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CURVES IN n-DIMENSIONAL k-ISOTROPIC SPACE

Zeljka Milin Sipus, Zagreb, Croatia, and Blazenka Divjak, Varazdin, Croatia

Abstract. In this paper we develop the theory of curves in n-dimensional k-isotropic space I~. We
derive explicit expressions and geometrical interpretations for the curvatures of a curve.

1. Introduction

The n-dimensional k-isotropic space I~ was introduced by H. Vogler and H.
Wresnik in [17]. We follow the notations and the terminology used in that paper.
The special cases of Ii, Ii, I~were thoroughly studied in [2]' [3], [4]' [9], [10] [12]'
[13], [14], [15], [16]. The case of I~was introduced in [11]' and studied in [1] and
[5]. The theory of curves in n-dimensional flag space I~-I was studied in [7] and in
[8]. A general approach to the theory of curves in Cayley/Klein spaces is given in
[6].

In this paper we develop the theory of curves in I~. We construct the Frenet
frame of an admissible curve and calculate the explicit expressions of the curvatures
of such a curve. We derive also the geometrical interpretation of these curvatures
and investigate the curves having some of their curvatures equal to zero. Finally
we describe the conditions, in terms of curvatures, if a curve lies in an [-isotropic
m-plane.

Let A denote an n-dimensional affine space and V its corresponding vector
space. The space V is decomposed in a direct sum

(1)

such that dim Vz = k, dim VI = n - k. Let Bz = {bn-k+l, , bn} be a basis for
the subspace Vz. In Vz a flag of vector spaces Vz := C1 :J :J Cz :J CZ+I :J
... :J Ck := [bn], Cz = [bn-k+/, ... bn] is defined. According to it we distinguish
the following classes of vectors: the Euclidean vectors as the vectors in V \ Vz and
the isotropic vectors of degree [ or [-isotropic vectors, [ = 1, ... k, as the vectors in

",k .Vz, X = wm=1 xn-k+mbn-k+m, for which holds

Xn-k+l = ... = Xn-k+Z-1 = 0, Xn-k+Z i= O.
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By 1T:; : V .......•Ui, i = 1,2, we denote the canonical projections.
The scalar product· : Ul x Ul .......•R is extended in the following way on the whole
Vby

(2)

Therefore the isotropic vectors are orthogonal (scalar product vanishes) to all other
vectors, especially also to themselves.

For x E V we define its isotropic length by Ilxll := l1T:l(X)I. But if x is an [
isotropic vector, then its isotropic length is 0, and therefore we introduce as isotropic
length the Ith- range of x, i.e. [X]I := Xn-k+l, 1= 1, ... , k.

The group of motions of I~is given by the matrix

(3)

where A is an orthogonal (n - k, n - k)-matrix, detA=1, B a real (k, n - k)-matrix

and C a real lower triangular (k, k)-matrix such that c~=zt:= 1.

2. Hyperplanes in I~

We distinguish the following classes of hyperplanes in I~. We say that a
hyperplane in I~given by an equation

Uo + UIXI + ... + UnXn = 0

is of type I or 1- isotropic, I = 0, ... k, if Un-I =I- 0 and Un-I+l = ... = Un = O.
Especially, for 1= 0 we say that a hyperplane is non-isotropic and for I = k that it
is completely isotropic.

PROPOSITION 1. Let H be an I-isotropic hyperplane, I = 0, ... , k - 1. Then
there are no (k -I) -isotropic vectors in H. Furthermore, there e;'(istsa basis consisting
ofn-k Euclidean vectors and of one ofm-isotropic vectors, m = 1, ... , k, m =I- k-I,
but also a basis consisting of n - I - 1 Euclidean vectors and of one of m-isotropic
vectors, m = k -I + 1, ... , k.
In every basis of H the number of Euclidean vectors varies from n - k to n - [ - 1;
there are at most k - m m-isotropic vectors, ifm :::;k -1- 1, and at most k - m + 1

m-isotropic vectors, ifm ~ k - 1+ 1.

