right)^{2}-4 m-2,2\left(6 M m+6 M+2 m+2+(d / 2)(6 N k+k)-6 a_{1}-1\right)(6 M k+ \\
& \left.\left.2 k+3 N m+(m / 2)-6 b_{1}\right)-4 k\right\} \times\left(6 a_{1}+1,-6 b_{1}\right) .
\end{aligned}
$$

Case III: m is odd and k is even. Here, we use (4.1) with
$\alpha_{1}=(-12 M-2,6 N+1)$,
$\alpha_{2}=(24 M m+12 M+4 m+2+d(12 N k+2 k), 24 M k+4 k+12 N m+2 m+6 N+1)$.
Then, $a=2\left(6 a_{1}+1,6 b_{1}\right)$ with $a_{1}, b_{1} \in \mathbb{Z}$ and $\operatorname{Nm}(a)=4$ gives

$$
r=(12 M m+2 m+d(6 N k+k), 12 M k+2 k+6 N m+m+6 N+1)
$$

and

$$
\begin{aligned}
b= & \frac{1}{2}\left\{(12 M m+2 m+d(6 N k+k))^{2}+d(12 M k+2 k+6 N m+m+6 N+1)^{2}-4 m-\right. \\
& 2,2(12 M m+2 m+d(6 N k+k))(12 M k+2 k+6 N m+m+6 N+1)-4 k\} \times \\
& \left(6 a_{1}+1,-6 b_{1}\right) .
\end{aligned}
$$

Case IV: Both m and k are odd. The choices of α_{1} and α_{2} as in Case III work in this case too. We set $a=4\left(6 a_{1}+1,6 b_{1}\right)$ with $a_{1}, b_{1} \in \mathbb{Z}$ and $\operatorname{Nm}(a)=16$ to get

$$
r=\left(6 M m+m+(d / 2)(6 N k+k)-12 a_{1}-2,6 M k+k+3 N m+(m+1) / 2+3 N-12 b_{1}\right)
$$

and

$$
\begin{aligned}
b= & \frac{1}{4}\left\{\left(\left(6 M m+m+(d / 2)(6 N k+k)-12 a_{1}-2\right)^{2}+d(6 M k+k+3 N m+(m+1) / 2+\right.\right. \\
& \left.3 N-12 b_{1}\right)^{2}-4 m-2,2\left(6 M m+m+(d / 2)(6 N k+k)-12 a_{1}-2\right)(6 M k+k+3 N m \\
& \left.\left.\left.+(m+1) / 2+3 N-12 b_{1}\right)-4 k\right)\left(6 a_{1}+1,-6 b_{1}\right)\right\} .
\end{aligned}
$$

These would imply $m \equiv 3(\bmod 4)$ whenever $r, b \in \mathbb{Z}[\sqrt{d}]$. The existence of infinitely many quadruples can be seen by similar argument of $n=(4 m+2,4 k)$ in Case I with $m \equiv 2(\bmod 4)$ and even k.

The next case is $m \equiv 1(\bmod 4)$ and here n can be replaced by $n=$ $\left(16 m_{1}+6,8 k_{1}+4\right)$ with $m_{1}, k_{1} \in \mathbb{Z}$. The factorization uses in this case is:

$$
\begin{equation*}
3 n=\alpha_{1} \alpha_{2}, \tag{4.2}
\end{equation*}
$$

where,

$$
\begin{aligned}
\alpha_{1}= & (12 M+4,-6 N-1) \\
\alpha_{2}= & \left(96 M m_{1}+36 M+32 m_{1}+12+d\left(24 N k_{1}+12 N+4 k_{1}+2\right), 48 M k_{1}+24 M+16 k_{1}\right. \\
& \left.+11+48 N m_{1}+18 N+8 m_{1}\right)
\end{aligned}
$$

