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A NOTE ON SOME POLYNOMIAL-FACTORIAL
DIOPHANTINE EQUATIONS

Saša Novaković

Abstract. In 1876 Brocard, and independently in 1913 Ramanu-

jan, asked to find all integer solutions for the equation n! = x2 − 1. It

is conjectured that this equation has only three solutions, but up to now
this is an open problem. Overholt observed that a weak form of Szpiro’s-

conjecture implies that Brocard’s equation has finitely many integer solu-

tions. More generally, assuming the ABC-conjecture, Luca showed that
equations of the form n! = P (x) where P (x) ∈ Z[x] of degree d ≥ 2 have

only finitely many integer solutions with n > 0. And if P (x) is irreducible,
Berend and Harmse proved unconditionally that P (x) = n! has only finitely

many integer solutions. In this note we study diophantine equations of

the form g(x1, ..., xr) = P (x) where P (x) ∈ Z[x] of degree d ≥ 2 and
g(x1, ..., xr) ∈ Z[x1, ..., xr] where for the xi one may also plug in An or

the Bhargava factorial n!S . We want to understand when there are finitely

many or infinitely many integer solutions. Moreover, we study diophan-
tine equations of the form g(x1, ..., xr) = f(x, y) where f(x, y) ∈ Z[x, y] is
a homogeneous polynomial of degree ≥ 2.

1. Introduction

Brocard [5] and independently Ramanujan [19] asked to find all integer
solutions for n! = x2 − 1. Up to now this is an open problem, known as Bro-
card’s problem. It is believed that the equation has only the three solutions
(x, n) = (5, 4), (11, 5) and (71, 7). Overholt [17] observed that a weak form of
Szpiro’s-conjecture implies that Brocard’s equation has finitely many integer
solutions. Using the ABC-conjecture Luca [15] proved that diophantine equa-
tions of the form n! = P (x) with P (x) ∈ Z[x] of degree d ≥ 2 have only finitely
many integer solutions with n > 0. If P (x) is irreducible, Berend and Harmse
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2 SAšA NOVAKOVIć

[3] showed unconditionally that P (x) = Hn has finitely many integer solutions
where Hn are highly divisible sequences which also include n!. Furthermore,
they proved that the same is true for certain reducible polynomials.

Without assuming the ABC-conjecture, Berend and Osgood [2] showed
that for arbitrary P (x) of degree ≥ 2 the density of the set of positive inte-
gers n for which there exists an integer x such that P (x) = n! is zero. We
believe that the arguments presented in loc.cit. can also be applied in more
general situations, implying, for instance, that the density of the set of pos-
itive integers solving n1!A

n1 · · ·nr!A
nr
r = P (x) is zero. Further progress in

this direction was obtained by Bui, Pratt and Zaharescu [8] where the au-
thors give an upper bound on integer solutions n ≤ N to n! = P (x). For
a detailed overview on results about, for instance, Ramanujan–Nagell type
equations bAn+D = x2 and exponential diophantine equations in general we
refer to [7], [20] and [21]. Of course, there are several polynomials P (x) for
which P (x) = n! is known to have either very few integer solutions or none
(see for instance [6], [9] and [18]). known as Brocard’s problem [5]. Berndt
and Galway [4] showed that the largest value of n in the range n < 109 for
which Brocard’s equation x2 − 1 = n! has a positive integer solution is n = 7.
Matson [16] extended the range to n < 1012 and Epstein and Glickman [12]
to n < 1015.

Starting from Brocard’s problem there are also studied variations or gen-
eralizations of x2 − 1 = n! (see for instance [11], [13], [24], [25] [26]). For
instance Ulas [24] studied, among others, diophantine equations of the form
2nn! + A = y2 and proved that the Hall conjecture (which is a special case
of ABC-conjecture) implies that the equation has only finitely many integer
solutions. Note that 2nn! can also be formulated using the notation for the
Bhargava factorial n!S . Then 2nn! = n!S , with S = {2n + b|n ∈ Z}. We
do not recall the definition of the Bhargava factorial and refer to [1] or [23]
instead.
In the present note we are interested in the following problem: let g(x1, ..., xr) ∈
Z[x1, ..., xr] and f be polynomials where either f ∈ Q[x] or f ∈ Q[x, y]. Then
consider the diophantine equation

g(x1, ..., xr) = f.

For any of the xi in g we may also plug in An or n!S . We think that this
is a reasonable generalization. Of course, formulated in this generality there
are plenty of g and f such that the diophantine equation has infinitely many
(positive) integer solutions. Several (exponential) diophantine equations are
of the above form. Below we mention only a few examples:

(i) superelliptic equations.
(ii) Erdös-Obláth type equations: take g(x1) = x1 and plug in n! and let

g(x, y) = xp±yp or take g(x1, x2) = x1±x2 and plug in n! respectively
m! and let f(x) = xp.
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(iii) Thue-Mahler equation: take g(x1, ..., xr) = x1 · x2 · · ·xr and let xi =
pni
i .

(iv) Thue-equation: take g(x1, ..., xr) = m and let f(x, y) be a homoge-
neous polynomial of degree ≥ 3.

(v) Brocard’s problem: take g(x1) = x1 and plug in n! and let f(x) =
x2 − 1. More generally, let f(x) be any polynomial of degree ≥ 2 and
we get the diophantine equation considered in [15].