Proof. Let H be an I-isotropic hyperplane given by

Uo + UIXI + ... Un-IXn-1 = 0, Un-I =I- O.
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Then its equation can be written in the following form
Xl

Xn-kXn-l-l+ UoXn-l+lXn-l un-l

un-l

00-ul0

0

un-l 0-un-k0

0

0un-l-un-l-l0

0
0001

0

0000 269

Xn

0

0

=0.
(4)

0
0

From (4) it can be seen that there are no (k - l)-isotropic vectors in an I-isotropic
hyperplane, l = 0, ... , k - 1. Furthermore, it can also be seen that there exist the
mentioned bases for H; the first follows directly from (4), the others by making
linear combinations of the vectors of the first mentioned basis.

COROLLARY 1. In a non-isotropic hyperplane there are no k-isotropic vectors.
FurthemlOre, there exists a basis consisting of n - 1 Euclidean vectors, but also
a basis consisting of n - k Euclidean vectors and of one of m-isotropic vectors,
m = 1, ... , k - 1.

In every basis the number of Euclidean vectors varies from n - k to n - 1, there are
at most k - m m-isotropic vectors, m = 1, ... , k - 1.

COROLLARY 2. In a completely isotropic hyperplane exist all m-isotropic di
rections, m = 1, ... , k.
There exists a basis consisting of n - k - 1Euclidean vectors and of one of m-isotropic
vectors, m = 1, ... , k. Generally, every basis consists of n- k - 1 Euclidean vectors,
and of at most k - m + 1 m-isotropic vectors, m = 1, ... , k.

3. Curves in I~

Definition I. Let I ~ R be an open interval and cp : I --+ I~ a vector function
given in affine coordinates by

OX(t) = (Xl(t), ... ,xn(t)) := x(t),

where cp(t) = X is a point in A.
The set of points c E I~is called a C-curve, r ~ 1, if there is an open interval I ~ R
and a C' -mapping cp : I --+ I~ such that cp (I) = c.
A C -curve is regular if x(t) :f:. 0, tEl.
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A cr -curve is simple if it is regular and qJ is injective.

One can easily see that the notions of cr -curve, regular e' -curve and simple cr -curve
are invariant under the group of motions of I~.

Definition 2. A point Po(to) of a regular en-curve is called an inflection point
of order I, I = 2, ... , n - 1, if the set of vectors

{x(to), ... , X(l-l) (to)}

is linearly independent and the set of vectors

{x(to), ... , x(l)(to)}

is linearly dependent.
If a curve has no inflection points of any order I, I = 2, ... , n - 1, it is said to be
non-degenerated.

The notion of an inflection point of order I is a geometrical notion i.e. it does
not depend on parametrization and is invariant under the group of motions. More
over, it is a differential invariant of order l.

4. Osculating planes

Definition 3. Let c be a simple e'-curve given by x = x(t) and P(t) E can
inflection point of order r. The osculating m-plane, m = 1, , r - 1, at the point P

is m-dimensional plane in I~ spanned by the vectors x(t), , x(m)(t).
If c is a non-degenerated simple en-curve, then the osculating hyperplane of c

at P(t) is the hyperplane spanned by x(t), ... , x(n-ll(t). Its equation is given by

det(x - x(t), x(t), ... , x(n-l)(t)) = 0, (5)

where x denotes a position vector of an arbitrary point of the osculating hyperplane.

PROPOSITION 2. Let c : I -t I~be a simple e(l+lLcurve on which all of the
points are inflection points of order I + 1, I = 1, ... , n - 1. Then there exists an
I-plane which contains the curve c.

Definition 4. A curve c is said to be an admissible cr -curve, r ;;::n - 1, if 1rl (c)
is non-degenerated and c is a simple, non-degenerated cr -curve without I-isotropic
osculating hyperplanes, 1= 1, ... , k.

