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SUMMABILITY OF SOLUTIONS TO SOME DEGENERATE ELLIPTIC
EQUATIONS

ZHANG Aiping, TIAN Pengzhen and GAO Hongya

Hebei University, China

Abstract. This paper deals with boundary value problems for elliptic

equations with degenerate coercivity whose prototype is
#

´div
`

apxq|∇upxq|p´2∇upxq
˘

“ fpxq, x P Ω,

upxq “ 0, x P BΩ,

with 0 ă apxq ď β. Some summability properties of solutions are given.

§1 Introduction and Statement of Results

The purpose of this paper is to study the boundary value problem

(1.1)

#

´divApx, upxq,∇upxqq “ fpxq, x P Ω,

upxq “ 0, x P BΩ,

here Ω stands for a bounded open subset of Rn, n ě 2, BΩ is the boundary of Ω, Apx, s, ξq :
Ω ˆ R ˆ Rn ÞÑ Rn is a Carathéodory vector (that is, measurable with respect to x for every
ps, ξq P R ˆ Rn and continuous with respect to ps, ξq for almost every x P Ω) satisfying the
following assumptions: there exist 1 ă p ď n, a function apxq and a constant β, 0 ă apxq ď
β ă 8, a.e. Ω, such that

(1.2) Apx, s, ξqξ ě apxq|ξ|p,

and

(1.3) |Apx, s, ξq| ď β|ξ|p´1.

As far as the datum f in (1.1) is concerned, we assume that it belongs to the Lebesgue space
LmpΩq, or the Marcinkiewicz space MmpΩq, respectively.

A prototype of Apx, s, ξq : Ωˆ Rˆ Rn ÞÑ Rn satisfying (1.2) and (1.3) is

Apx, s, ξq “ apxq|ξ|p´2ξ, 0 ă apxq ď β.

Let us first recall the definition of Marcinkiewicz space, also called weak Lebesgue space,
which is defined as follows: if m ą 1, then the space MmpΩq consists of all measurable functions
g on Ω such that

(1.4) sup
tą0

t |tx P Ω : |gpxq| ą tu|
1
m ă `8.

This condition is equivalently stated as

~g~m “ sup
EĂΩ
|E|ą0

1

|E|
1
m1

ż

E

|g|dx ă 8.
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It is well-known that MmpΩq is a Banach space under ~ ¨ ~m and, moreover, if the supremum
in (1.4) is denoted by Ampgq, then

(1.5) Ampgq ď ~g~m ď m1Ampgq.

A useful result is

(1.6)
g PMmpΩq

1 ď σ ă m

*

ùñ

$

’

&

’

%

|g|σ PM
m
σ pΩq,

Am
σ
p|g|σq “ Aσmpgq,

~|g|σ~m
σ
ď m

m´σ~g~
σ
m.

In fact, by (1.4),

Am
σ
p|g|σq “ sup

tą0
t|t|g|σ ą tu|

σ
m “

ˆ

sup
tą0

t
1
σ |t|g| ą t

1
σ u|

1
m

˙σ

“

ˆ

sup
tą0

t|t|g| ą tu|
1
m

˙σ

“ Aσmpgq,

which together with (1.5) implies

~|g|σ~m
σ
ď

´m

σ

¯1

Am
σ
p|g|σq “

m

m´ σ
Aσmpgq ď

m

m´ σ
~g~σm.

Another useful result is, see Proposition 3.13 in [3], if f PMmpΩq, m ą 1, then there exists
a positive constant B “ Bp~f~m,mq, such that for every measurable set E Ă Ω,

(1.7)

ż

E

|f |dx ď B|E|1´
1
m .

The alternate name, the weak Lebesgue space, of MmpΩq is due to the fact that, if Ω has
finite measure, then

(1.8) LmpΩq ĂMmpΩq Ă Lm´εpΩq,

for every m ą 1 and every 0 ă ε ď m´ 1. For a detailed analysis of Marcinkiewicz spaces we
refer to [8].

red In the following, for 1 ă p ď n, we shall use the symbol p˚ which is defined as:

p˚ “

#

np
n´p , p ă n,

any constant ą p, p “ n.

Definition 1.1. Let f P LmpΩq, m ě pp˚q1. A function u P W 1,p
0 pΩq is called a solution

to (1.1) if

(1.9)

ż

Ω

Apx, upxq,∇upxqq∇ϕpxqdx “
ż

Ω

fpxqϕpxqdx, @ϕpxq PW 1,p
0 pΩq.

We note that in the above definition, we restrict ourselves to the case f P LmpΩq, m ě pp˚q1.

Sobolev embedding ensures ϕ P Lp
˚

pΩq for ϕpxq PW 1,p
0 pΩq, thus the right hand side integral of

(1.9) is well-defined. We note that there is a function apxq in condition (1.2). If apxq ě α ą 0,
a.e. Ω, then we are in the usual coercivity sense. The results of this equation are very rich,
we refer, among others, to the classical monographs by Ladyženskaya-Ural’ceva [16], Gilbarg-
Trudinger [14], Heinonen-Kilpeläinen-Martio [9] and Boccardo-Croce [3]. But if apxq is not
bounded from below by a positive constant, then the coercivity is degenerate, as the following
example shows.