(vi) Ramanujan-Nagell type equation: take g(x1) = bx1 + D and plug in
An for some positive fixed A and let f(x) = x2.

(vii) Fermat equation: take g(x1, x2) = xn
1 + xn

2 and let f(x) = xn.
(viii) generalizations of Brocard’s problem, see [23]: take g(x1) = x1 and

plug in n! and let f(x, y) be any irreducible binary form of degree ≥ 2.
(ix) generalizations of Brocard’s problem, see [10]: take g(x1, x2) = −x2

1+x2

and plug in n! and let f(x, y) = x2 + y2 −A.

In the examples (i) to (viii) from above, conditionally or unconditionally
there are only finitly many integer solutions. In some situations the exact
number of integer solutions is known. So from a structural point of view one
can ask for a geometric characterization of the polynomials g and f (or the
variety defined by g − f = 0) such that the diophantine equation g = f has
finitely many solutions. For instance, if the hypersurface defined by g−f is of
general type (i.e. if the degree is large enough), the Bombieri–Lang conjecture
states that the set of rational points is not Zariski dense. So if g−f describes
a curve in P2, Falting’s theorem tells us that there are only finitely many
rational and therefore integer solutions. Pluging in n! or n!An into one of the
variables of g still gives only finitely many integer solutions. But often we
encounter diophantine equations that are not of general type or that produce
varieties of higher dimension where only few structural results concerning the
existence and number of rational points are available. At this point, one can
also try the so called modular approach which was used in Wiles’ celebrated
proof of Fermat’s last theorem. The idea is, roughly speaking, to assign to
a diophantine equation a so called Frey-Hellegouarch curve. Hopefully, this
curve is an elliptic curve with minimal discriminant ∆ = C ·Dp. Then look
at the Galois-representation of the p-torsion of the curve and conclude, for
instance, by results of Mazur that the representation is irreducible. Now one
can apply Ribet’s theorem to obtain that the representation gives rise to some
newform of level N . If one can prove that there are no such newforms of level
N , one finally finds that the considered diophantine equation has no non-tivial
solutions. Besides equations of Fermat-type, this approach was also applied
to exponential diophantine equations such as generalized Ramanujan-Nagell-
equations. For details we refer the reader to the survey of Siksek [22] and
references therein.
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In the present note we will not use the modular approach. Instead,
we make use of elementary arguments, the ABC or weak form of Szpiro’s-
conjecture and indirectly of diophantine approximation and methods from
algebraic number theory. At some points the proofs can certainly be simply-
fied, but I wanted to make the arguments as detailed as necessary.

We recall the ABC and the weak form of Szpiro’s-conjecture which can be
found for instance in [14]. For a non-zero integer a, let N(a) be the algebraic
radical, namely N(a) =

∏
p|a p. Note that

(1.1) N(a) =
∏

p|a
p ≤

∏

p≤a

p < 4a,

where the last inequality follows from a Chebyshev-type result in elementary
prime number theory and is called the Finsler inequality.

Conjecture 1.1 (Weak form of Szpiro’s-conjecture). There exists some
constant s > 0 such that for mutually prime integers A,B and C with A+B =
C the inequality

(1.2) |ABC| < N(ABC)s

holds.

Conjecture 1.2 (ABC-conjecture). For any ϵ > 0 there is a constant
K(ϵ) depending only on ϵ such that whenever A,B and C are three coprime
and non-zero integers with A+B = C, then

(1.3) max{|A|, |B|, |C|} < K(ϵ)N(ABC)1+ϵ

holds.

The ABC-conjecture from above implies the weak form of Szpiro’s-conjecture.

In the following let g(x1, x2, ..., xt) = bx1 ·x2 · · ·xt. In all the variables we
plug in n! or n!An. Formulated in the notation of the Bhargava factorial, we
plug in n!Z or n!S , where S = {An+ b|n ∈ Z} for some fixed positive integer
A. Therefore, we want to study diophantine equations of the form

bn1! · · ·nr!A
n1
1 · · ·Anq

q = f(x)

and
bn1! · · ·nr!A

n1
1 · · ·Anq

q = f(x, y),

where q ≤ r, r > 0 and f(x) and f(x, y) are polynomials with rational
coefficients. For a better readibility and to keep it clearer, we prove the
results in the present work for q = r. However, we would like to note that all
results also hold for q < r.

Theorem 1.3. Fix a non-zero integer b and positive integers A1, ..., Ar.
If d > r, then the equation bn1!A

n1
1 · · ·nr!A

nr
r = xd has only finitely many

integer solutions. If d ≤ r, then bn1!A
n1
1 · · ·nr!A

nr
r = xd has infinitely many
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integer solutions, except when b < 0 and d is even, where there are no solu-
tions.

Remark 1.4. The statement of Theorem 1.3 remains true if xd is replaced
by axd with fixed positive rational number a.

Theorem 1.5. Let f(x) ∈ Q[x] be a polynomial of degree d ≥ 2 which
is not monomial and has at least two distinct roots. Fix a non-zero inte-
ger b and positive integers A1, ..., Ar. Then the ABC-conjecture implies that
bn1!A

n1
1 · · ·nr!A

nr
r = f(x) has only finitely many integer solutions with ni > 0.