THEOREM 1. A cr -curve c, r ;;::n - 1, is admissible if and only if

=1= 0, tEl, (6)
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i- 0, tEl.
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(7)

x\n-k)(t) x~,,--,.k)(t)

An admissible curve has neither I-isotropic tangents nor I-isotropic osculating m
planes, I = 1, ... , k, m = 2, ... , n - 1.

Proof If c is admissible, then the statement obviously holds.
Conversely, if (6) holds, then c is non-degenerated. Furthermore c is regular because
otherwise it would be x(t) = 0, tEl, and so the first row of the determinant
(6) would consists of zeros. If c has I-isotropic tangents, then the first row of the
determinant (7) would be zero. In every I-isotropic m-plane, I = 1, ... , k, there is
k-isotropic direction. Therefore if c has osculating I-isotropic m-plane, (6) would be
zero.

5. Frenet's equations of a curve in I~

Definition 5. Let c : [a, b] ---t I~be an admissible curve. Then

s:= lbIlxlldt = lbl1rj(x)ldt

is called the isotropic arc length of the curve c from x(a) to x(b).
One can notice that the isotropic arc length of an admissible curve c coincides

with the Euclidean arc length of the projection 1rj (c) to the basic space.

PROPOSITION 3. Every admissible C -curve c can be reparametrized by the arc
length sand s is the arc length Oilc exactly whell Ilx(s) II = 1.

Let c : I ---t I~be a curve parametrized by the arc length. Notice that c is also
admissible. Now we can define the Il-frame {tj(s), ... , tn(s)} of a curve c in a point
x( s). It should be an orthonormal basis of V like it is defined in [17].
By applying the Gram-Schmidt orthogonalization process to the set

{Xl, ... , x(n-k)}

we get the orthonormal set of vectors {tj, ... , tn-d

tj .- Xl

bm := x(m) - E;:~j(x(m) . tj)tj
t .- ~ m-2 n-k
m Ilbmll' - , ... , .

One can see that the frame {1rI(td, ... , 1rj (tn-k)) is the Frenet (Il - k)- frame of the
curve 1rj(c).

If we put [II = [tj, ... , tn-k], then 01 n U2 = {O}, and therefore we have the
following decomposition V = OJ EB U2. Now we should define the basis of U2
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consisting of one unit I-isotropic vector, ... , one unit k-isotropic vector. Let us

suppose that x~~~~il) (s) #- O. If x~~~il) (s) = 0 then there must exist some other

coordinatexn_Hi such thatx~~~~~I)(s) #- 0 and we can form the vector tn-k+1 by it.
Now we define

(n-k+l) (n-k+l)

xn-k+2 Xn )tn-HI := (0, ... 0, 1, (n-k+l)"'" (n-HI) .
~ Xn_k+1 Xn_k+1

Obviously tn-HI is an unit I-isotropic vector.
Let us also define

( (n-HI)( ))'

Xn-k+2 S

(n-k+l) ( )Xn-k+1 S

If K"n-k+1 (s) #- 0, we can put

(x(n-k+I)) ,

n-k+3

x1n-k+1)

tn-k+2 ;= (0, ... 0,0, 1, n-k+1
~ K"n-k+1

n-k+1

, .. "'
(x(n-k+11 ) ,
~)
K"n-k+1

which is an unit 2-isotropic vector. Now we introduce

( (x<n-k+l\S)) ') I

n-k+3

x<n-k+l)(s)
( ) n-k+1

K"n-k+2 S = ( )K"n-k+1 S

Continuing the process, under the assumptions K"n-k+2(S) #- 0, ... , K"n-k+j(S) #- 0,
we define the U + 1)-isotropic vector

_ ( (n-k+l) . (n-HI),. )' ., .tn-k+j+1 - (~I, (xn-Hj+2' Xn-k+1 ) . K"n-k+1 ..... K"n-Hj, ... ,
n-k+j

( (n-k+I). (n-k+I),. )' . .... , (xn . Xn-k+1 ) . K"n-k+1 ..... K"n-Hj)

and

K"n-k+j+1 = ( ')'
(n-HI) . (n-k+l) I • ' • ".