Example 1.2. Let us consider the case p “ 2. We claim that the differential operator
´divApx, upxq,∇upxqq with A satisfying (1.2) and (1.3) is not coercive on W 1,2

0 pΩq, even if it is

well defined between W 1,2
0 pΩq and its dual. To see that it is sufficient to consider the sequence

umpxq “ |x|
mp1´nq
2pm`1q ´ 1, m “ 1, 2, ¨ ¨ ¨ ,

and

apxq “ |x|
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defined in B1p0q, the unit ball centered at 0 in Rn. It satisfies
ż

B1p0q

|Dum|
2dx “

ˆ

mpn´ 1q

2pm` 1q

˙2 ż

B1p0q

1

|x|
mpn`1q`2
m`1

dx “ `8, for every m ě n´ 2,

so

(1.10) }um}W 1,2
0 pΩq “ `8, for every m ě n´ 2.

At the same time, for all m “ 1, 2, ¨ ¨ ¨ ,

(1.11)

ż

B1p0q

apxq|Dum|
2dx “

ˆ

mpn´ 1q

2pm` 1q

˙2 ż

B1p0q

1

|x|
nm`1
m`1

dx ă `8.

(1.10) together with (1.11) implies

1

}um}W 1,2
0 pΩq

ż

B1p0q

apxq|Dum|
2dx “ 0, as mÑ `8.

For some recent developments related to elliptic equations with degenerate coefficients, we
refer to Boccardo-Croce [3] and Bella and Schäffner [5, 6]. If there is no restriction on the
function apxq, then one can not expect any regularity results for the boundary value problem
(1.1). We now assume

(1.12) 0 ă
1

apxq
P LσpΩq, σ ą max

"

n

p
,

1

p´ 1

*

,

then we will have some summability results.
We first consider the case when

(1.13) f PMmpΩq, m ą
npσ

npσ ´ n´ nσ ` pσ
.

Theorem 1.3. Assume (1.2), (1.3), (1.12) and (1.13). Let u P W 1,p
0 pΩq be a solution of

problem (1.1).
(i) If m ą nσ

pσ´n , then there exists a positive constant c, depending upon n, p, σ, |Ω|,m,

} 1
a}LσpΩq and ~f~m, such that

}u}L8pΩq ď c;

(ii) If m “ nσ
pσ´n , then there exists a positive constant λ, depending upon n, p, σ,m, } 1

a}LσpΩq

and ~f~m, such that

eλ|u| P L1pΩq;

(iii) If npσ
npσ´n´nσ`pσ ă m ă nσ

pσ´n , then

(1.14) u PMτ pΩq, τ “
nmpp´ 1qσ

nm´mpσ ` nσ
.

If 0 ă a ď apxq, that is, the function apxq is bounded from below by a positive constant a,
then σ “ `8 in (1.12). In this case, we have the following corollary of Theorem 1.3.

Corollary 1.4. Assume (1.2) with apxq ě a ą 0, (1.3) and f P MmpΩq,m ą pp˚q1 “
np

np´n`p . Let u PW 1,p
0 pΩq be a solution of problem (1.1).

(i) If m ą n
p , then there exists a positive constant c, depending upon n, p, |Ω|,m, a and

~f~m, such that
}u}L8pΩq ď c;

(ii) If m “ n
p , then there exists a positive constant λ, depending upon n, p, σ,m, a and

~f~m, such that

eλ|u| P L1pΩq;

(iii) If pp˚q1 ă m ă n
p , then

(1.15) u PMτ pΩq, τ “
nmpp´ 1q

n´mp
.
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In case of p “ 2, the above results (i), (ii) and (iii) coincide with [3, Theorems 6.11, 6.13
and 6.12], respectively.

If we weaken the summability hypotheses on f , then the gradient of u (and even u itself)
may no longer be in L1pΩq. However, it is possible to give a meaning of solutions for problem
(1.1), using the concept of entropy solutions which has been introduced in [1] by Bénilan et al.
In order to give the definition of entropy solution, we define, for k ą 0, the truncation function

Tkpsq “ maxt´k,mints, kuu “

#

s, |s| ď k,

k sgnpsq, |s| ą k.

Definition 1.5. Let f P L1pΩq. A measurable function u is called an entropy solution of

(1.1) if Tkpuq belongs to W 1,p
0 pΩq for every k ą 0 and if

(1.16)

ż

Ω

Apx, upxq,∇upxqq∇Tkpupxq ´ ϕpxqqdx ď
ż

Ω

fpxqTkpupxq ´ ϕpxqqdx,

for every k ą 0 and every ϕpxq PW 1,p
0 pΩq

Ş

L8pΩq.