We want to point out that we can generalize Theorem 1.5 by following its
proof. In fact, it is used that N(bn1!A

n1
1 · · ·nr!A

nr
r ) = o(bn1!A

n1
1 · · ·nr!A

nr
r )

as (n1, ...nr) → ∞. We can argue as in the proof of Theorem 1.5 to obtain:

Theorem 1.6. Let f(x) ∈ Q[x] be a polynomial of degree d ≥ 2 which is
not monomial and has at least two distinct roots and F (n1, ..., nr) a function
satisfying N(F (n1, ...nr)) = o(F (n1, ...nr)) as (n1, ..., nr) → ∞. Then the
ABC-conjecture implies that f(x) = F (n1, ..., nr) has finitely many integer
solutions.

Since n!|n!S , we see that for all primes p, the p-adic valuation from the
definition of n!S tends to infinity as n → ∞. Therefore, N(n!S) = o(n!S) as
l → ∞. From this, it follows that N(n1!S1

· · ·nr!Sr
) = o(n1!S1

· · ·nr!Sr
) as

(n1, ..., nr) → ∞. Theorem 1.6 then implies:

Corollary 1.7. Let f(x) ∈ Q[x] be a polynomial of degree d ≥ 2 which
is not monomial and has at least two distinct roots. Then the ABC-conjecture
implies that f(x) = n1!S1

· · ·nr!Sr
has finitely many integer solutions.

Note that Theorems 1.3, 1.5 and 1.6 generalize the results in [15] and
some of the results in [24] and [23]. Da̧browski [10] asked whether equations
of the form n! + A = x2 + y2 have finitely many positive integer solutions
and Ulas [24] studied equations of the form x2 − A = n!! where n!! denotes
the double factorial. Other equations involving the double factorial have also
been studied in [24]. As mentioned above, Luca [15] proved uncoditionally
that xd = n! has only finitely many solutions for d ≥ 2. Takeda [23] consid-
ered, more generally, equations of the form f(x, y) = n! where f(x, y) is an
arbitrary binary form of degree ≥ 2. He proved, among others, that if f(x, y)
is irreducible of degree ≥ 2, then there are only finitely many n such that n! is
represented by f(x, y). With Thue’s theorem one has finitely many solutions
if the degree of f(x, y) is at least three. In loc.cit. it is furthermore observed
that the same holds for certain reducible polynomials f(x, y). So in view of
this fact and, for instance, the work of Erdös and Obláth [6], it is reasonable
to ask, for example, whether f(x, y) = n!S or f(x, y) = n!! have only finitely
many integer solutions when f(x, y) is a (homogeneous) polynomial of degree
at least two.



6 SAšA NOVAKOVIć

Theorems 1.8, 1.10, 1.11 and 1.13 make a small step in this direction.

Theorem 1.8. Let f(x, y) = adx
d + ad−1x

d−1y+ · · ·+ a1xy
d−1 + a0y

d ∈
Z[x, y] be an irreducible homogeneous polynomial. Fix some non-zero integer
b and positive integers A1, ..., Ar. If d > r ≥ 1, then there are finitely many
(n1, ..., nr) such that bn1!A

n1
1 · · ·nr!A

nr
r is represented by f(x, y). If r ≥ 2,

then the diophantine equation

bn1!A
n1
1 · · ·nr!A

nr
r = f(x, y)

has finitely many integer solutions with ni > 0.

Corollary 1.9. For any irreducible f(x) ∈ Z[x] with degree d > r, the
equation f(x) = bn1!A

n1
1 · · ·nr!A

nr
r has only finitely many integer solutions.

Theorems 1.10, 1.11 and 1.13 deal with the case of some reducible poly-
nomials.

Theorem 1.10. Let f(x, y) ∈ Z[x, y] be a polynomial with factorization

f(x, y) = f1(x, y)
e1 · · · fu(x, y)eu ,

where fi(x, y) are irreducible homogeneous polynomials of degree di. Fix some
non-zero integer b and positive integers A1, ..., Ar. Now if di ≥ 2 and d1e1 +
· · ·+ dueu > r or if min{d1e1, ..., dueu} > r, then there are only finitely many
(n1, ..., nr) such that = bn1!A

n1
1 · · ·nr!A

nr
r is represented by f(x, y). If r ≥ 2,

then the equation

bn1!A
n1
1 · · ·nr!A

nr
r = f(x, y)

has only finitely many integer solutions.

Theorem 1.10 treats equations such as f(x, y) = (xy)4(x − y)3 = n!m!
but can not be applied to xy(x ± y) = 3nn!. Theorems 1.11 and 1.13 below
try to include cases where Theorem 1.10 can not be applied (see the examples
on page 13 and 14).

Theorem 1.11. Let P (x), Q(y) be polynomials with rational coefficients
such that at least one of the two has at least two distinct roots. Set f(x, y) :=
P (x)2Q(y)+Q(y)2P (x) and fix some non-zero integer b and positive integers
A1, ..., Ar. Then the ABC-conjecture implies that

bn1!A
n1
1 · · ·nr!A

nr
r = f(x, y)

has only finitely many positive integer solutions (n1, ..., nr, x, y) with ni > 0.

We want to stress that the assumption of the existence of at least two
distinct roots is necessary to conclude that there are only finitely many posi-
tive integer solutions. Consider for instance P (x) = x and Q(y) = y and the
equation

P (x)2Q(y) +Q(y)2P (x) = 2 · n! ·m! · l!
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Choosing x = y, we see that

2x3 = 2 · n! ·m! · l!
has infinitely many solutions according to Theorem 1.3. In this context we
make the observation that Theorem 1.3 has the following consequence.