We set $a=\left(12 a_{1}+2,6 b_{1}+1\right)$ with $a_{1}, b_{1} \in \mathbb{Z}$ and $\operatorname{Nm}(a)=-6$, which gives

$$
\begin{aligned}
r= & \left(24 M m_{1}+12 M+8 m_{1}+4+(d / 2)\left(12 N k_{1}+6 N+2 k_{1}+1\right)-6 a_{1}-1,12 M k_{1}+\right. \\
& \left.6 M+4 k_{1}-3 a_{1}+2+12 N m_{1}+3 N+2 m_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
b= & \frac{1}{-6}\left\{\left(24 M m_{1}+12 M+8 m_{1}+4+(d / 2)\left(12 N k_{1}+6 N+2 k_{1}+1\right)-6 a_{1}-1\right)^{2}+\right. \\
& d\left(12 M k_{1}+6 M+4 k_{1}-3 a_{1}+2+12 N m_{1}+3 N+2 m_{1}\right)^{2}-16 m_{1}-6,2\left(24 M m_{1}+\right. \\
& \left.12 M+8 m_{1}+4+(d / 2)\left(12 N k_{1}+6 N+2 k_{1}+1\right)-6 a_{1}-1\right)\left(12 M k_{1}+6 M+4 k_{1}-\right. \\
& \left.\left.3 a_{1}+2+12 N m_{1}+3 N+2 m_{1}\right)-8 k_{1}-4\right\} \times\left(12 a_{1}+2,-6 b_{1}-1\right) .
\end{aligned}
$$

Now, using $d \equiv 10(\bmod 48)($ from Lemma 2.3(iii)),

$$
\left(m_{1}, k_{1}\right) \equiv(0,0),(0,1),(1,1),(2,0),(2,2) \quad(\bmod (3,3)),
$$

for $b \in \mathbb{Z}[\sqrt{d}]$.
Similarly, $a=\left(12 a_{1}-2,6 b_{1}+1\right)$ with $a_{1}, b_{1} \in \mathbb{Z}$ and $\operatorname{Nm}(a)=-6$ provides
$r=\left(24 M m_{1}+12 M+8 m_{1}+5+(d / 2)\left(12 N k_{1}+6 N+2 k_{1}+1\right)-6 a_{1}, 12 M k_{1}+6 M+\right.$

$$
\left.4 k_{1}+2+12 N m_{1}+3 N+2 m_{1}-3 b_{1}\right)
$$

and

$$
\begin{aligned}
b= & \frac{1}{-6}\left\{\left(24 M m_{1}+12 M+8 m_{1}+5+(d / 2)\left(12 N k_{1}+6 N+2 k_{1}+1\right)-6 a_{1}\right)^{2}+\right. \\
& d\left(12 M k_{1}+6 M+4 k_{1}+2+12 N m_{1}+3 N+2 m_{1}-3 b_{1}\right)^{2}-16 m_{1}-6,2\left(24 M m_{1}+\right. \\
& \left.12 M+8 m_{1}+5+(d / 2)\left(12 N k_{1}+6 N+2 k_{1}+1\right)-6 a_{1}\right)\left(12 M k_{1}+6 M+4 k_{1}+2+\right. \\
& \left.\left.12 N m_{1}+3 N+2 m_{1}-3 b_{1}\right)-8 k_{1}-4\right\} \times\left(12 a_{1}-2,-6 b_{1}-1\right) .
\end{aligned}
$$

For $b \in \mathbb{Z}[\sqrt{d}]$,

$$
\left(m_{1}, k_{1}\right) \equiv(0,2) \quad(\bmod (3,3))
$$

Again, we use (4.2) by taking
$\alpha_{1}=(12 M+4,6 N+1)$,
$\alpha_{2}=\left(96 M m_{1}+36 M+32 m_{1}+12+d\left(-24 N k_{1}-12 N-4 k_{1}-2\right), 48 M k_{1}+24 M+\right.$

$$
\left.16 k_{1}+8-48 N m_{1}-18 N-8 m_{1}-3\right) .
$$

Then we choose $a=\left(12 a_{1}+2,6 b_{1}-1\right)$ with $a_{1}, b_{1} \in \mathbb{Z}$ and $\operatorname{Nm}(a)=-6$, which gives

$$
r=\left(24 M m_{1}+12 M+8 m_{1}+3+(d / 2)\left(-12 N k_{1}-6 N-2 k_{1}-1\right)-6 a_{1}, 12 M k_{1}+6 M+4 k_{1}+2-\right.
$$