( ((Xn-k+j+2 . xn-k+1 ) • K"n-k+l) . K"n-H2) ..... K"n-k+j ,

j = 1, ... k - 2.

The last vector is equal to
tn=(O, ... O,I).

Obviously the following theorem is true.
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THEOREM 2. (Frenet's Equations)
Let c be an admissible curve in l~parametrized by the arc length and let {tI, ... , tn}

be its Frenet n-frame. Then there exist functions Kl, ... , Kn-l : I -+ R such that the

following equations hold

tl'
t/

tn-k+/
tn'

Klt2,
-Ki-lti-l + Kiti+l,

Kn-k+jtn-k+H 1,
O.

i = 2, , n - k,

j = 1, , k - 1,

6. Explicit expressions of the curvatures of a curve in l~

Let us derive now the explicit expressions of the curvatures of an admissible
curve c parametrized by its arc length. Since Ki, i = 1, ... , n - k - 1, are the
curvatures of the projection 1rl (c) of the curve c, we have

1"""'( I (i-l))1"""'(, (i+l))
2( ) _ ~ x, ... , x ~ x, ... , x . _ _ k _ 1

Ki S - 2( I (i)) , 1- 1, ... , n ,r X, ... ,X

where r denotes Gram's determinant with a scalar product defined in (2).
The expressions for the curvatures Kn-k+l, ... , Kn-l are given by the construction
of the Frenet frame in the previous section. We can obtain the explicit expression
for the curvature Kn-k in the following way. Using Frenet's equations we get

x' tl
x(i) antI + ... + aii-lti-l + Kl ... Ki-lti, i = 2, ... , n.

Therefore it holds

d ( , (n))et x, , x

det(1rl(x'), ,1rl(X(n-k)))

Now we have

n-l
K1 ... Kn-l

n-k-l
K1 ... Kn-k-l'

k _ det(x', ... , x(n))
Kn-k - k 1 .

det(1rl(x/), ... , 1rl (x(n-k)))k+l Kn=k+l ... Kn-l

By substituting the expressions for Ki, i = 1, ... , n - k - 1, and by noticing that

d ( ( (n-k+l)) ( (n))) _ ( (n-k+l))k k-l ...et 1r2 x , ... , 1r2 X - Xn-k+1 Kn-k+1 Kn-l

we get the following expression for Kn-k

k _ det(x', ... , x(n))1(x', ... , x(n-k-l)l/2(x~~k:il))k
Kn-k - ----------------- (8)

det(1rl(x'), ... , 1rl(X(n-k)))k+1det(1r2(x(n-k+l)), ... , 1r2(X(n)))'
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Let us notice that for the curvatures I(n-k, ... , I(n-I we can also derive the

following explicit expressions. It is easy to show that

XlI Xn-k+j

(n-k+j)
Xn-k+j

_ n-k+j-I
- 1(1 •.• I(n-k+j-I (9)

j = 2, ... , k - 1,

holds. By using (9) and by considering that

)2 nx/, ... , x(n-k))
(1(1'" I(n-k-I = n I . (n-k-I))x, ... , x

we get
XlI X~-k+1

2

nx/, ... , x(n-k-I))
(n-k+l)

XI

and by induction

(n-k+l)
Xn-k+1

12(Xl , ... , x(n-k))
(10)

XlI

(n-k+j+I)
xI

I(n-k+j =

I XlXn-k+j+1
I

(n-k+j+I)

(n-k+j-I)
xn-k+j+1

XI

Xl

I2

I xn-k+j

(n-k+j)

(n-k+j)
XI

xn-k+j

j = 1, ... , k - 1.