Corollary 1.12. Let f(x, y) = adx
d+ad−1x

d−1y+ · · ·+a1xy
d−1+a0y

d

be a homogeneous polynomial of degree d. Assume a0+ · · ·+ad > 0 or a0 > 0
or ad > 0. Furthermore, let b > 0 and d ≤ r. Then the diophantine equation

bn1!A
n1
1 · · ·nr!A

nr
r = f(x, y)

has infinitely many integer solutions with ni > 0.

There are certainly more cases where the equation of Corollary 1.12 has
infinitely many solutions. Our aim was just to point out that in case d ≤ r
there are usually infinitely many solutions. Notice that Theorem 1.1 also
implies that the equation in Corollary 1.12 has only finitely many integer
solutions with x = y if d > r. We do not know whether there are only finitely
many solutions with x ̸= y and gcd(x, y) ̸= 1 in case d > r.

Problem 1.1. Let f(x, y) be a homogeneous polynomial of degree d with
rational coefficients. Fix a non-zero integer b and some positive integers
A1, ..., Aq and assume d > r. Furthermore, let S1, ..., Sr be infinite subsets
of Z. Does the equation bn1!S1 · · ·nr!Sr · Am1

1 · · ·Amq
q = f(x, y) have only

finitely many integers solutions (n1, ..., nr,m1, ...,mq, x, y)? Are there infin-
itely many solutions if d ≤ r?

A related problem is the following:

Problem 1.2. Let f(x, y) be a homogeneous polynomial of degree d with
rational coefficients. Let S1, ..., Sr be infinite subsets of Z and fix some non-
zero integer b. Give some characterization for when f(x, y) = bl1!S1

· · · lr!Sr

has finitely many or infinitely many integer solutions?

Another result is this direction is obtained if A1, ..., Aq in Problem 1.1 is
a set of distinct primes. Using the Thue-Mahler Theorem, we can show the
following:

Theorem 1.13. Let f(x, y) = x2sys ± y2sxs where s > 0 is an arbitrary
but fixed positive integer (α, β) with gcd(α, β) = 1 one has gcd(P (α), Q(β))) =
1 and p1, ..., pq a set of primes with p1 < ... < pq. Fix some non-zero integer b
and assume f(x, y) has at least three pairwise non-proportional linear factors
over C. Then the weak form of Szpiro’s-conjecture implies that

bpz11 · · · pzqq · n1!A
n1
1 · · ·nl!A

nl

l = f(x, y)

has only finitely many integer solutions (z1, ..., zq, n1, ..., nl, x, y) with zi ≥ 0
and nj > 0 and gcd(x, y) = 1.
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2. Proof of Theorem 1.3

We give the proof only for the cases r = 1, 2, since the arguments for
arbitrary r > 2 are analogous. So let r = 1. We consider the equation

bn!An = xd.

If n > 2max{A, |b|}, then there is a prime number p in the interval (n/2, n)
wich is larger than max{A, |b|}. The prime p will appear with exponent one
in bn!An. Since d > 1, the number bn!An cannot be a perfect power.

Now let r = 2. We consider

(2.4) bn!Anm!Bm = xd.

If n > 2max{A,B, |b|}, then there is a prime number p in the interval (n/2, n)
which is larger than max{A,B, |b|}. There are three cases to consider.

1) n > m. In this case we see that the prime p will appear with exponent
at most two in the product bn!Anm!Bm. Since d ̸= 2, the product
bn!Anm!Bm cannot be of the form xd. Therefore, there are no integer
solutions if n > 2max{A,B, |b|} and n > m.

2) n < m. In this case m > 2max{A,B, |b|}. Then there is a prime
number p in the interval (m/2,m) which is larger than max{A,B, |b|}.
Again, this prime p will appear with exponent at most two in the
product bn!Anm!Bm. Since d ̸= 2, the product bn!Anm!Bm can-
not be of the form xd. Hence, there are no integer solutions if n >
2max{A,B, |b|} and n < m.

3) n = m. In this case equation 2.4 becomes

b(n!)2(AB)n = xd.

As n > 2max{A,B, |b|}, the prime number p in the interval (n/2, n)
will appear with exponent two in the product b(n!)2(AB)n. Since
d ̸= 2, the product b(n!)2(AB)n cannot be of the form xd. Therefore,
there are no integer solutions if n > 2max{A,B, |b|} and n = m.

So we are left with n ≤ 2max{A,B, |b|}. Again, we consider the following
cases.

1) m < n. In this case there can be only finitely many integer solutions
(n,m, z) satisfying 2.4.

2) n = m. In this case there can be only finitely many integer solutions
(n, n, z) satisfying 2.4.

3) n < m. In this case, either we must have n < m ≤ 2max{A,B, b}
or n ≤ 2max{A,B, b} < m. Clearly, if n < m ≤ 2max{A,B, |b|},
there can be only finitely many integer solutions (n,m, z) satisfying
2.4. Now if n ≤ 2max{A,B, |b|} < m, we conclude from 2) from above
that there is a prime number p in the interval (m/2,m) which is larger
than max{A,B, |b|}. This prime p will appear with exponent at most
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two in the product bn!Anm!Bm. Since d ̸= 2, the product bn!Anm!Bm

cannot be of the form xd.