We have the following

Theorem 1.6. Suppose (1.2), (1.3), (1.12), and

f PMmpΩq, 1 ă m ă
npσ

npσ ´ n´ nσ ` pσ
,

then for any entropy solution u of problem (1.1), one has u PMτ pΩq with τ be as in (1.14) and

|∇u| PMνpΩq, ν “
nmpp´ 1qσ

nm´mσ ` nσ
.

In case of apxq ě a ą 0, we have the following corollary.

Corollary 1.7. Suppose (1.2) with apxq ě a ą 0, (1.3) and f P MmpΩq, 1 ă m ă pp˚q1,
then for any entropy solution u of problem (1.1), one has u PMτ pΩq with τ be as in (1.15) and

|∇u| PMνpΩq, ν “
nmpp´ 1q

n´m
.

The above corollary coincides with [15, Theorem 1.7, i), ii)].

In Theorems 1.3 and 1.6, we deal with the case when f lies in Marcinkiewicz space. We
now assume that f belongs to Lebesgue space, that is,

(1.17) f P LmpΩq, m ą
npσ

npσ ´ n´ nσ ` pσ
.

We have the following

Theorem 1.8. Suppose (1.2), (1.3), (1.12) and (1.17). Let u P W 1,p
0 pΩq be a solution of

problem (1.1).
(i) If m ą nσ

pσ´n , then u P L
8pΩq;

(ii) If m “ nσ
pσ´n , then e

λ̄|u| P L1pΩq for every λ̄ ą 0;

(iii) If npσ
npσ´n´nσ`pσ ď m ă nσ

pσ´n , then u P L
τ pΩq with τ be as in (1.14).

In case of apxq ě a ą 0, we have the following corollary.

Corollary 1.9. Suppose (1.2) with apxq ě a ą 0, (1.3) and f P LmpΩq,m ą pp˚q1. Let

u PW 1,p
0 pΩq be a solution of problem (1.1).

(i) If m ą n
p , then u P L

8pΩq;

(ii) If m “ n
p , then e

λ̄|u| P L1pΩq for every λ̄ ą 0;

(iii) If pp˚q1 ď m ă n
p , then u P L

τ pΩq with τ be as in (1.15).
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In case of p “ 2, the above results (i), (ii) and (iii) coincide with [3, Theorems 6.6, 6.10 and
6.9], respectively.

We end this section by the following remarks: we note that Theorem 1.3 (i) is a particular
case of [7]; we note also that, the present paper deals with elliptic equations with variable
coefficients, the original regularity results related to variable coefficients go back to results due
to Trudinger [18] and Marthy-Stapaccha [17], and in the linear case p “ 2, Theorem 1.8 is
essentially contained in [18, Theorem 4.1]; we refer to [4] for some similar results related to
elliptic equations with degenerate coercivity, and to [2] for some Marcinkiewicz estimates for
solutions of some elliptic problems with nonregular data; we point out that the monograph [3]
by Boccardo and Croce provides fruitful ideas.

§2 Proof of the Main Theorems

In order to prove Theorems 1.3 and 1.6, we need the following Stampacchia Lemma, which
can be found, for example, in [19, Lemma 4.1].

Lemma 2.1. Let c, α, β be positive constants and k0 P R. Let ϕ : rk0,`8q Ñ r0,`8q be
nonincreasing and such that

(2.1) ϕphq ď
c

ph´ kqα
rϕpkqsβ

for every h, k with h ą k ě k0. It results that:
(i) if β ą 1 then

ϕpk0 ` dq “ 0,

where

dα “ crϕpk0qs
β´12

αβ
β´1 .

(ii) if β “ 1 then for any k ě k0,

ϕpkq ď ϕpk0qe
1´pceq´

1
α pk´k0q.

(iii) if 0 ă β ă 1 and k0 ą 0 then for any k ě k0,

ϕpkq ď 2
α

p1´βq2

!

c
1

1´β ` p2k0q
α

1´βϕpk0q

)

ˆ

1

k

˙
α

1´β

.

For some remarks on the classical Stampacchia Lemma we refer to [13]. For some general-
izations we refer to [10–12].

Proof of Theorem 1.3. Suppose (1.2), (1.3), (1.12), (1.13) and let u PW 1,p
0 pΩq be a solution

to problem (1.1) in the sense of (1.9). Define, for s P R and k ě 0,

Gkpsq “ s´ Tkpsq.