$$
\left.12 N m_{1}-3 N-2 m_{1}-3 b_{1}\right)
$$

and

$$
\begin{aligned}
b= & \frac{1}{-6}\left\{\left(24 M m_{1}+12 M+8 m_{1}+3+(d / 2)\left(-12 N k_{1}-6 N-2 k_{1}-1\right)-6 a_{1}\right)^{2}+d\left(12 M k_{1}+\right.\right. \\
& \left.6 M+4 k_{1}+2-12 N m_{1}-3 N-2 m_{1}-3 b_{1}\right)^{2}-16 m_{1}-6,2\left(24 M m_{1}+12 M+8 m_{1}+3+\right. \\
& \left.(d / 2)\left(-12 N k_{1}-6 N-2 k_{1}-1\right)-6 a_{1}\right)\left(12 M k_{1}+6 M+4 k_{1}+2-12 N m_{1}-3 N-2 m_{1}-\right. \\
& \left.\left.3 b_{1}\right)-8 k_{1}-4\right\} \times\left(12 a_{1}+2,-6 b_{1}+1\right) .
\end{aligned}
$$

For $b \in \mathbb{Z}[\sqrt{d}]$,

$$
\left(m_{1}, k_{1}\right) \equiv(1,0) \quad(\bmod (3,3))
$$

The existence of infinitely many $D(n)$-quadruples in $\mathbb{Z}[\sqrt{d}]$ is guaranteed by the above choices of a, b and r in each case.

To conclude this case, we have covered all possibilities for (m_{1}, k_{1}) except $\left(m_{1}, k_{1}\right) \not \equiv(2,1)(\bmod (3,3))$. Therefore, there exist infinitely many Diophantine quadruples in $\mathbb{Z}[\sqrt{d}]$ with the property $D\left(16 m_{1}+6,8 k_{1}+4\right)$, where $\left(m_{1}, k_{1}\right) \not \equiv(2,1)(\bmod (3,3))$.

5. Concluding Remarks

Given a square-free integer $d \equiv 2(\bmod 4)$, the existence of $D(n)$-quadruples in the ring $\mathbb{Z}[\sqrt{d}]$ for some $n \in \mathbb{Z}[\sqrt{d}]$ has been investigated in $[7,17]$. We investigate this problem for the remaining values of n. However, our method does not work for a few values of n, i.e., $n \in\{4(12 r+5,6 s+3), 4(12 r+11,6 s+$ $3),(48 r+38,24 s+12),(48 r+2,24 s)\}$ with $r, s \in \mathbb{Z}$.

We discuss some examples for the existence of $D(n)$-quadruples in $\mathbb{Z}[\sqrt{d}]$ for these exceptions. We first shorten these exceptions with the help of $[7$, Theorem 1.1], and then we provide some examples for the remaining cases.

Let $d=2 N$ such that (1.1) and (1.2) are solvable in integers, where $N \in$ \mathbb{N}. Assume that $n=4(12 m+5,6 k+3)$ with $m=\alpha N+\beta$ and $k=\alpha_{1} N+\beta_{1}$, where $\alpha, \beta, \alpha_{1}, \beta_{1} \in \mathbb{Z}$. Then $n=4\left(12 \alpha N+12 \beta+5,6 \alpha_{1} N+6 \beta_{1}+3\right)$. Utilizing (iii) of Lemma 2.3, we get $2,3 \nmid N$ and thus we can choose β, β_{1} such that $12 \beta+5$ and $6 \beta_{1}+3$ are of the form $N \gamma$ and $N \gamma_{1}$, respectively with odd integers γ and γ_{1}. Thus $n=2 N\left(24 \alpha+2 \gamma, 12 \alpha_{1}+2 \gamma_{1}\right)$, since $2 \gamma, 2 \gamma_{1} \equiv 2$ $(\bmod 4)$, so that $24 \alpha+2 \gamma$ and $12 \alpha_{1}+2 \gamma_{1}$ are of the form $4 t_{1}+2$ for some integer $t_{1} \geq 1$.