Summarizing, we see that the equation 2.4 can have only finitely many integer
solutions. This completes the first part of the proof.

Now let us consider the case d ≤ r. Obviously, there are infinitely many
integer solutions for x = bn1!A

n1
1 n2!A

n2
2 · · ·nr!A

nr
r . Therefore, we assume

d ≥ 2. Notice that in case b < 0 and d is even the equation has no solution.
So we consider the equation

xd = bn1!A
n1
1 n2!A

n2
2 · · ·nr!A

nr
r ,

where b > 0 and d arbitrary or b < 0 and d odd. Since d ≤ r, we can rewrite
the equation as

xd = bn1!A
n1
1 n2!A

n2
2 · · ·nd!A

nd

d · (nd+1!A
nd+1

d+1 · · ·nr!A
nr
r ).

Now we set nd+1 = nd+2 = · · · = nr = 1 and n1 = n2 = · · ·nd−1 = m and
nd = m+ 1. Then the equation becomes

xd = (A1 · · ·Ad)
m · (m!)d · bAd ·Ad+1 · · ·Ar · (m+ 1).

We rewrite again:

xd = (A1 · · ·Ad)
(m−(d−1)) · (m!)d ·b · (A1 · · ·Ad)

(d−1) ·Ad ·Ad+1 · · ·Ar · (m+1).

Now we want to choose m such that m − (d − 1) = m − d + 1 = ds. This is
equivalent to m+ 1 = d(s+ 1). If b > 0, we set

R := b · (A1 · · ·Ad)
(d−1) ·Ad ·Ad+1 · · ·Ar.

Then the above equation becomes

xd = (A1 · · ·Ad)
(m−(d−1)) · (m!)d ·Rd · (s+ 1).

Now we can set s = (Rd)td−1 − 1 where t > 0 is any positive integer and see
that m− (d− 1) = d · ((Rd)td−1 − 1) is a multiple of d. Notice that d ≥ 2 by
assumption and hence s ≥ 1. Our diophantine equation becomes

xd = ((A1 · · ·Ad)
((Rd)td−1−1))d · ((d(Rd)td−1 − 1)!)d · ((Rd)t))d.

This shows that we can find infinitely many interger solutions (x, n1, ..., nr)
with ni > 0. If b < 0 and d odd, we set

R′ := |b| · (A1 · · ·Ad)
(d−1) ·Ad ·Ad+1 · · ·Ar.

Then R = (−1)R′ and the diophantine equation becomes

xd = ((A1 · · ·Ad)
((Rd)td−1−1))d · ((d(Rd)td−1 − 1)!)d · ((Rd)t))d · (−1)td.

Choosing t odd, we conclude that td is odd. Thus td−1 is even. Since d ≥ 2 it
follows that (Rd)td−1 − 1 > 0. This shows that there are also infinitely many
integer solutions in this case. Note that the solutions are constructed only
using the fixed integers b, A1, ..., Ar and the given degree d. This completes
the proof.
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3. Proof of Theorem 1.5

Multiplying the equation bn1!A
n1
1 · · ·nr!A

nr
r = f(x) by a certain integer,

we may assume that f(x) is a polynomial with integer coefficients. So without
loss of generality, we assume

f(x) = a0x
d + a1x

d−1 + ...+ ad

with ai ∈ Z. Now multiply the equation bn1!A
n1
1 · · ·nr!A

nr
r = f(x) by ddad−1

0 .
We obtain

yd + b1y
d−1 + ...+ bd = c(n1!A

n1
1 · · ·nr!A

nr
r )

for a constant c, where c = bddad−1
0 and y := a0dx. Notice that bi = diaia

i−1
0

so that we can make the change of variable z := y+ b1
d . Since we are assuming

that f(x) has at least two distinct roots, the change of variable produces a
polynomial that does not have a monomial of degree d− 1. Therefore we get
the following equation

(3.5) zd + c2d
d−2 + ...+ cd = c(n1!A

n1
1 · · ·nr!A

nr
r ).

Notice that ci are integer coefficients wich can be computed in terms of ai
and d. Now let Q(X) = Xd + c2X

d−2 + ... + cd and notice that when |z| is
large one has

(3.6)
|z|d
2

< |Q(z)| < 2|z|d.

For the rest of the proof we denote by C1, C2, ... computable positive constants
depending on the coefficients ai and eventually on some small ϵ > 0 which
comes into play later by applying the ABC-conjecture.

Whenever (n1, ..., nr, z) is a solution to n1!A
n1
1 · · ·nr!A

nr
r = f(x) we con-

clude from (3.5) and (3.6) that there exist constants C1 and C2 such that

(3.7) |d · log|z| − log(n1!A
n1
1 · · ·nr!A

nr
r )| < C1,

for |z| > C2 (see [15] equation (10)). Now let R(X) ∈ Z[X] be such that
Q(X) = Xd+R(X). Since f(x) is not monomial and has at least two distinct
roots, R(X) can be assumed to be non-zero, let j ≤ d be the largest integer
with cj ̸= 0. We rewrite (3.5) as

zj + c2z
j−2 + ...+ cj =

c(n1!A
n1
1 · · ·nr!A

nr
r )

zd−j
.

Let R1(X) be the polynomial

R1(X) :=
R(X)

Xd−j
= c2X

j−2 + · · ·+ cj .