If we take Gkpuq as test function in (1.9) and use hypothesis (1.2), we then obtain

(2.2)

ż

Ak

apxq|∇u|pdx ď
ż

Ω

Apx, u,∇uq∇Gkpuqdx

“

ż

Ω

fGkpuqdx ď

ż

Ak

|f ||Gkpuq|dx,

where Ak “ tx P Ω : |u| ą ku is the superlevel set of u. Let us denote q “ pσ
1`σ with σ the

number in (1.12). It is obvious that 1 ă q ă p ď n and q
p´q “ σ. (1.12), (2.2) and Hölder
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inequality give

(2.3)

ż

Ak

|∇u|qdx

“

ż

Ak

apxq
q
p |∇u|q

´ 1

apxq

¯

q
p

dx

ď

´

ż

Ak

apxq|∇u|pdx
¯

q
p
´

ż

Ak

ˆ

1

apxq

˙

q
p´q

dx
¯

p´q
p

ď

´

ż

Ak

|f ||Gkpuq|dx
¯

q
p
´

ż

Ak

ˆ

1

apxq

˙σ

dx
¯

q
pσ

ď

´

ż

Ak

|f ||Gkpuq|dx
¯

q
p
›

›

›

1

a

›

›

›

q
p

LσpΩq

ď

´

ż

Ak

|f |pq
˚
q
1

dx
¯

q

pq˚q1p
´

ż

Ω

|Gkpuq|
q˚dx

¯

q

q˚p
›

›

›

1

a

›

›

›

q
p

LσpΩq
.

Sobolev inequality yields

(2.4)

ż

Ak

|∇u|qdx “
ż

Ω

|∇Gkpuq|qdx ě Cq˚

ˆ
ż

Ω

|Gkpuq|
q˚dx

˙

q

q˚

,

where q˚ is Sobolev exponent for q and C˚ is a positive constant depending upon n and q.
(2.3) and (2.4) merge into

(2.5)

ˆ
ż

Ω

|Gkpuq|
q˚dx

˙

q

q˚p1

ď
1

Cq˚

›

›

›

1

a

›

›

›

q
p

LσpΩq

´

ż

Ak

|f |pq
˚
q
1

dx
¯

q

pq˚q1p
.

The condition npσ
npσ´n´nσ`pσ ă m is equivalent to pq˚q1 ă m. We use (1.6) and (1.7) to get

ˆ
ż

Ω

|Gkpuq|
q˚dx

˙

q

q˚p1

ď
1

Cq˚

›

›

›

1

a

›

›

›

q
p

LσpΩq

„

B|Ak|
1´

pq˚q1

m



q

pq˚q1p

“
1

Cq˚

›

›

›

1

a

›

›

›

q
p

LσpΩq
B

q

pq˚q1p |Ak|

´

1´
pq˚q1

m

¯

q

pq˚q1p ,

(2.6)

where B is a constant depending upon ~f~m, n, p, σ. Let h ą k ě 0, then

(2.7)

ph´ kq
q

p1 |Ah|
q

q˚p1

ď

ˆ
ż

Ah

pu´ kqq
˚

dx

˙

q

q˚p1

“

ˆ
ż

Ah

|Gkpuq|
q˚dx

˙

q

q˚p1

ď

ˆ
ż

Ω

|Gkpuq|
q˚dx

˙

q

q˚p1

ď
1

Cq˚

›

›

›

1

a

›

›

›

q
p

LσpΩq
B

q

pq˚q1p |Ak|

´

1´
pq˚q1

m

¯

q

pq˚q1p ,

from which we derive

(2.8) |Ah| ď

´

1
C˚

¯q˚p1 ›
›

›

1
a

›

›

›

q˚

p´1

LσpΩq
B

q˚p1

pq˚q1p

ph´ kqq˚
|Ak|

`

1´
pq˚q1

m

˘

q˚p1

pq˚q1p .

The assumption (2.1) of Lemma 2.1 holds with

ϕpkq “ |Ak|,

c “

ˆ

1

C˚

˙q˚p1
›

›

›

1

a

›

›

›

q˚

p´1

LσpΩq
B

q˚p1

pq˚q1p ,
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α “ q˚,

β “
´

1´
pq˚q1

m

¯ q˚p1

pq˚q1p
,

and

k0 “ 0.

We now divide the following proof into three cases.

Case 1: m ą nσ
pσ´n . In this case β ą 1. Lemma 2.1 (i) tells us that there exists a constant

d “ d

ˆ

n, p, σ, |Ω|,m,
›

›

›

1
a

›

›

›

LσpΩq
,~f~m

˙

ą 0, such that

|t|u| ą du| “ 0,

thus |u| ď d, a.e. Ω.

Case 2: m “ nσ
pσ´n . In this case β “ 1. We use lemma 2.1 (ii) to get, for any k ě 0,

(2.9) |t|u| ą ku| ď |t|u| ą 0u|e1´pceq´
1
α k ď |Ω|ee´pceq

´ 1
α k,

thus

(2.10)
8
ÿ

k“0

e
pceq

´ 1
α k

2 |t|u| ą ku| ď
8
ÿ

k“0

e
pceq

´ 1
α k

2 |Ω|ee´pceq
´ 1
α k “ |Ω|e

8
ÿ

k“0

e´
pceq

1
α k

2 ă 8.

Proposition 6.4 in [3] states that for λ ą 0,
ż

Ω

eλ|u|dx ă 8 ðñ
8
ÿ

k“0

eλk|t|u| ą ku| ă 8.

