SELF-DUALITY IN THE CASE OF $S O(2 n, F)$

Dubravka Ban
University of Split, Croatia and Purdue University, USA

Abstract

The parabolically induced representations of special evenorthogonal groups over p-adic field are considered. The main result is a theorem on self-duality, which gives a condition on initial representations, if induced representation has a square integrable subquotient.

1. Introduction

The problem of construction of noncuspidal irreducible square integrable representations of classical p-adic groups was studied by M.Tadić in [T3]. He showed ([T3], Lemma 4.1) that among irreducible cuspidal representations of general linear groups only the self-dual play a role in the construction of irreducible noncuspidal square integrable representations of symplectic and odd-orthogonal groups.

In this paper, we show the same property for groups $S O(2 n, F)$ (Theorem 6.1). In the second section, we review some notation and results from the representation theory of general linear groups. In the third section, we describe standard parabolics of $S O(2 n, F)$. Some properties of induced representations of $S O(2 n, F)$ are given in the fourth section. The fifth section exposes the Casselman square integrability criterion for $S O(2 n, F)$. In the sixth section, a theorem on self-duality is stated and proved.

By closing the introduction, I would like to thank Marko Tadić, who initiated this paper and helped its realization. I also thank Goran Muic for his helpful comments regarding this paper.

[^0]
2. Preliminaries

Fix a locally compact nonarchimedean field F of characteristic different from 2. Let G be a group of F-points of a connected reductive F-split group. Suppose that G is reductive and split.

Fix a minimal parabolic subgroup $P_{0} \subset G$ and a maximal split torus $A_{0} \subset P_{0}$.

Let P be a parabolic subgroup, containing P_{0}. We call such a group a standard parabolic subgroup. Let U be the unipotent radical of P. Then, by [BZ], there exists a unique Levi subgroup M in P containing A_{0}.

Let P be a standard parabolic subgroup of G, with Levi decomposition $P=M U$. For a smooth representation σ of M, we denote by $i_{G, M}(\sigma)$ the parabolically induced representation of G by σ from P, and for a smooth representation π of G, we denote by $r_{M, G}(\pi)$ the normalised Jacquet module of π with respect to P.

For a smooth finite length representation π we denote by s.s. (π) the semisimplified representation of π. The equivalence s.s. $\left(\pi_{1}\right) \cong$ s.s. $\left(\pi_{2}\right)$ means that π_{1} and π_{2} have the same irreducible composition factors with the same multiplicities, and we write $\pi_{1}=\pi_{2}$. We write $\pi_{1} \cong \pi_{2}$ if we mean that π_{1} and π_{2} are actually equivalent.

Now we shall recall some results from [BZ] and $[\mathrm{Z}]$ of the representation theory of general linear groups.

For the group $G L(n, F)$, we fix the minimal parabolic subgroup which consists of all upper triangular matrices in $G L(n, F)$. The standard parabolic subgroups of $G L(n, F)$ can be parametrized by ordered partitions of n : for $\alpha=\left(n_{1}, \ldots, n_{k}\right)$ there exists a standard parabolic subgroup (denote it in this section by P_{α}) of $G L(n, F)$ whose Levi factor M_{α} is naturally isomorphic to $G L\left(n_{1}, F\right) \times \cdots \times G L\left(n_{k}, F\right)$.

Let π_{1}, π_{2} be admissible representation of $G L\left(n_{1}, F\right), G L\left(n_{2}, F\right)$ resp., $n_{1}+n_{2}=n$. Define

$$
\pi_{1} \times \pi_{2}=i_{G L(n, F), M\left(n_{1}+n_{2}\right)}\left(\pi_{1} \otimes \pi_{2}\right)
$$

Denote $\nu=|\operatorname{det}|$. We have the following criterion for irreducibility ([Z], Proposition1.11):

Proposition 2.1. Let $\pi_{i}, i=1,2$, be irreducible cuspidal representation of $G L\left(n_{i}, F\right)$.

1. If $\pi_{1} \not \neq \nu \pi_{2}$ and $\pi_{2} \neq \nu \pi_{1}$ (in particular if $n_{1} \neq n_{2}$), then $\pi_{1} \times \pi_{2}$ is irreducible.
2. Suppose that $n_{1}=n_{2}$ and either $\pi_{1} \cong \nu \pi_{2}$ or $\pi_{2} \cong \nu \pi_{1}$. Then the representation $\pi_{1} \times \pi_{2}$ has length 2 .