Xln-k+j-I

(n-k+j-I)
xn-k+j-I

, (11)

(12)

Let us now suppose that V is endowed with a scalar product· : V x V --> R
such that its restriction to VI coincides with the already defined scalar product
. : VI x VI --> R. We shall use the same notation for the scalar product on V as for
the degenerated scalar product defined in (2). Let us also introduce the following
notation. Let 1n-k+i(Yr, ... , Ym) , i = 1, ... , k, denote the Gram's determinant of
the projections ofthe vectors YI, ... , Ym onto the (n - k + i)-dimensional subspace
of V spanned by the first 11 - k + i coordinate vectors and 1n-k(YI, ... , Ym)

nYI, ... , Ym)' Then the expression (10) can be written as

2 1n-k+1 (Xl, ... , x(n-k+I))nx/, ... , x(n-k-I))I( =-----------------
n-k 12(X/, ... , x(n-k))
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and the expressions (11) as

2 rn-k+j+I (x', ... , X(n-k+j+I))rn_k+j_I (x', ... , X(n-k+j-l))

Kn-k+j = r2 .(X' X(n-k+j)) , (13)n-k+J ' ... ,

j = 1, ... , k - 1.

We can prove the following theorem.

THEOREM 3. Let KI, ... , Kn-l : I -+ R be differentiable functions different

from 0 such that KI, ... , Kn-k-2 > O. Then there exists, up to isotropic motions, a

unique admissible curve c parametrized by the arc length such that KI, ... , Kn-I are
its curvatures.

Proof Under these assumptions, there exists, up to an Euclidean motion, a
unique projection 1t'1(c) of the curve c in the Euclidean space UI parametrized by
the arc length such that KI, ... , Kn-k-I are its curvatures. Furthermore, (9) implies

x'1

(n-k+l)
Xl

Xn-k+1

(n-k+l)
Xn-k+l

n-k= KI ... Kn-k'

Expansion by the last column of this determinant gives a linear differential equation
with differentiable coefficients for the function Xn-k+l (s) which enables us to find
that function. By similar reasoning, for already found functions XI , ... , Xn-k+j-I, the
expression (9) enables us to find the functions Xn-k+j, j = 2, ... , k - 1. Therefore,
the existence of the curve c is proved.
In order to show that a curve c is unique up to an isotropic motion, we can see at

first that YI (s) = 1, Y2(S) = XI (s), ... , Yn-k+j = Xn-k+j-I (s) form the fundamental
solutions for the corresponding homogeneous differential equation of the equation

(9). If X~_k+j(S) is a particular solution of (9), then the general solution of (9) is
given by

Xn-k+j(S) = C· 1 + CIXI (s) -1- ... + Cn-k+j-IXn-k+j-1 (s) + x~_k+j(s).

Therefore, every curve which is obtained by an isotropic motion from the curve

x(s) = (XI (s), ... , Xn-k(S), X~-k+l (s), ... , x~(s)) satisfies the conditions of the the
orem.

7. Geometrical interpretations of the curvatures

Using explicit expressions of the curvatures obtained in the previous section we
can show that the following propositions hold.

PROPOSITION 4. Let c be an admissible Cn-curve. Then

. (J

IKn-I(So)1 = lzms~ol-Is
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where e denotes the angle between the osculating hyperplanes at the points x(so)
and x(s + so) and s is the parameter o/the arc length.

Proof" Since the osculating hyperplanes of an admissible curve c at the points
x(so) and x(s + so) are non-isotropic, their angle is given by

x; (s + so) x~_2(s + so) x~(s + so)

[el
x;n-I)(S + so)

x; (s + so)

(n-I)( ) (n-I)( )xn_2 S + So Xn S + So

X~_I (s + so)

In-I)() (n-I)()XI'S + So Xn_1 S + So

x; (so) X~_2(sO) X~(So)

(n-I)( ) .rn-1)( )xn_2 So Xn So
I·

X~_I (so)

(n-I)( )xn_1 So

(k) (k+I)(= Xi (so) + Xi SO)s + ... , k

(n-I)( )XI So

Using the Taylor expansion of xlk)(s + so)

1, ... , n - 1, i = 1, ... , n, we get that
e

lims~o [-I =
s

x~(so )
X; (so)

.rn-I)( )XI So

(n-2) ( )xn-2 So

(n) ( )xn_2 So

x; (so)

(n-I)( )XI So

X~_l (so)
2

(n-I)( )Xn_1 So

(n-I) ( )XI So (n-I)( )Xn-2 So (n-I) ( )Xn So
(n-2) ( )XI So

x;n) (so)

X~_I(SO) 2

(n-2) ( )Xn_1 So

(n) ( )Xn_1 So
I·

(n-I) ( )XI So (n-I) ( )Xn_1 So
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Some calculation shows that the numerator of this expression is equal to
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d ( , (n))et x, ... , x

(n-2) ( ) (n-2) ( )xI So Xn-I So

which, comparing by (11) for j = k - 1, implies the statement of the proposition.