Again $2 N$ is square in $\mathbb{Z}[\sqrt{d}]$, and thus [7, Theorem 1.1] and Lemma 2.1 together show that there exist infinitely many $D(n)$-quadruples in $\mathbb{Z}[\sqrt{d}]$. Analogously, we can draw a similar conclusion for $n=4(12 m+11,6 k+3)$. We now consider $n=(4(12 m+9)+2,4(6 k+3))$. As in the above, $n=$ $2\left(24 N \alpha+24 \beta+19,12 N \alpha_{1}+12 \beta_{1}+6\right)$. Since $2,3 \nmid N$, so that we can choose β, β_{1} such that $24 \beta+19$ and $12 \beta_{1}+6$ are of the form $N \gamma$ and $N \gamma_{1}$, respectively. Using (iii) of Lemma 2.3 , we get $N \equiv 1(\bmod 4)$, and thus $\gamma \equiv 3(\bmod 4)$ and $\gamma_{1} \equiv 2(\bmod 4)$. Finally we use $[7$, Theorem 1.1] and Lemma 2.1 to conclude that there exist infinitely many $D(n)$-quadruples in $\mathbb{Z}[\sqrt{d}]$. Analogously we can establish the same for $n=(4(12 m)+2,4(6 k))$.

We now provide some examples supporting the existence of $D(n)$-quadruple in $\mathbb{Z}[\sqrt{10}]$ for the exceptional values of n.

Example 1. We consider $d=10$ and $n=4(12 m+5,6 k+3)$ with $m, k \in \mathbb{Z}$. Let $m=5 M$ and $k=5 K+2$, where $M, K \in \mathbb{Z}$. Then $n=4(5(12 M+1), 30 K+15)$, which can be written as $n=10(24 M+2,12 K+6)$. Thus n is of the form $10\left(4 m^{\prime}+2,4 k^{\prime}+2\right)$ with $m^{\prime}, k^{\prime} \in \mathbb{Z}$. Therefore using [7, Theorem 1.1] and Lemma 2.1, we conclude that there exist infinitely many $D(n)$-quadruples in $\mathbb{Z}[\sqrt{10}]$. Analogously, we can show the same for $n=4(12 m+11,6 k+3)$ by putting $m=5 M+2$ and $k=5 K+2$.

Example 2. Suppose $d=10$ and $n=(4(12 m+9)+2,4(6 k+3))=2(24 m+$ $19,12 k+6)$. Let $m=5 M+4$ and $k=5 K+2$. Then $n=10(24 M+23,12 k+6)$. Since $24 M+23 \equiv 3(\bmod 4)$ and $12 K+6 \equiv 2(\bmod 4)$, so that by [7, Theorem 1.1] and Lemma 2.1, we can conclude that there exist infinitely many $D(n)$-quadruples in $\mathbb{Z}[\sqrt{10}]$. Similar conclusion can be drawn for $n=$ $(4(12 m)+2,4(6 k))$ by taking $m \equiv 1(\bmod 5)$ and $k \equiv 0(\bmod 5)$.

Example 3. Assume that $d=10$ and $n=4(12 m+5,6 k+3)$ with $m \equiv 2,3$ $(\bmod 5)$. We factorize $3 n$ as follows:

$$
\begin{aligned}
3 n & =12(12 m+5,6 k+3) \\
& =(-18,6)(3,1)(24 m+10,12 k+6) \\
& =(-18,6)(120 k+72 m+90,36 k+24 m+28) .
\end{aligned}
$$

We take α_{1} and α_{2} to be the first and the second factor of the above equation, respectively. Further utilizing Lemma 2.2 we get

$$
a+2 r=(60 k+36 m+36,18 k+12 m+17)
$$

We choose $a=(19,6)^{t}(0,1)$ with $\operatorname{Nm}(a)=-10$, where $t \in \mathbb{N}$. This implies that there exist $\alpha, \beta \in \mathbb{Z}$ such that $a=(20 \alpha, 10 \beta-1)$, and thus $r=(30 k+$ $18 m-10 \alpha+18,9 k+6 m+9-5 \beta)$. Further $a b+n=r^{2}$ implies