3. Parabolic induction for $S O(2 n, F)$

The special orthogonal group $S O(2 n, F), n \geq 1$, is the group

$$
S O(2 n, F)=\left\{\left.X \in S L(2 n, F)\right|^{\tau} X X=I_{2 n}\right\}
$$

Here ${ }^{\tau} X$ denotes the transposed matrix of X with respect to the second diagonal. For $n=1$ we get

$$
S O(2, F)=\left\{\left.\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right] \right\rvert\, \lambda \in F^{\times}\right\} \cong F^{\times}
$$

$S O(0, F)$ is defined to be the trivial group.
Denote by A_{0} the maximal split torus in $S O(2 n, F)$ which consists of all diagonal matrices in $S O(2 n, F)$. Hence,

$$
A_{0}=\left\{\operatorname{diag}\left(x_{1}, \ldots, x_{n}, x_{n}^{-1}, \ldots, x_{1}^{-1}\right) \mid x_{i} \in F^{\times}\right\} \cong\left(F^{\times}\right)^{n}
$$

Fix the minimal parabolic subgroup P_{0} which consists of all upper triangular matrices in $S O(2 n, F)$.

The root system is of type D_{n}; the simple roots are

$$
\begin{aligned}
\alpha_{i} & =e_{i}-e_{i+1}, \quad \text { for } 1 \leq i \leq n-1 \\
\alpha_{n} & =e_{n-1}+e_{n}
\end{aligned}
$$

The set of simple roots is denoted by Δ.

Let

$$
s=\left[\begin{array}{llll}
I & & & \\
& 0 & 1 & \\
& 1 & 0 & \\
& & & I
\end{array}\right] \in O(2 n, F)
$$

We use the same letter s to denote the authomorphism of $S O(2 n, F)$ defined by $s(g)=s g s^{-1}$.

Let $\theta=\Delta \backslash\left\{\alpha_{i}\right\}, i \in\{1, \ldots, n\}$, and let $P_{\theta}=M_{\theta} U_{\theta}$ be the maximal parabolic subgroup determined by θ.

If $i \neq n-1$, then

$$
M_{\theta}=\left\{\operatorname{diag}\left(g, h,{ }^{\tau} g^{-1}\right) \mid g \in G L(i, F), h \in S O(2(n-i), F)\right\}
$$

In this case, we denote M_{θ} by $M_{(i)}$, and we have

$$
M_{(i)} \cong G L(i, F) \times S O(2(n-i), F)
$$

If $i=n-1$, then

$$
M_{\theta}=s\left(M_{(n)}\right)
$$

Now let $\theta=\Delta \backslash\left\{\alpha_{n-1}, \alpha_{n}\right\}$. Then

$$
M_{\theta}=\left\{\operatorname{diag}\left(g, h,^{\tau} g^{-1}\right) \mid g \in G L(n-1, F), h \in S O(2, F) \cong G L(1, F)\right\}
$$

so

$$
\begin{aligned}
& M_{\theta} \cong G L(n-1, F) \times S O(2, F) \\
& M_{\theta} \cong G L(n-1, F) \times G L(1, F)
\end{aligned}
$$

and we denote M_{θ} by $M_{(n-1)}$ or by $M_{(n-1,1)}$.
We shall now describe the set of standard parabolic subgroups of $S O(2 n, F)$. Let $\alpha=\left(n_{1}, \ldots, n_{k}\right)$ be an ordered partition of non-negative integer $m \leq n$. Then there exists a standard parabolic subgroup, denote it by $P_{\alpha}=M_{\alpha} U_{\alpha}$, such that

$$
\begin{aligned}
& M_{\alpha}=\left\{\operatorname{diag}\left(g_{1}, \ldots, g_{k}, h,{ }^{\tau} g_{k}^{-1}, \ldots,{ }^{\tau} g_{1}^{-1}\right) \mid g_{i} \in G L\left(n_{i}, F\right)\right. \\
&h \in S O(2(n-m), F)\}
\end{aligned}
$$

Hence,

$$
M_{\alpha} \cong G L\left(n_{1}, F\right) \times G L\left(n_{2}, F\right) \times \cdots \times G L\left(n_{k}, F\right) \times S O(2(n-m), F)
$$