For the curvatures Kn-k, ... , Kn-2 we have the following interpretation.

PROPOSITION 5. Let c be an admissible e(n)-curve. Then

OJ

IKn-k+j(SO)I = limHol-l, j = 0, ... , k - 2s

where OJ denotes the angle between the (k- i-I )-isotropic hyperplanes at the points

x(so) andx(s + so) spanned by the vectors tl, .. " tn-k+j, bn-k+j+2, ... , bn, s is the
parameter of the arc length, andbn-k+j+2, ... , bn are the vectors of the orthonormal
basis for U2.

Proof. For the curvatures Kn-k+l, ... , Kn-2 the proof is analogues to the proof
of the previous proposition, if we consider the projection of the curve c to the

(n - k + j + I)-dimensional space spanned by the first (n - k +j + 1) coordinate
vectors.

For the curvature Kn-k we consider (k - I)-isotropic hyperplanes spanned by
tl, ... , tn-k, bn-k+2, ... , bn at the points x(so) and x(s + so). First let us no
tice that for the formally introduced Euclidean normal vector u = (ui, ... , un) =
tl /\ ... /\ tn-k /\ bn-k+2 ... /\ bn of such a hyperplane we have Jrl (u') = Kn-kJrI(tn-k)
and therefore Ilu'll = IKn-kl. Now we have

I. OJ2 -I' [UI(S + so) - UI(SO)]2 [un-k(s + so) - un-k(so)] 2
Ims~02 - Ims~O ------- + ... + ---------s s s

which completes the proof.

Furthermore, by using the explicit expressions for the curvatures, we can show
that the following propositions hold.

PROPOSITION 6. The only admissible en-curves for which Kn-l ::::::0 holds are
the lIOn-degenerated en-curves in non-isotropic hyperplanes.

Proof. Let us first remark that Kn-l ::::::0 if and only if

x'X~_lI
d ( , (n)) - 0

=1= O.et x , ... , x -,
(n-l)

(n-l)
Xl

Xn_l

(14)
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Now let c be a curve in a non-isotropic hyperplane. Then by an isotropic motion we
obtain that c lies in a hyperplanexn = O. Therefore c is given by

x(s) = (XI (s), ... ,Xn-1 (s), 0)

from which (14) follows.
Conversely, let us show that c lies in its osculating hyperplane at an arbitrary point
x(s) and that that hyperplane is non-isotropic. The equation of the osculating
hyperplane at the point x(s) is given by

det(x - x(s), t1(S), ... , tn-1(S)) = O.

We can formally introduce its Euclidean normal vector by t1 (s) /\ ... /\ tn-1 (s) and
by using the Frenet's equations and the assumption Kn-1 == 0 we can show that this
vector is a constant vector. Indeed, differentiation yields

(t1(S) /\ ... /\ tn-1(S))' = t1(S) /\ ... /\ tn-z(s) /\ Kn-1(S)tn
= O.

Therefore, all the osculating hyperplanes are parallel. Let us show now that they are
all equal. It is enough to show that

det(x(s), t1(S), ... , tn_I(S))

is constant. This follows also by differentiating the previous determinant. So, c lies
in its osculating hyperplane. From the condition (14) follows that this hyperplane is
non-isotropic.

Analogously, the following geometrical interpretations for the curvatures Kn-k, ... ,
Kn-z hold.