We use this fact for λ “ pceq´
1
α

2 . Note that λ is a constant depending on n, p, σ,
›

›

›

1
a

›

›

›

LσpΩq
, ~f~m.

We use the above proposition and (2.10) and we derive that
ż

Ω

eλ|u|dx ă 8.

Case 3: npσ
npσ´n´nσ`pσ ă m ă nσ

pσ´n . In this case 0 ă β ă 1. Since the assumption (2.1) of

Lemma 2.1 holds with k0 “ 0, and Lemma 2.1 (iii) requires k0 ą 0, then one can use the fact
that the assumption (2.1) of Lemma 2.1 holds with k0 “ 1 and we have

|t|u| ą ku| ď c

ˆ

1

k

˙
α

1´β

“ c

ˆ

1

k

˙τ

, @k ě 1,

where

τ “
nmpp´ 1qσ

mn´mpσ ` nσ
,

the desired result u PMτ pΩq follows from the fact

|t|u| ą ku| ď |Ω|

ˆ

1

k

˙τ

` c

ˆ

1

k

˙τ

“ p|Ω| ` cq

ˆ

1

k

˙τ

, @k ą 0.

Proof of Theorem 1.6. For any h ą k ě 0, we take h´ k in place of k in (1.16), and we use
ϕ “ Tkpuq as a test function. Note that

Th´kpu´ Tkpuqq “ 0 for x P t|u| ď ku,

|Th´kpu´ Tkpuqq| ď h´ k

and

∇Th´kpu´ Tkpuqq “

$

’

&

’

%

0, |u| ď k,

∇u, k ă |u| ď h,

0, |u| ą h,
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then (1.2) and (1.16) yield
ż

Bk,h

apxq|∇u|pdx

ď

ż

Ω

Apx, u,∇uq∇Th´k pu´ Tkpuqq dx

ď

ż

Ω

fTh´kpu´ Tkpuqqdx

ďph´ kq

ż

Ak

|f |dx,

where
Bk,h “ tx P Ω : k ă |u| ď hu.

As in the proof of Theorem 1.3 we take 1 ă q “ pσ
1`σ ă p. Hölder inequality gives

(2.11)

ż

Bk,h

|∇u|qdx

“

ż

Bk,h

apxq
q
p |∇u|q

´ 1

apxq

¯

q
p

dx

ď

´

ż

Bk,h

apxq|∇u|pdx
¯

q
p
´

ż

Bk,h

ˆ

1

apxq

˙σ

dx
¯

q
pσ

ď

´

ph´ kq

ż

Ak

|f |dx
¯

q
p
›

›

›

1

a

›

›

›

q
p

LσpΩq

ď ph´ kq
q
pB

q
p

›

›

›

1

a

›

›

›

q
p

LσpΩq
|Ak|

q

pm1 ,

where we used again (1.7). Sobolev inequality yields

(2.12)

ż

Bk,h

|∇u|qdx

“

ż

Ω

|∇Th´kpGkpuqq|qdx

ě Cq˚

ˆ
ż

Ω

|Th´kpGkpuqq|
q˚dx

˙

q

q˚

ě Cq˚

ˆ
ż

Ah

|Th´kpGkpuqq|
q˚dx

˙

q

q˚

ě Cq˚ph´ kq
q|Ah|

q

q˚ ,

where q˚ is the Sobolev exponent for q and C˚ is a constant depending upon n, q. Combining
(2.11) and (2.12) we arrive at

|Ah| ď

B
q˚

p C´q
˚

˚

›

›

›

1
a

›

›

›

q˚

p

LσpΩq

ph´ kq
q˚

p1

|Ak|
q˚

pm1 .

The assumption (2.1) of Lemma 2.1 holds with

ϕpkq “ |Ak|,

c “ B
q˚

p C´q
˚

˚

›

›

›

1

a

›

›

›

q˚

p

LσpΩq
,

α “
q˚

p1
,

β “
q˚

pm1
,

and
k0 “ 0.
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(2.1) holds true for k0 “ 1 as well. Since 1 ă m ă
npσ

npσ´n´nσ`pσ , then 0 ă q˚

pm1 ă 1. We use

Lemma 2.1 (iii), and note that

α

1´ β
“

q˚

p1

1´ q˚

pm1

“
nmpp´ 1qσ

mn´mpσ ` nσ
“ τ,

we derive that

|t|u| ą ku| ď p|Ω| ` cq

ˆ

1

k

˙
α

1´β

“ p|Ω| ` cq

ˆ

1

k

˙τ

, @k ą 0,

where c is a constant depending upon n, p, σ, |Ω|, |||f |||m and
›

›

›

1
a

›

›

›

LσpΩq
. This shows that u P

Mτ pΩq.