Mention that if $n_{1}+\cdots+n_{k}=n-1$, then

$$
\begin{aligned}
M=\left\{\operatorname{diag}\left(g_{1}, \ldots, g_{k}, h,{ }^{\tau} g_{k}^{-1}, \ldots,{ }^{\tau} g_{1}^{-1}\right) \mid g_{i}\right. & \in G L\left(n_{i}, F\right) \\
& h \in S O(2, F) \cong G L(1, F)\}
\end{aligned}
$$

so we may consider

$$
M \cong G L\left(n_{1}, F\right) \times G L\left(n_{2}, F\right) \times \cdots \times G L\left(n_{k}, F\right) \times S O(2, F)
$$

or

$$
M \cong G L\left(n_{1}, F\right) \times G L\left(n_{2}, F\right) \times \cdots \times G L\left(n_{k}, F\right) \times G L(1, F)
$$

Hence, we can assign

$$
M \longmapsto \alpha=\left(n_{1}, \ldots, n_{k}\right),
$$

or

$$
M \longmapsto \alpha^{\prime}=\left(n_{1}, \ldots, n_{k}, 1\right)
$$

Besides the subgroups of type $P_{\alpha}=M_{\alpha} U_{\alpha}$, there is also another type of standard parabolic subgroups. They can be described as

$$
M=s\left(M^{\prime}\right)
$$

where $M^{\prime}=M_{\alpha}$, for some $\alpha=\left(n_{1}, \ldots, n_{k}\right), n_{1}+\cdots+n_{k}=n$.
Now, take smooth finite length representations π of $G L(n, F)$ and σ of $S O(2 m, F)$. Let $P_{(n)}=M_{(n)} U_{(n)}$ be a standard parabolic subgroup of $G=$ $S O(2(m+n), F)$. Hence, $M_{(n)} \cong G L(n, F) \times S O(2 m, F)$, so $\pi \otimes \sigma$ can be taken as a representation of $M_{(n)}$. Define

$$
\pi \rtimes \sigma=i_{M_{(n)}, G}(\pi \otimes \sigma)
$$

Note that in the case $G=S O(2, F)$, the induction does nothing, since

$$
M_{(0)}=M_{(1)}=S O(2, F) \cong G L(1, F),
$$

and for a smooth representation π of $G L(1, F)$, we have

$$
\pi \rtimes 1=\pi .
$$

It follows from [BZ], Prop.2.3, that for smooth representations π_{1} of $G L\left(n_{1}, F\right), \pi_{2}$ of $G L\left(n_{2}, F\right)$ and σ of $S O(2 m, F)$ we have

$$
\pi_{1} \rtimes\left(\pi_{2} \rtimes \sigma\right) \cong\left(\pi_{1} \times \pi_{2}\right) \rtimes \sigma .
$$

Let σ be a finite length smooth representation of $S O(2 n, F)$. Let $\alpha=$ $\left(n_{1}, \ldots, n_{k}\right)$ be an ordered partition of a non-negative integer $m \leq n$. Define

$$
s_{\alpha}(\sigma)=r_{M_{\alpha}, S O(2 n, F)}(\sigma) .
$$

4. Some properties of parabolically induced representations of

$$
S O(2 n, F)
$$

Let $G=S O(2 n, F)$. For $m<n$, let $P=P_{(m)}$ be the standard parabolic subgroup with Levi factor $M \cong G L(m, F) \times S O(2(n-m), F)$. Then

$$
s(P)=P, \quad s(M)=M, \quad s(U)=U
$$

The following lemma can be proved directly:
Lemma 4.1. For a smooth finite length representation π of $G L(m, F)$ and a smooth finite length representation σ of $S O(2(n-m), F), m<n$, we have

$$
s(\pi \rtimes \sigma) \cong \pi \times s(\sigma) .
$$

Proposition 4.2. Let π be a smooth finite length representation of $G L(m, F)$ and σ be a smooth finite length representation of $S O(2(n-m), F)$. Then

$$
\tilde{\pi} \rtimes \sigma=s^{m}(\pi \rtimes \sigma) .
$$

Particularly,

1. If m is even, then

$$
\tilde{\pi} \rtimes \sigma=\pi \rtimes \sigma ;
$$

2. If $m<n$ is odd, then

$$
\tilde{\pi} \rtimes \sigma=\pi \rtimes s(\sigma) ;
$$

3. If $m=n$ is odd, then

$$
\tilde{\pi} \rtimes 1=s(\pi \rtimes 1) .
$$

(Here $\tilde{\pi}$ denotes contragredient representation of π.)