It is shown in [15] there are constants C3 and C4 ≥ C2 such that

0 < |R1(z)| < C3|z|j−2,
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for |z| > C4. So we have

zj +R1(z) =
c(n1!A

n1
1 · · ·nr!A

nr
r )

zd−j
.

For D = gcd(zj , R1(z)) we have

zj

D
+

R1(z)

D
=

c(n1!A
n1
1 · · ·nr!A

nr
r )

zd−jD
.

Applying the ABC-conjecture toA = zj

D , B = R1(z)
D and C =

c(n1!A
n1
1 ···nr!A

nr
r )

zd−jD
,

we find

(3.8)
|z|j
D

< C5N(
zjR1(z)c(n1!A

n1
1 · · ·nr!A

nr
r )

D3
)1+ϵ,

where C5 depends only on ϵ. It is shown in [15], p.272 that

N(
|z|j
D

) ≤ |z|,(3.9)

N(
R1(z)

D
) <

C3|z|j−2

D
.(3.10)

Moreover, we have

N(
c(n1!A

n1
1 · · ·nr!A

nr
r )

zd−jD
) ≤ N(c)N(n1!A

n1
1 · · ·nr!A

nr
r ) ≤ N(c)N(n1!A

n1
1 ) · · ·N(nr!A

nr
r ).

This gives

N(
c(n1!A

n1
1 · · ·nr!A

nr
r )

zd−jD
) ≤ N(c)N(n1!A

n1
1 ) · · ·N(nr!A

nr
r ) ≤ C6N(n1!) · · ·N(nr!),

where C6 = N(c)N(A1) · · ·N(Ar). From (1.1) it follows

(3.11) N(
c(n1!A

n1
1 · · ·nr!A

nr
r )

zd−jD
) < C64

n1 · · · 4nr = C64
(n1+···+nr)

and from (3.9), (3.10) and (3.11) we get

(3.12) N(
|z|j
D

)N(
R1(z)

D
)N(

c(n1!A
n1
1 · · ·nr!A

nr
r )

zd−jD
) <

C3C6|z|j−14(n1+···+nr)

D

From inequalities (3.8) and (3.12), we obtain

(3.13)
|z|j
D

< C7

( |z|j−14(n1+···+nr)

D

)(1+ϵ)
.

If we choose ϵ = 1
2d ≤ 1

2j , inequality (3.12) implies that

|z|1/2 < |z|1+ϵ−ϵj < C84
(n1+...+nr)(1+ϵ),

or simply

log|z| < C9n1 + ...+ C9nr + C10.

Thus

d · log|z| < C11n1 + ...+ C11nr + C12.
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This gives

(3.14) log(n1!A
n1
1 · · ·nr!A

nr
r ) < C1 + d · log|z| < C11n1 + ...+ C11nr + C13.

We can simplify 3.14 and finally obtain

log(n1!) + log(n2!) + · · ·+ log(nr!) < C14n1 + C14n2 + · · ·C14nr + C13.

Now we can conclude that only finitely many (n1, ..., nr) satisfy (3.14). We
give the argument for r = 2. So lets consider an inequality of the form

log(n!) + log(m!) < A′n+B′m+ C ′

where A′, B′ and C ′ are positive constant intergers. Assume there are infin-
itely many pairs (n,m) of natural numbers satisfying the inequality. There
are three cases:

1) infinitely many n and finitely many m: let s denote the maximum of
these m and t the minimum. Then we have

log(n!) + log(t!) < A′n+B′s+ C ′

and therefore

log(n!) < A′n+ E′

where E′ = log(t!)+B′s+C ′ is a constant. With Stirling’s formula for
approximating n!, we find that there are only finitely many n satisfying

log(n!) < A′n+ E′.

This gives a contradition.
2) infinitely many m and finitely many n: reverse the role of n and m.
3) infinitely many n and infinitely many m: the argument is similar.

At some point log(n!) exceeds A′n and log(m!) exceeds B′m + C ′.
Therefore infinitely many n and infinitely many m is impossible.

Since there are only finitely many (n1, ..., nr) satisfying (3.14), we finally
conclude from (3.7) that |z| < C15. This completes the proof.

4. Proof of Theorems 1.8 and 1.10

To prove the statement of Theorem 1.8 we have to imitate the proof of
Theorem 4.1 in [23]. We follow the notation of [23]. Let f(x, y) = adx

d +
ad−1x

d−1y + · · · + ad−1xy
1 + a0y

d be an irreducible polynomial and let KF

be the splitting field of f(x, 1). Denote by CF the set of conjugacy classes
of the Galois group GF = Gal(KF /Q) whose cycle type [h1, ..., hs] satisfies
hi ≥ 2. For a cycle σ, the cycle type is defined as the ascending ordered
list [h1, ..., hs] of the sizes of cycles in the cycle decomposition of σ. For
further details we refer to Chapters 2, 3 and 4 in [23]. Of particular interest
are the proofs of Lemma 2.1, Lemma 3.1, Theorem 3.6 and Theorem 4.1 of
loc.cit.. We proceed with our proof. Since d > r ≥ 1, we conclude from [23,
Lemma 2.1] that CF ̸= ∅. Now let C ∈ CF be a fixed conjugacy class of
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GF . We say that a prime p corresponds to C if the Frobenius map (p,KF /Q)
belongs to C (see [23], chapter 2 for details). Let g = gcd(ad, ..., a0) and

N = gp1 · · · puql11 · · · qlvv where qi are primes corresponding to a conjugacy
class in CF satisfying gcd(q, a∆mod) = 1 where a ∈ {ad, a0} and pj are the
other primes (see [23, Lemma 3.1] for details). Here ∆mod denotes a certain
modified discriminant of f(x, 1) and is defined by

∆mod =
∆f(x,1)

gcd(an, ..., a0)2n−2
.