Let us take h “ 2k in (2.11), use (1.4) and the fact u PMτ pΩq, then
ż

Bk,2k

|∇u|qdx

ď k
q
pB

q
p

›

›

›

1

a

›

›

›

q
p

LσpΩq
|Ak|

q

pm1

ď k
q
pB

q
p

›

›

›

1

a

›

›

›

q
p

LσpΩq

`

Aτ puq
τk´τ

˘

q

pm1

“ k
q
p p1´

τ
m1
qB

q
p

›

›

›

1

a

›

›

›

q
p

LσpΩq
Aτ puq

qτ

pm1 ,

which yields, for any k ą 0,

(2.13)

ż

t|u|ďku

|∇u|qdx

ď

8
ÿ

j“0

ż

t2´j´1kă|u|ď2´jku

|∇u|qdx

ď

8
ÿ

j“0

p2´j´1kq
q
p p1´

τ
m1
qB

q
p

›

›

›

1

a

›

›

›

q
p

LσpΩq
Aτ puq

qτ

pm1

“

8
ÿ

j“0

p2´j´1q
q
p p1´

τ
m1
qk

q
p p1´

τ
m1
qB

q
p

›

›

›

1

a

›

›

›

q
p

LσpΩq
Aτ puq

qτ

pm1 .

Since m ă
npσ

npσ´nσ´n`pσ , then q
p p1´

τ
m1 q ą 0, so

8
ÿ

j“0

p2´j´1q
q
p´

qτ

pm1 ă 8,

from (2.13) we obtain

(2.14)

ż

t|u|ďku

|∇u|qdx ď ck
q
p p1´

τ
m1
qB

q
p

›

›

›

1

a

›

›

›

q
p

LσpΩq
Aτ puq

qτ

pm1 .

Thus, for any k ą 0 and t ą 0,
ˇ

ˇ

ˇ
t|∇u| ą tu

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
t|∇u| ą tu X t|u| ą ku

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
t|∇u| ą tu X t|u| ď ku

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
t|u| ą ku

ˇ

ˇ

ˇ
` t´q

ż

t|u|ďku

|∇u|qdx

ď Aτ puq
τk´τ ` t´qck

q
p p1´

τ
m1
qB

q
p

›

›

›

1

a

›

›

›

q
p

LσpΩq
Aτ puq

qτ

pm1

“ c1k
´τ ` c2t

´qk
q
p´

qτ

pm1 ,

where

c1 “ Aτ puq
τ , c2 “ cB

q
p

›

›

›

1

a

›

›

›

q
p

LσpΩq
Aτ puq

qτ

pm1 .
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Next we minimize this in k, i.e., choose

k “

˜

c1τt
q

c2p
q
p ´

qτ
pm1 q

¸
1

q
p
´
qτ
pm1

`τ

,

and we arrive at
ˇ

ˇ

ˇ
t|∇u| ą tu

ˇ

ˇ

ˇ
ď ct

´qτ

τ`
q
p
´
qτ
pm1 ,

where c is a constant depending upon n, p,m, σ,~f~m,
›

›

›

1
a

›

›

›

LσpΩq
and Aτ puq. Now we observe

that

ν “
qτ

τ ` q
p ´

qτ
pm1

“
nmpp´ 1qσ

nm´mσ ` nσ
,

then |∇u| PMνpΩq, as desired.

Proof of Theorem 1.8. Suppose (1.2), (1.3), (1.12), (1.17) and let u PW 1,p
0 pΩq be a solution

to problem (1.1) in the sense of (1.9).

(i) For the case m ą nσ
pσ´n , we use the fact (1.8) and we have f PMmpΩq. Theorem 1.3 (i)

gives the result.

(ii) For the case m “ nσ
pσ´n , for every λ ą 0, k ą 0, ` ą 0 let us take

ϕ “
“

epλT`|pGkpuq| ´ 1
‰

sgnpuq PW 1,p
0 pΩq

as a test function in the weak formulation (1.9). Since

∇ϕ “ pλepλT`|Gkpuq|∇u ¨ 1Bk,k`` ,
where

Bk,k`` “ tx P Ω : k ď |u| ă k ` `u,

and 1E is the characteristic function for the set E, that is, 1Epxq “ 1 for x P E and 1Epxq “ 0
otherwise, then (1.9) gives

(2.15) pλ

ż

Bk,k``

Apx, u,∇uqepλT`|Gkpuq|∇udx “
ż

Ak

f
“

epλT`|Gkpuq| ´ 1
‰

sgnpuqdx.

We study the two sides separately. The left hand side of (2.15) can be estimated from below
by using (1.2),

(2.16)

pλ

ż

Bk,k``

Apx, u,∇uqepλT`|Gkpuq|∇udx

ě pλ

ż

Bk,k``

apxqepλT`|Gkpuq||∇u|pdx

“
pλ

λp

ż

Bk,k``

apxq
ˇ

ˇ

ˇ
∇peλT`|Gkpuq| ´ 1q

ˇ

ˇ

ˇ

p

dx.