Proof. Denote

$$
j=s^{n}\left[\begin{array}{llll}
& & & 1 \\
& & \cdot & \\
& \cdot & & \\
1 & & &
\end{array}\right] \in S O(2 n, F)
$$

Conjugation with j gives

$$
j(\pi \otimes \sigma) \cong s^{m}\left({ }^{t} \pi^{-1} \otimes \sigma\right) .
$$

Since $j(M)=s^{n}(M)=s^{m}(M)$, the groups $j(P)$ and $s^{m}(P)$ are associated, so we have by [BDK]

$$
\pi \rtimes \sigma=j(\pi \rtimes \sigma)=s^{m}(\tilde{\pi} \rtimes \sigma) .
$$

The following lemma is well-known.
Lemma 4.3. Let ρ be an irreducible cuspidal unitary representation of $G L(m, F)$ and let σ be an irreducible cuspidal representation of $S O(2 l, F)$, $l \neq 1$. Take $\alpha \in \mathbb{R}$. If $\left(\nu^{\alpha} \rho\right) \rtimes \sigma$ reduces, then $\rho \cong \tilde{\rho}$ and $\sigma \cong s^{m}(\sigma)$.

Proof. Suppose first that $\alpha=0$. The Frobenius reciprocity for $\rho \rtimes \sigma$ and $\rho \otimes \sigma$ gives

$$
\operatorname{Hom}_{G}(\rho \rtimes \sigma, \rho \rtimes \sigma) \cong \operatorname{Hom}_{M}\left(r_{M, G} \circ i_{G, M}(\rho \otimes \sigma), \rho \otimes \sigma\right) .
$$

Now we have from the Geometric lemma [BZ]

$$
\text { s.s. }\left(r_{M, G} \circ i_{G, M}(\rho \otimes \sigma)\right)= \begin{cases}\rho \otimes \sigma+\tilde{\rho} \otimes s^{m}(\sigma), & \text { for } m<n \text { or } m \text { even, } \\ \rho \otimes 1, & \text { for } m=n \text { odd. }\end{cases}
$$

If $\rho \rtimes \sigma$ is reducible, then $\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{G}(\rho \rtimes \sigma, \rho \rtimes \sigma)>1$. It follows $\rho \cong \bar{\rho}$, $\sigma \cong s^{m}(\sigma)$.

Now, suppose that $\alpha \neq 0$ and that ($\left.\nu^{\alpha} \rho\right) \rtimes \sigma$ is reducible. It follows from Proposition 7.1.3. [C] that $\left(\nu^{\alpha} \rho\right) \rtimes \sigma$ has a square integrable subquotient. Therefore, $\left(\nu^{\alpha} \rho\right) \rtimes \sigma$ and $\left(\nu^{-\alpha} \rho\right) \rtimes \sigma$ have a common subquotient, so we get $\nu^{\alpha} \rho \otimes \sigma \cong \nu^{-\alpha} \rho \otimes \sigma$ or $\nu^{\alpha} \rho \otimes \sigma \cong \nu^{\alpha} \tilde{\rho} \otimes s^{m}(\sigma)$. The first equivalence implies $\alpha=0$. Hence, we have $\nu^{\alpha} \rho \otimes \sigma \cong \nu^{\alpha} \tilde{\rho} \otimes s^{m}(\sigma)$. It follows $\rho \cong \tilde{\rho}, \sigma \cong s^{m}(\sigma) . \square$

5. SQuare integrability criteria for $S O(2 n, F)$

We shall state the criterion that follows from the Casselman square integrability criterion ([C], Theorem 6.5.1), and it is analogous to those from [T3] for $G S p(n, F)$.