The assumption d ≥ 2 and [23, Lemma 3.1] then imply that if N is rep-
resented by f(x, y) and q|N for a prime q corresponding to C satisfying
gcd(q, a∆mod) = 1, then N is divisible by qd at least. Without loss of
generality, let nr ≥ nr−1 ≥ · · · ≥ n1 and assume nr is big enough, say
nr > 2max{|b|, A1, ...Ar}. Since the second smallest positive integer divisible
by q is 2q, there is no solution for bn1!A

n1
1 · · ·nr!A

nr
r = f(x, y) if q < nr < 2q.

Indeed, since q < nr < 2q we see that 2q < 2nr and hence q < nr < 2q < 2nr.
This implies nr

2 < q < nr. Since nr > 2max{|b|, A1, ...Ar} and since d > r, we

see that qd does not divide bn1!A
n1
1 · · ·nr!A

nr
r . Now apply [23, Theorem 3.6]

(as in the proof of Theorem 4.1 of loc.cit.) to conclude that there exists a prime
q′ corresponding to C with q′ ∈ (q, 2q) and satisfying gcd(q′, a∆mod) = 1.
Therefore, by the same argument as before, if q′ < nr < 2q′ there are no
integer solutions for bn1!A

n1
1 · · ·nr!A

nr
r = f(x, y). By an induction argument

we conclude that whenever n1 > q there are no integer solutions. This shows
that there are only finitely many (n1, ..., nr) such that bn1!A

n1
1 · · ·nr!A

nr
r is

represented by f(x, y). Now if r ≥ 2, we have d ≥ 3 and we can use Thue’s
theorem to conclude that there are indeed only finitely many integer solutions.
The proof of Theorem 1.10 follows exactly the lines of the proofs of Theorems
4.3 and 4.7 in [23].

If all di ≥ 2, then proceed as follows: let KFj
be the splitting field

of fj(x, 1) and denote by CFj
be the set of conjugacy classes whose cycle

type has sizes ≥ 2. Now let q be a prime corresponding to a conjugacy
class C ∈ ∩u

j=1CFj satisfying gcd(q, a∆mod) = 1.Assume N is represented by
f(x, y). Therefore, there are x0, y0 such that q|f(x0, y0). Then there exists
a polynomial fj(x, y) = aj,dj

xdj + · · · + aj,0y
dj such that q|fj(x0, y0). Now

gcd(q, a∆mod) = 1 with a ∈ {ad, a0} implies gcd(q, a(j)∆j,mod) = 1 where
a(j) ∈ {aj,dj , aj,0}. Here ∆j,mod denotes the modified discriminant of fj(x, 1).

It follows from [23, Lemma 3.1] that qd|f(x, y). As in the proof of Theorem 1.8
above, we assume without loss of generality that nr ≥ · · · ≥ n1 and choose
nr big enough. Again, one concludes the statement from an inductions ar-
gument. The rest of the proof is the same as in the proof of Theorem 1.8.
Now let min{d1e1, ..., dueu} = di0ei0 and assume di0 = 1 and ei0 > 1. Then
one can argue as in [23, Theorem 4.7] to conclude that, let’s say, q divides
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f(x, y) at least ei0 > 1 times. Again, the rest of the proof is as in the proof
of Theorem 1.8 above.

5. Proof of Theorem 1.11

For a solution (n1, ..., nr, α, β) we consider P (α)
D and Q(β)

D where D :=
D(α, β) = gcd(P (α), Q(β)). Applying the weak form of Szpiro’s conjecture

to A = P (α)
D , B = Q(β)

D and C = P (α)+Q(β)
D , we find

∣∣∣bn1!A
n1
1 · · ·nr!A

nr
r

D3

∣∣∣ =
∣∣∣f(α, β)

D3
)
∣∣∣ < H ·N(n1!...nr!)

s < H · (4s)n1 · · · (4s)nr .

Here H = N(A1 · · ·Ar) is a constant. Now Stirling’s formula (see [17]) yields

4r(
n1

e
)n1 · · · (nr

e
)nr ≤ n1! · · ·nr!

and since

n1! · · ·nr! ≤
∣∣∣bn1!A

n1
1 · · ·nr!A

nr
r

∣∣∣
we obtain

(
n1

e
)n1 · · · (nr

e
)nr < D3 ·H · (4s·n1−1) · · · (4s·nr−1).

Arguments similar to the arguments in the proof of Theorem 1.5 yield that
this inequality is satisfied only for finitely many (n1, ..., nr). Now the ABC-

conjecture applied to A = P (α)
D , B = Q(β)

D and C = P (α)+Q(β)
D yields

max{|P (α)

D
|, |Q(β)

D
|, |C

D
|} < L(ϵ)N(n1! · · ·nr!)