We use the following inequality, satisfied by every t ě 1, p ą 1 and Q ą 1:

tp ´ 1 ď Qpt´ 1qp `
`

1´Q´
1
p´1

˘1´p
´ 1,

then the right hand side of (2.15) can be estimated as

(2.17)

ż

Ak

f
“

epλT`|Gkpuq| ´ 1
‰

sgnpuqdx

ď

ż

Ak

|f |
“

epλT`|Gkpuq| ´ 1
‰

dx

ď Q

ż

Ak

|f |peλT`|Gkpuq| ´ 1qpdx` CpQ, pq

ż

Ak

|f |dx

ď Q

ˆ
ż

Ak

|f |mdx

˙
1
m
ˆ
ż

Ak

“

eλT`|Gkpuq| ´ 1
‰pm1

dx

˙
1
m1

` CpQ, pq}f}L1pΩq,
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where

m “
nσ

pσ ´ n
, CpQ, pq “

”

`

1´Q´
1
p´1

˘1´p
´ 1

ı

,

and we have used Hölder inequality.
Substituting (2.16) and (2.17) into (2.15),

(2.18)

ż

Bk,k``

apxq
ˇ

ˇ

ˇ
∇peλT`|Gkpuq| ´ 1q

ˇ

ˇ

ˇ

p

dx

ď
Qλp´1}f}LmpAkq

p

ˆ
ż

Ak

“

eλT`|Gkpuq| ´ 1
‰pm1

dx

˙
1
m1

`
λp´1CpQ, pq}f}L1pΩq

p
.

As in the proof of Theorems 1.3 and 1.6, we take 1 ă q “ pσ
1`σ ă p. Hölder inequality together

with (2.18) gives

(2.19)

ż

Bk,k``

ˇ

ˇ

ˇ
∇peλT`|Gkpuq| ´ 1q

ˇ

ˇ

ˇ

q

dx

“

ż

Bk,k``

apxq
q
p

ˇ

ˇ

ˇ
∇peλT`|Gkpuq| ´ 1q

ˇ

ˇ

ˇ

q
ˆ

1

apxq

˙

q
p

dx

ď

˜

ż

Bk,k``

apxq
ˇ

ˇ

ˇ
∇peλT`|Gkpuq| ´ 1q

ˇ

ˇ

ˇ

p

dx

¸

q
p
˜

ż

Bk,k``

ˆ

1

apxq

˙

q
p´q

dx

¸

p´q
p

ď 2
q
p

«

ˆ

Qλp´1}f}LmpAkq

p

˙

q
p
ˆ
ż

Ak

“

eλT`|Gkpuq| ´ 1
‰pm1

dx

˙

q

pm1

`

ˆ

λp´1CpQ, pq}f}L1pΩq

p

˙

q
p

ff

›

›

›

1

a

›

›

›

q
p

LσpΩq
.

Sobolev inequality gives

(2.20)

ż

Bk,k``

ˇ

ˇ

ˇ
∇peλT`|Gkpuq| ´ 1q

ˇ

ˇ

ˇ

q

dx

“

ż

Ω

ˇ

ˇ

ˇ
∇peλT`|Gkpuq| ´ 1q

ˇ

ˇ

ˇ

q

dx

ě Cq˚

ˆ
ż

Ω

ˇ

ˇ

ˇ
eλT`|Gkpuq| ´ 1

ˇ

ˇ

ˇ

q˚

dx

˙

q

q˚

“ Cq˚

ˆ
ż

Ak

ˇ

ˇ

ˇ
eλT`|Gkpuq| ´ 1

ˇ

ˇ

ˇ

q˚

dx

˙

q

q˚

.

where C˚ is a constant depending upon n and q. (2.19) and (2.20) merge into

(2.21)

ˆ
ż

Ak

ˇ

ˇ

ˇ
eλT`|Gkpuq| ´ 1

ˇ

ˇ

ˇ

q˚

dx

˙

q

q˚

ď
2
q
p

Cq˚

«

ˆ

Qλp´1}f}LmpAkq

p

˙

q
p
ˆ
ż

Ak

“

eλT`|Gkpuq| ´ 1
‰pm1

dx

˙

q

pm1

`

ˆ

λp´1CpQ, pq}f}L1pΩq

p

˙

q
p

ff

›

›

›

1

a

›

›

›

q
p

LσpΩq
.

Recall q “ pσ
1`σ , m “ nσ

pσ´n , which imply q˚ “ pm1 and q
q˚ “

q
pm1 . Since }f}LmpAkq Ñ 0 as

k Ñ `8, then there exists kλ ą 0 such that

2
q
p

Cq˚

ˆ

Qλp´1}f}LmpAkq

p

˙

q
p ›
›

›

1

a

›

›

›

q
p

LσpΩq
ď

1

2
, @k ě kλ.
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For such k we deduce from (2.21) that

ˆ
ż

Ω

ˇ

ˇ

ˇ
eλT`|Gkpuq| ´ 1

ˇ

ˇ

ˇ

q˚

dx

˙

q

q˚

“

ˆ
ż

Ak

ˇ

ˇ

ˇ
eλT`|Gkpuq| ´ 1

ˇ

ˇ

ˇ

q˚

dx

˙

q

q˚

ď
21` q

p

Cq˚

ˆ

λp´1CpQ, pq}f}L1pΩq

p

˙

q
p ›
›

›

1

a

›

›

›

q
p

LσpΩq

ă `8.