Define

$$
\begin{aligned}
& \beta_{i}=(\underbrace{1, \ldots, 1}_{i \text { times }}, \quad 0, \ldots, 0) \in \mathbb{R}^{n}, \quad i \leq n-2 \\
& \beta_{n-1}=(1, \ldots, 1,-1) \in \mathbb{R}^{n}, \\
& \beta_{n}=(1, \ldots, 1,1) \in \mathbb{R}^{n} .
\end{aligned}
$$

Let π be an irreducible smooth representation of $G=S O(2 n, F)$. Let $P=M U$ be a standard parabolic subgroup, minimal among all standard parabolic subgroups which satisfy

$$
r_{M, G}(\pi) \neq 0
$$

Let ρ be an irreducible subqotient of $r_{M, G}(\pi)$.
If $P=P_{\alpha}$, where $\alpha=\left(n_{1}, \ldots, n_{k}\right)$ is a partition of $m \leq n$, then

$$
\rho=\rho_{1} \otimes \cdots \otimes \rho_{k} \otimes \sigma
$$

where ρ_{i} are irreducible cuspidal representations of $G L\left(n_{i}, F\right)$, and σ is an irreducible cuspidal representation of $S O(2(n-m), F)$. If P is not of that type, then

$$
\rho=s\left(\rho_{1} \otimes \cdots \otimes \rho_{k-1} \otimes \rho_{k} \otimes 1\right)=\rho_{1} \otimes \cdots \otimes \rho_{k-1} \otimes s\left(\rho_{k} \otimes 1\right)
$$

where ρ_{i} are irreducible cuspidal representations of $G L\left(n_{i}, F\right)$.
We have $\rho_{i}=\nu^{e\left(\rho_{i}\right)} \rho_{i}^{u}$, where $e\left(\rho_{i}\right) \in \mathbb{R}$ and ρ_{i}^{u} is unitarizable. Define

$$
e_{*}(\rho)=(\underbrace{e\left(\rho_{1}\right), \ldots, e\left(\rho_{1}\right)}_{n_{1} \text { times }}, \cdots, \underbrace{e\left(\rho_{k}\right), \ldots, e\left(\rho_{k}\right)}_{n_{k} \text { times }}, \underbrace{0, \ldots, 0}_{n-m \text { times }}) .
$$

(This definition concerns $\rho=\rho_{1} \otimes \cdots \otimes \rho_{k} \otimes \sigma$ as well as $\rho=s\left(\rho_{1} \otimes \cdots \otimes \rho_{k} \otimes 1\right)$.) If π is square integrable, then

$$
\begin{array}{rc}
\left(e_{*}(\rho), \beta_{n_{1}}\right) & >0, \\
\left(e_{*}(\rho), \beta_{n_{1}+n_{2}}\right) & >0 \\
& \vdots \\
& \\
\left(e_{*}(\rho), \beta_{m-n_{k}}\right) & >0, \\
\left(e_{*}(\rho), \beta_{m}\right) & >0 .
\end{array}
$$

(Here (,) denotes the standard inner product on \mathbb{R}^{n}.)
Conversely, if all above inequalities hold for any α and σ as above, then π is square integrable.

The criteria implies
π is square integrable $\Leftrightarrow s(\pi)$ is square integrable,
but this equivalence can also be proved easily directly from the definition of square integrability.

6. A THEOREM ON SELF-DUALITY

Theorem 6.1. Suppose that $\rho_{1}, \rho_{2}, \ldots, \rho_{k}$ are irreducible cuspidal representations of $G L\left(n_{1}, F\right), \ldots, G L\left(n_{k}, F\right)$, resp., and σ is an irreducible cuspidal representation of $S O(2 l, F), l \neq 1$. If $\rho_{1} \times \cdots \times \rho_{k} \rtimes \sigma$ contains a square integrable subquotient, then $\rho_{i}^{u} \cong\left(\rho_{i}^{u}\right)^{\sim}$, for any $i=1,2, \ldots, k$.

Proof. The proof paralels that used in chapter 4 of [T3].
Set $n_{1}+\cdots+n_{k}=m, m+l=n$. Denote

$$
\begin{aligned}
G & =S O(2 n, F), \\
M & =M_{\left(n_{1}, \ldots, n_{k}\right)}, \\
\rho & =\rho_{1} \otimes \cdots \otimes \rho_{k} \otimes \sigma .
\end{aligned}
$$

Then

$$
\rho_{1} \times \cdots \times \rho_{k} \rtimes \sigma=i_{G, M}(\rho) .
$$

Let π be an irreducible square integrable subquotient of $i_{G, M}(\rho)$. First we shall prove the lemma under the assumption that π is a subrepresentation of $i_{G, M}(\rho)$, or, equivalently, that ρ is a quotient of $r_{M, G}(\pi)$.