PROPOiITION 7. Let c be a simple C(n-k+j+ILcuf>le. Then Kn-k+j == 0 if and
only if c is a cUf>le in an (k - i-I )-isotropic hyperplane, i = 0, ... , k - 2.

Proof. Let us first notice that from (10) and (11) follows that Kn-k+j == 0 if and
only if

Xl Xl x'II n-k+j+1 Ixn-k+j

=0,
#0.

(n-k+j+I)

(n-k+j+I)(n-k+j)(n-k+j)
XI xn_k+j+1XIxn-k+j

Then the proof proceeds analogously to the proof of the Proposition 6 if we consider
the projection of the curve c onto the (n - k +i + 1)- dimensional subspace of V
spanned by the first n - k +i + 1 coordinate vectors. We can conclude that this
projection lies in a non-isotropic (n - k + i)-plane which means that c lies in an
(k - i-I)-isotropic hyperplane.

Furthermore, we know that Km == 0, m < n - k, if and only if the projection
1t1 (c) of c is a curve in a m-plane in the basic subspace U1. That is exactly the case
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when c lies in a k-isotropic (m + k)-plane in V. By using this fact and the previous
propositions we may understand better the nature of a degenerated curve c. This can
be described by introducing the supplementary curvatures.
We shall distinguish several cases.

Case 1. If Km == 0, m < n - k, then c is a curve in a k-isotropic (m + k)-plane
spanned by vectors x', ... , x(m+k). We construct the Frenet (m + k)- frame in the
same way as we did it for non-degenerated curves. We obtain m Euclidean vectors
tI, ... , tm and one I-isotropic vector tm+h ... , one k-isotropic vector tm+k' Now,

there exist functions KI, ••. , Km-1, K~Il, ... , K~~k-I : I --t R such that the following
Frenet's equations are satisfied

tI'
t/
tm'

tm+/
tm+k'

For the supplementary curvatures K~I), •.• , K~~k_ I we can obtain explicit expres
sions in the same way as we did it for non-degenerated curves. For the higher

(I) (I)
curvatures Km+ I' ... , Km+k- I we get

(I) ((( (m+I) . (m+I) '. (I))'. (I))'. . (I))'
Km+i+I = (Xn-k+i+2 • Xn-k+I) . Km+I . Km+2 ..•.. Km+i

i = 0, ... , k - 2,

or (by supposing that V is unitarian)

( (I) ) 2 _ rn-k+i+I (X', ... , X(m+i+21)rn_k+i_I (x', ... , x(m+i))
Km+i+I - r~_k+i(X', ... , X(m+i+I)) . ' (15)

i = 0, ... , k - 2.

For the next curvature K~l) we get

2 r ( , (m+I))r( , (m-l))
(K(l)) = n-k+l x, ... , x x , ... , x .m r2(x', ... , x(m))

Using Propositions 6, 7 we can conclude as follows.

PROPOSITION 8. Let c be a simple C(mHl-curve such that Km == 0, m < n - k.

Then K~~i == 0 if and only if c is a curve in a (k - i-I )-isotropic (m + k - 1)-plane,
i = 0, ... , k - 1.

Now we can proceed by supposing Km = K~l) == O. Then c lies in a (k - 1)
isotropic (m+k-l )-plane ~panned by mEuclidean vectors tl, ... , tm, one 2-isotropic
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vector tm+], , one k-isotropic vector tm+k-I. We introduce supplementary curva-

tures K~), , K~~k-2 : I --+ R such that the following Frenet's equations hold

tl'
t/
tm'

tm+/
tm+k-I'

Klh,
-Ki-Iti-I + Kiti+l, i = 2, ... , m - 1,

(2)
-Km-Itm-I + Km tm+l,

(2)
Km+jtm+j+J, j = 1, ... , k - 2,
O.