$$
b=\frac{\left(r^{2}-n\right)(20 \alpha,-10 \beta+1)}{-10}
$$

Since $m \equiv 2$, or $3(\bmod 5), b \in \mathbb{Z}[\sqrt{10}]$ and we have infinitely many a 's, therefore by using Lemmas 2.2 and 2.4, we get infinitely many $D(n)$-quadruples in $\mathbb{Z}[\sqrt{10}]$. Analogously, we can show the existence of infinitely many $D(n)$ quadruples in $\mathbb{Z}[\sqrt{10}]$ for $n=4(12 m+11,6 k+3)$ when $m \equiv 0$, or $4(\bmod 5)$.
Example 4. Suppose that $d=10$ and $n=(4(12 m+9)+2,4(6 k+3))$ with $m \equiv 1$, or $2(\bmod 5)$. We factorize

$$
\begin{aligned}
3 n & =(4,1)(4,-1)(2(12 m+9)+1,2(6 k+3)) \\
& =(4,1)(-120 k+96 m+16,48 k-24 m+5) .
\end{aligned}
$$

We choose α_{1} and α_{2} to be the first and the second factor of the last equation, respectively. We use Lemma 2.2 to get $a+2 r=(-60 k+48 m+10,24 k-$ $12 m+3)$. Let $a=(19,6)^{t}(10,3)$ with $\operatorname{Nm}(a)=10$, where $t \in \mathbb{N}$. Thus there exist $\alpha, \beta \in \mathbb{Z}$ such that $a=(20 \alpha+10,10 \beta+3)$ and thus $r=(24 m-30 k-$ $10 \alpha,-6 m+12 k-5 \beta)$. Therefore Lemma 2.2 gives

$$
b=\frac{r^{2}-n}{a}
$$

Since $m \equiv 1$, or $2(\bmod 5)$, so that $b \in \mathbb{Z}[\sqrt{10}]$. Hence there exist infinitely many $D(n)$-quadruples in $\mathbb{Z}[\sqrt{10}]$. Analogously, we can construct $D(n)$ quadruples for $n=(4(12 m)+2,4(6 k))$ when $m \equiv 3$, or $4(\bmod 5)$.

The problem of existence of infinitely many $D(n)$-quadruples in $\mathbb{Z}[\sqrt{10}]$ for $n \in \mathbb{Z}[\sqrt{10}]$ is solved, except for $n \in \mathcal{S}_{0}:=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$, where
$S_{1}=\{4(12 m+5,6 k+3):(m, k) \equiv(0,0),(0,1),(0,3),(0,4) \quad(\bmod (5,5))$ or $m \equiv 1,4 \quad(\bmod 5)\}$,
$S_{2}=\{4(12 m+11,6 k+3):(m, k) \equiv(2,0),(2,1),(2,3),(2,4) \quad(\bmod (5,5))$ or $m \equiv 1,3 \quad(\bmod 5)\}$,
$S_{3}=\{(4(12 m+9)+2,4(6 k+3)):(m, k) \equiv(4,0),(4,1),(4,3),(4,4) \quad(\bmod (5,5))$
or $m \equiv 0,3 \quad(\bmod 5)\}$, and
$S_{4}=\{48 m+2,36 k):(m, k) \equiv(1,1),(1,2),(1,3),(1,4) \quad(\bmod (5,5))$ or $m \equiv 0$, $2(\bmod 5)\}$.
Finally, we put the following question for $n \in \mathcal{S}_{0}$.
Question 5.1. Do there exist infinitely many $D(n)$-quadruples in $\mathbb{Z}[\sqrt{10}]$ when $n \in S_{0}$?

Acknowledgements

The authors would like to thank the anonymous referees for their valuable suggestions/comments that immensely improved the presentation of the paper. A. Hoque acknowledges SERB MATRICS Project (MTR/2021/000762) and SERB CRG Project CRG/2023/007323, Govt. of India.