Fix any $i_{0} \in\{1, \ldots . k\}$. Set

$$
\begin{aligned}
Y_{i_{0}}^{0} & =\left\{i \in\{1, \ldots . k\} \mid \exists \alpha \in \mathbb{Z} \text { such that } \rho_{i_{0}} \cong \nu^{\alpha} \rho_{i}\right\} \\
Y_{i_{0}}^{1} & =\left\{i \in\{1, \ldots . k\} \mid \exists \alpha \in \mathbb{Z} \text { such that } \tilde{\rho}_{i_{0}} \cong \nu^{\alpha} \rho_{i}\right\} \\
Y_{i_{0}} & =Y_{i_{0}}^{0} \cup Y_{i_{0}}^{1} \\
Y_{i_{0}}^{c} & =\{1, \ldots . k\} \backslash Y_{i_{0}} .
\end{aligned}
$$

Suppose that $\rho_{i_{0}}^{u} \not \equiv\left(\rho_{i_{0}}^{u}\right)^{\sim}$. It follows from Proposition 2.1 that for any $j_{0}, j_{0}^{\prime} \in$ $Y_{i_{0}}^{0}, j_{1}, j_{1}^{\prime} \in Y_{i_{0}}^{1}$ and $j_{c} \in Y_{i_{0}}^{c}$ we have

$$
\begin{array}{ll}
\rho_{j_{0}} \times \tilde{\rho}_{j_{0}^{\prime}} \cong \tilde{\rho}_{j_{0}^{\prime}} \times \rho_{j_{0}}, & \rho_{j_{1}} \times \tilde{\rho}_{j_{1}^{\prime}} \cong \tilde{\rho}_{j_{1}^{\prime}} \times \rho_{j_{1}}, \\
\rho_{j_{0}} \times \rho_{j_{1}} \cong \rho_{j_{1}} \times \rho_{j_{0}}, & \tilde{\rho}_{j_{0}} \times \tilde{\rho}_{j_{1}} \cong \tilde{\rho}_{j_{1}} \times \tilde{\rho}_{j_{0}} \\
\rho_{j_{0}} \times \rho_{j_{c}} \cong \rho_{j_{c}} \times \rho_{j_{0}}, & \tilde{\rho}_{j_{0}} \times \rho_{j_{c}} \cong \rho_{j_{c}} \times \tilde{\rho}_{j_{0}} \\
\rho_{j_{1}} \times \rho_{j_{c}} \cong \rho_{j_{c}} \times \rho_{j_{1}}, & \tilde{\rho}_{j_{1}} \times \rho_{j_{c}} \cong \rho_{j_{c}} \times \tilde{\rho}_{j_{1}}
\end{array}
$$

If $n-m>1$, then, by Lemma 4.3, $\rho_{j_{0}} \times \sigma$ and $\rho_{j_{1}} \rtimes \sigma$ are irreducible. Now we get from Proposition 4.2

$$
\begin{aligned}
& \rho_{j_{0}} \rtimes \sigma \cong \tilde{\rho}_{j_{0}} \rtimes s^{n_{j_{0}}}(\sigma) \\
& \rho_{j_{1}} \rtimes \sigma \cong \tilde{\rho}_{j_{1}} \rtimes s^{n_{j_{1}}}(\sigma)
\end{aligned}
$$

for $n-m>1$, and

$$
\begin{aligned}
& \rho_{j_{0}} \rtimes 1 \cong s^{n_{j_{0}}}\left(\tilde{\rho}_{j_{0}} \times 1\right) \\
& \rho_{j_{1}} \rtimes 1 \cong s^{n_{j_{1}}}\left(\tilde{\rho}_{j_{1}} \rtimes 1\right)
\end{aligned}
$$

for $n=m$. Write

$$
\begin{array}{ll}
Y_{i_{0}}^{0}=\left\{a_{1}, \ldots, a_{k_{0}}\right\}, & a_{i}<a_{j} \text { for } i<j, \\
Y_{i_{0}}^{1}=\left\{b_{1}, \ldots, b_{k_{1}}\right\}, & b_{i}<b_{j} \text { for } i<j, \\
Y_{i_{0}}^{c}=\left\{d_{1}, \ldots, d_{k_{c}}\right\}, & d_{i}<d_{j} \text { for } i<j .
\end{array}
$$

If $n-m \geq 2$, then we can repeat the proof from [T3], since we have just slightly different relations, and square integrability criteria are the same.