1+ϵ < L(ϵ)(41+ϵ)n1s · · · (41+ϵ)nrs,

where L(ϵ) = N(A1 · · ·Ar) ·K(ϵ). Here K(ϵ) denotes the constant obtaind di-
rectly from the ABC-conjecture. Since there are only finitely many (n1, ..., nr)
satisfying

n1!A
n1
1 · · ·nr!A

nr
r = P (α)2Q(β) +Q(β)2P (α)

we cannot have infinitely many α and β such that A, B and C grow constantly.
So either we have finitely many α and β (in this case we are done) or we have
infinitely many α and β such that A,B and C do not grow constantly. Notice
that there must be infinitely many α and infinitely many β. Suppose for a
moment there were only finitely many, say, α but infinitely many β. But then
B must grow constantly which is excluded. So let us assume that there are
infinitely many α and β satisfying

n1!A
n1
1 · · ·nr!A

nr
r = P (α)2Q(β) +Q(β)2P (α).

Because of

max{|P (α)

D
|, |Q(β)

D
|, |C

D
|} < L(ϵ)(41+ϵ)n1s · · · (41+ϵ)nrs,
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this can happen only if there exist constants s, r such that for infinitely many
pairs α, β we have sD = P (α) and rD = Q(β) and hence Q(β) = r

sP (α).
Such solutions (n1, ...nr, α, β) therefore satisfy

n1!A
n1
1 · · ·nr!A

nr
r = (

r

s
+

r2

s2
)P (α)3.

Now consider the Polynomial P ′(x) := ( rs + r2

s2 )P (x)3. According to Theo-
rem 1.5, the diophantine equation

P ′(x) = n1!A
n1
1 · · ·nr!A

nr
r

has only finitely many integer solutions, thus contradicting our assumtion of
having infinitely many α. We may reverse the role of α and β. This completes
the proof.

Example 5.1. The ABC-conjecture implies that n! = x2y + y2x and
n! = y2x − x2y have finitely many integer solutions (n, x, y) with x and y
being coprime. This does not follow directly from Theorem 1.11, but one can
go through the proof to see that for P (x) = x and Q(y) = y the numbers
P (α) and Q(β) are allways coprime for coprime α and β. Therefore, there is
no need to divide by the greatest common divisor and we have

max{|P (α)|, |Q(β)|, |C|} < L(ϵ)(41+ϵ)n1s · · · (41+ϵ)nrs.

This inequality implies that there can be only finitely many coprime x and y
satisfying the equation n! = x2y + y2x. The same is true for n! = x2y − y2x
or for (2n)! = x2y + y2x.

6. Proof of Corollary 1.12

If ad + · · · + a0 > 0 then we can set x = y. The diophantine equation
simplyfies to (ad + · · · + a0) · xd = bn1!A

n1
1 · · ·nr!A

nr
r . Theorem 1.3 implies

that we can find infinitely many solutions. Now let ad > 0. Set x = sy for
some big enough positive integer s. Then the equation becomes

(ads
d + ad−1s

d−1 + · · ·+ a0) · yd = bn1!A
n1
1 · · ·nr!A

nr
r .

Since we can choose s big enough such that (ads
d + ad−1s

d−1 + · · ·+ a0) > 0,
we conclude with Theorem 1.3 that there are infinitely many integer solutions.
The same argument applies to the case a0 > 0 except that we take y = sx for
a big enough positive s.

7. Proof of Theorem 1.13

Notice that f(x, y) = xsys(xs+ys). For a solution (z1, ..., zm, n1, ..., nl, α, β)
with coprime α and β, the numbers αs, βs and αs+βs are mutually coprime.
We can use weak form of Szpiro’s-conjecture and argue as in the proof of
Theorem 1.11 to obtain

|bpz11 · · · pzmm · n1!A
n1
1 · · ·nlA

nl

l !| = |f(α, β)| < C · p1 · · · pm · (4s)n1 · · · (4s)nl ,
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where C = N(b ·A1 · · ·Al). Since

4r(
n1

e
)n1 · · · (nl

e
)nl ≤ n1! · · ·nl!

and since
n1! · · ·nl! < |bpz11 · · · pzmm · n1!A

n1
1 · · ·nl!A

nl

l |
we have

(
n1

e
)n1 · · · (nl

e
)nl < C · p1 · · · pm · (4sn1−1) · · · (4snl−1).

It is an exercise to conclude that the later inequality is satisfied only for
finitely many (n1, ..., nl). Now applying Thue-Mahler (see [21], Theorem 7.2)
yields that the equation

bpz11 · · · pzmm · n1!A
n1
1 · · ·nl!A

nl

l = f(x, y)

has only finitely many integer solutions (z1, ..., zm, n1, ..., nl, x, y) with
gcd(x, y) = 1 and zi ≥ 0.

Example 7.1. Consider the diophantine equation x2y±y2x = 7mn!. No-
tice that x2y ± y2x = xy(x ± y) satisfies the assumptions of Theorem 1.13.
Then the weak form of Szpiro’s-conjecture implies that the equation has
finitely many integer solutions (m,n, x, y) with m,n > 0 and gcd(x, y) = 1.
Another example is given by x4y2 ± y4x2 = 3mm!n!. One can easily verify
that that x4y2 − y4x2 satisfies the assumptions of Theorem 1.13.
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nik Matematićki 49 (2014), 287–302.

[26] T. Yamada, A generalization of the Ramanujan–Nagell equation, Glasgow Math. J.
61 (2019), 535–544.

S. Novaković
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