References

[1] F. S. Abu Muriefah and A. Al Rashed, Some Diophantine quadruples in the ring $\mathbb{Z}[\sqrt{-2}]$, Math. Commun. 9 (2004), 1-8.
[2] N. Adžaga, On the size of Diophantine m-tuples in imaginary quadratic number rings, Bull. Math. Sci. 9 (2019), no. 3, Article ID: 1950020, 10pp.
[3] A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[4] M. Bliznac Trebješanin and A. Filipin, Nonexistence of D(4)-quintuples, J. Number Theory 194 (2019), 170-217.
[5] N. C. Bonciocat, M. Cipu and M. Mignotte, There is no Diophantine $D(-1)$-quadruple, J. London Math. Soc. 105 (2022), 63-99.
[6] E. Brown, Sets in which $x y+k$ is always a square, Math. Comp. 45 (1985), 613-620.
[7] K. Chakraborty, S. Gupta, and A. Hoque, On a conjecture of Franušić and Jadrijević: Counter-examples, Results Math. 78 (2023), no. 1, 14pp, article no. 18.
[8] K. Chakraborty, S. Gupta and A. Hoque, Diophantine triples with the property $D(n)$ for distinct n 's, Mediterr. J. Math. 20 (2023), no. 1, 13pp, article no. 31.
[9] A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15-27.
[10] A. Dujella, Some polynomial formulas for Diophantine quadruples, Grazer Math. Ber. 328 (1996), 25-30.
[11] A. Dujella, The problem of Diophantus and Davenport for Gaussian integers, Glas. Mat. Ser. III 32 (1997), 1-10.
[12] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214.
[13] A. Dujella, Number Theory, Školska knjiga, Zagreb, 2021.
[14] A. Dujella, Diophantine m-tuples and Elliptic Curves, Springer, Cham, 2024.
[15] A. Dujella, Triples, quadruples and quintuples which are $D(n)$-sets for several n 's, in: Class Groups of Number Fields and Related Topics, K. Chakraborty, A. Hoque and P. P. Pandey (eds.) (to appear).
[16] C. Elsholz, A. Filipin and Y. Fujita, On Diophantine quintuples and $D(-1)$-quadruples, Monats. Math. 175 (2014), 227-239.
[17] Z. Franušić, Diophantine quadruples in the ring $\mathbb{Z}[\sqrt{2}]$, Math. Commun. 9 (2004), 141-148.
[18] Z. Franušić, Diophantine quadruples in $\mathbb{Z}[\sqrt{4 k+3}]$, Ramanujan J. 17 (2008), 77-88.
[19] Z. Franušić, A Diophantine problem in $\mathbb{Z}[\sqrt{(1+d) / 2}]$, Studia Sci. Math. Hungar. 46 (2009), 103-112.
[20] Z. Franušić, Diophantine quadruples in the ring of integers of the pure cubic field $\mathbb{Q}(\sqrt[3]{2})$, Miskolc Math. Notes 14 (2013), 893-903.
[21] Z. Franušić and I. Soldo, The problem of Diophantus for integers of $\mathbb{Q}(\sqrt{-3})$, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 18 (2014), 15-25.
[22] Z. Franušić and B. Jadrijević, $D(n)$-quadruples in the ring of integers of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$, Math. Slovaca 69 (2019), 1263-1278.
[23] S. Gupta, $D(-1)$ tuples in imaginary quadratic fields, Acta Math. Hungar. 164 (2021), 556-569.
[24] B. He, A. Togbé and V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math. Soc. 371 (2019), 6665-6709.
[25] Lj. Jukić Matić, Non-existence of certain Diophantine quadruples in rings of integers of pure cubic fields, Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), no. 10, 163-167.
[26] I. Soldo, On the existence of Diophantine quadruples in $\mathbb{Z}[\sqrt{-2}]$, Miskolc Math. Notes 14 (2013), 265-277.
K. Chakraborty

Department of Mathematics, SRM University AP
Neerukonda, Mangalagiri
Guntur-522240
Andhra Pradesh, India
E-mail: kalychak@gmail.com
S. Gupta

Harish-Chandra Research Institute
A CI of Homi Bhabha National Institute
Chhatnag Road, Jhunsi
Prayagraj - 211019, India
E-mail: shubhamgupta2587@gmail.com
A. Hoque

Department of Mathematics, Faculty of Science
Rangapara College, Rangapara
Sonitpur-784505, Assam, India
E-mail: ahoque.ms@gmail.com

[^0]: 2020 Mathematics Subject Classification. 11D09, 11R11.
 Key words and phrases. Diophantine quadruples, Pellian equations, Quadratic fields.