Let $m=n$. Set $\alpha=n_{\beta_{k_{1}}}$. Then

$$
\rho_{1} \times \cdots \times \rho_{k} \times 1 \cong
$$

$$
\begin{aligned}
& \cong \rho_{a_{1}} \times \cdots \times \rho_{a_{k_{0}}} \times \rho_{d_{1}} \times \cdots \times \rho_{d_{k_{c}}} \times \rho_{b_{1}} \times \cdots \times \rho_{b_{k_{1}}} \times 1 \\
& \cong \rho_{a_{1}} \times \cdots \times \rho_{a_{k_{0}}} \times \rho_{d_{1}} \times \cdots \times \rho_{d_{k_{c}}} \times \rho_{b_{1}} \times \cdots \times \rho_{b_{k_{1}-1}} \times s^{\alpha}\left(\tilde{\rho}_{b_{k_{1}}} \times 1\right) \\
& \cong s^{\alpha}\left(\rho_{a_{1}} \times \cdots \times \rho_{a_{k_{0}}} \times \rho_{d_{1}} \times \cdots \times \rho_{d_{k_{c}}} \times \rho_{\left.b_{b_{1}} \times \cdots \times \rho_{b_{k_{1}-1}} \times \tilde{\rho}_{b_{k_{1}}} \times 1\right)} \times \tilde{1} \times{ }^{2}\left(\rho_{a_{1}} \times \rho_{a_{k_{0}}} \times \rho_{d_{1}} \times \cdots \times \rho_{d_{k_{c}}} \times \rho_{b_{k_{1}}} \times \rho_{b_{1}} \times \cdots \times \rho_{b_{k_{1}-1}} \times 1\right) .\right.
\end{aligned}
$$

We proceed in the same way, and finally we get

$$
\begin{array}{r}
\rho_{1} \times \cdots \times \rho_{k} \times 1 \cong s^{\gamma}\left(\rho_{a_{1}} \times \cdots\right. \\
\left.\times \rho_{a_{k_{0}}} \times \bar{\rho}_{b_{k_{1}}} \times \cdots \times \tilde{\rho}_{b_{1}} \times \rho_{d_{1}} \times \cdots \times \rho_{d_{k_{c}}} \times 1\right),
\end{array}
$$

where $\gamma=0$ or 1 .
In the same manner, we obtain

$$
\begin{aligned}
& \rho_{1} \times \cdots \times \rho_{k} \times 1 \cong s^{\delta}\left(\rho_{b_{1}} \times \cdots \times \rho_{b_{k_{1}}} \times \tilde{\rho}_{a_{k_{0}}} \times \cdots\right. \\
& \left.\quad \times \tilde{\rho}_{a_{1}} \times \rho_{d_{1}} \times \cdots \times \rho_{d_{k_{c}}} \times 1\right)
\end{aligned}
$$

where $\delta=0$ or 1 .
By the Frobenius reciprocity, the representations

$$
\begin{aligned}
\rho^{\prime} & =s^{\gamma}\left(\rho_{a_{1}} \otimes \cdots \otimes \rho_{a_{k_{0}}} \otimes \tilde{\rho}_{b_{k_{1}}} \otimes \cdots \otimes \tilde{\rho}_{b_{1}} \otimes \rho_{d_{1}} \otimes \cdots \otimes \rho_{d_{k_{c}}} \otimes 1\right), \\
\rho^{\prime \prime} & =s^{\delta}\left(\rho_{b_{1}} \otimes \cdots \otimes \rho_{b_{k_{1}}} \otimes \tilde{\rho}_{a_{k_{0}}} \otimes \cdots \otimes \tilde{\rho}_{a_{1}} \otimes \rho_{d_{1}} \otimes \cdots \otimes \rho_{d_{k_{c}}} \otimes 1\right)
\end{aligned}
$$