Let `Ñ `8, we use Fatou Lemma and we derive that

ż

Ω

ˇ

ˇ

ˇ
eλ|Gkpuq| ´ 1

ˇ

ˇ

ˇ

q˚

dx ă `8, @k ě kλ.

Now

reλ|u| ´ 1sq
˚

“ reλ|Tkpuq`Gkpuq| ´ 1sq
˚

“ reλ|Tkpuq`Gkpuq| ´ eλk ` eλk ´ 1sq
˚

ď 2q
˚
´1eλkq

˚“

eλ|Gkpuq| ´ 1
‰q˚

` 2q
˚
´1peλk ´ 1qq

˚

.

Therefore, for every k ě kλ,

ż

Ω

reλ|u| ´ 1sq
˚

dx ď 2q
˚
´1eλkq

˚

ż

Ω

“

eλ|Gkpuq| ´ 1
‰q˚

dx` 2q
˚
´1peλk ´ 1qq

˚

|Ω| ă `8.

That is, eλ|u| belongs to Lq
˚

pΩq for every λ ą 0. The result (ii) follows with λ̄ “ λq˚.

(iii) For the case npσ
npσ´n´nσ`pσ ď m ă nσ

pσ´n , let t ě 0 be a number to be fixed and let us

take

ϕ “ |Tkpuq|
ptTkpuq

as a test function in (1.9). We use hypothesis (1.2) and we have

pt` 1

pt` 1qp

ż

Ω

apxq
ˇ

ˇ∇|Tkpuq|t`1
ˇ

ˇ

p
dx

“ppt` 1q

ż

Ω

apxq|Tkpuq|
pt|∇Tkpuq|pdx

ďppt` 1q

ż

Ω

Apx, u,∇uq|Tkpuq|pt∇Tkpuqdx

“

ż

Ω

Apx, u,∇uq∇ϕdx

“

ż

Ω

f |Tkpuq|
ptTkpuqdx

ď

ż

Ω

|f ||Tkpuq|
pt`1dx.
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As in the proof of Theorems 1.3 and 1.6, we take 1 ă q “ pσ
1`σ ă p, then

ż

Ω

ˇ

ˇ∇|Tkpuq|t`1
ˇ

ˇ

q
dx

“

ż

Ω

apxq
q
p

ˇ

ˇ∇|Tkpuq|t`1
ˇ

ˇ

q
ˆ

1

apxq

˙

q
p

dx

ď

ˆ
ż

Ω

apxq
ˇ

ˇ∇|Tkpuq|t`1
ˇ

ˇ

p
dx

˙

q
p

˜

ż

Ω

ˆ

1

apxq

˙

q
p´q

dx

¸

p´q
p

ď

ˆ

pt` 1qp

pt` 1

ż

Ω

|f ||Tkpuq|
pt`1dx

˙

q
p
ˆ
ż

Ω

ˆ

1

apxq

˙σ

dx

˙

q
pσ

ď

ˆ

pt` 1qp

pt` 1

˙

q
p

}f}
q
p

LmpΩq

ˆ
ż

Ω

|Tkpuq|
ppt`1qm1dx

˙

q

pm1
›

›

›

1

a

›

›

›

q
p

LσpΩq
.

(2.22)

Sobolev inequality gives

(2.23)

ż

Ω

ˇ

ˇ∇|Tkpuq|t`1
ˇ

ˇ

q
dx ě Cq˚

ˆ
ż

Ω

|Tkpuq|
q˚pt`1qdx

˙

q

q˚

,

where C˚ depends upon n, q.
Let us choose t in such a way that

q˚pt` 1q “ ppt` 1qm1,

this is equivalent to

t` 1 “
pp´ 1qm1

pm1 ´ q˚
“

nmpp´ 1qσ

pnm` nσ ´mpσqq˚
“

τ

q˚
.

The facts npσ
npσ´n´nσ`pσ ď m ă nσ

pσ´n imply t ě 0 and q
q˚ ą

q
pm1 . (2.22) and (2.23) merge into

Cq˚

ˆ
ż

Ω

|Tkpuq|
q˚pt`1qdx

˙

q

q˚
´

q

pm1

ď

ˆ

pt` 1qp

pt` 1

˙

q
p

}f}
q
p

LmpΩq

›

›

›

1

a

›

›

›

q
p

LσpΩq
.

Since

q˚pt` 1q “ τ,

then the above inequality implies, for any k ą 0,
ż

Ω

|Tkpuq|
q˚pt`1qdx ď c,

with c a constant depending upon n, p, σ,m, }f}LmpΩq and
›

›

›

1
a

›

›

›

LσpΩq
. To be finished, we apply

Fatou lemma (as k tends to infinity) to deduce that

ż

Ω

|u|τdx ď c,

as desired.
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