are the quotients of corresponding Jacquet modules. Now $\rho_{a_{1}} \times \cdots \times \rho_{a_{k_{0}}} \times$ $\rho_{b_{1}} \times \cdots \times \rho_{b_{k_{1}}}$ is representation of $G L(u, F)$, for some $u \leq n$. If $u \neq n-1$ then $\left(\beta_{u}, e_{*}\left(\rho^{\prime}\right)\right)=-\left(\beta_{u}, e_{*}\left(\rho^{\prime \prime}\right)\right)$. If $u=n-1$, then

$$
\left(\beta_{n-1}, e_{*}\left(\rho^{\prime}\right)\right)+\left(\beta_{n}, e_{*}\left(\rho^{\prime}\right)\right)=-\left(\beta_{n-1}, e_{*}\left(\rho^{\prime \prime}\right)\right)-\left(\beta_{n}, e_{*}\left(\rho^{\prime \prime}\right)\right) .
$$

Anyway, this contradicts the assumption that π is square integrable.
Generally, let π be an irreducible subquotient of $i_{G, M}(\rho)$. By [C], Corollary 7.2.2, there exists $w \in W=N_{G}(M) / M$ such that π is a subrepresentation of $i_{G, M}(w(\rho))$. Let $\rho=\rho_{1} \otimes \cdots \otimes \rho_{k} \otimes \sigma$ and $w(\rho)=\delta_{1} \otimes \cdots \otimes \delta_{k} \otimes \tau$. We apply the first part of the proof on $w(\rho)$, and we get $\delta_{i}^{u} \cong\left(\delta_{i}^{u}\right)^{\sim}, i=1,2, \ldots, k$. By [G], the sequence $\delta_{1}, \ldots, \delta_{k}$ is, up to a permutation and taking a contragredient, the sequence $\rho_{1}, \ldots, \rho_{k}$.

Theorem 6.2. Suppose that $\rho_{1}, \rho_{2}, \ldots, \rho_{k}$ are irreducible cuspidal representations of $G L\left(n_{1}, F\right), \ldots, G L\left(n_{k}, F\right)$, resp., and σ is an irreducible cuspidal representation of $S O(2 l, F), l \neq 1$, such that $\rho_{1} \times \cdots \times \rho_{k} \times \sigma$ contains a square integrable subquotient. Further, assume that for each unitary representation ρ, the number α, discussed in Lemma 4.3., satisfies $2 \alpha \in \mathbb{Z}$. Then $2 e\left(\rho_{i}\right) \in \mathbb{Z}$, for any $i=1,2, \ldots, k$.

Proof. The proof is analogous to that of Theorem 6.1.

References

[1] I.N.Bernstein and A.V.Zelevinsky, Induced representations of reductive p-adic groups, I, Ann. Sci. École Norm. Sup. 10 (1977), 441-472.
[2] J.Bernstein, P.Deligne, and D.Kazhdan, Trace Paley-Wiener theorem for reductive p-adic groups, J.Analyse Math. 42 (1986), 180-192.
[3] W.Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, preprint
[4] D.K.Faddeev, On multiplication of representations of classical groups over finite field with representations of the full linear group, Vest.
Leningrad. Univ. 13 (1976), 35-40.[in Russian]
[5] D.Goldberg, Reducibility of induced representations for $S p(2 n)$ and $S O(n)$, Amer. J. Math. vol(116), 1994, 1101-1151.
[6] M.E.Sweedler, "Hopf Algebras", Benjamin, New York, 1969.
[7] M.Tadić, Structure arising from induction and Jacquet modules of representations of classical p-adic groups, J. of Algebra 177 (1995), 1-33.
[8] M.Tadić, Representations of p-adic symplectic groups, Compositio Math. 90 (1994) 123-181
[9] M.Tadić, On regular square integrable representations of p-adic groups, American Journal of Mathematics 120 (1998), 159-210.
[10] A.V.Zelevinsky, Induced representations of reductive p-adic groups, II, On irreducible representations of $G L(n)$, Ann. Sci. École Norm. Sup. 13 (1980), 165-210.

Department of Mathematics, University of Split, Teslina 12, 21000 Split, Croatia

Current address: Dept. of Math., Purdue Univ., West Lafayette, IN 47907, USA
E-mail address: dban@mapmf.pmfst.hr; dban@math.purdue.edu
Received: 21.05.98.
Revised: 09.11.98

[^0]: 1991 Mathematics Subject Classification. 20G05, 22E50.
 Key words and phrases. self-duality, parabolic induction, representations, evenorthogonal groups.