By proceeding inductively under the assumptions Km == K~I) == == K~-I) ==

o we obtain supplementary curvatures K~~i' I = 1, ... , k, i = 0, , k - I, for
which we obtain the following explicit expressions. For the higher curvatures

(I) (I)
Km+l> ... , Km+k-I we get

(I) ((( (m+l) . (m+I),. (I))'. (I))'. . (I))'
Km+i+1 = (xn-k+i+I+1 . xn-k+l) . Km+1 . Km+2 ..... Km+i

i = 0, ... , k - I,

or (by supposing that V is unitarian)

((I) )2_Km+i+1 -

r ( , (m+i++2))r ( , (m+i))n-k+i+I+I,I, ...,I-i x, ... , X n-k+i+I-I,I, ...,I-1 x, ... , x

r2 (x' x(m+i+I))n-k+i+I,I, ...,1-1 , ... ,

i = 0, ... , k - l.

and for the next curvature K~) we obtain

2 r ( , (m+I))r( , (m-I))
(K(I)) = n-k+I,I, ...,I-I. X , ... , x x, ... , Xm r2(x', ... , x(m)) ,

where rn-k+i,I, ..AYI, ... , Ym) , i = 1, ... , k, I = 1, ... , k - 1, denotes the Gram's
determinant of the projections of the given vectors onto the (n - k + i -I)-dimensional
subspace of V spanned by the first n - k+i coordinate vectors except the first isotropic,
... , I-th isotropic direction.

Furthermore, the following theorem holds.

THEOREM 4. Let c be a simple C(m+k)-curve such that Km == K~I) == ... ==

(I-I) - 0 < k 1- 1 kiTh (I) - 0 if d I if .Km =, m n - , - , ... , -. en Km+i = I an on Y I C IS a curve

in a (k - I - i)-isotropic (m + k - I)-plane.

COROLLARY 3. Let c be a simple C(m+kl-curve, m < n - k. Then c is a curve

in a non-isotropic m-plane if and only if Km == K~I) == ... == K~k) == O.
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Case 2. Let us now consider the case Kn-k == O. By Proposition 7 it means that c
lies in a (k - 1)-isotropic hyperplane spanned by vectors x', ... , x(n- I). Constructing
the Frenet (n - 1)-frame in the same way as we did it for non-degenerated curves, we
obtain n - k Euclidean vectors tl, ... , tn-b one 2-isotropic vector tn-k+I, ... , one

k-isotropic vector tn-I. We introduce supplementary curvatures K~~k' ... , K~~2
I ~ R such that the following Frenet's equations are true

tl I
t/

tn-k'

tn-k+/

tn-I'

KI t2,

-Ki-Iti-I + Kiti+l, i = 2, ... , n - k - 1,
(I)

-Kn-k-Itn-k-I + Kn_ktn-k+l,

K~~k+jtn-k+j+I, j = 1, ... , k - 2,
O.

We can obtain the explicit expressions for the supplementary curvatures. For the
. (I) (I) hhIgher curvatures Kn_k+l, ... , Kn-2 we ave

(I) _
Kn-k+i -

or

( ')'
(n-k+l) . (n-k+I),. (I) '. (I) . . (I)

( ((Xn-k+i+2 . xn-k+2 ) . Kn-k+l) . Kn-k+2) ..... Kn-k+i-I

i = 1, ... , k - 2,

( (I) )2_Kn-k+i -

r ( , (n-k+i+I))r ( , (n-k+i-I))n-k+i+2,1 X, ... , X n-k+i,1 X, ... , x

r2 (x' x(n-k+i)) ,n-k+i+I,1 , ... ,

i = 1, ... , k - 2,

and for the next curvature K~~k we get

2 r ( , (n-k+I))r( , (n-k-I))

(K(I)) = n-k+2,1 X, ... , x x , ... , x .n-k r2(X', ... , x(n-k))

Furthermore, the following proposition holds.

PROPOSITION 9. Let c be a simple C(n-ILcurve such that Kn-k == O. Then

K~~k+i == o ifandonly ifclies ina (k-i-2)-isotropic (n-2)-plane, i = 0, ... , k-2.

Let us suppose now that Kn-k == K~~k == O. Then c lies in a (k - 2)-isotropic
(n - 2)-plane spanned by n - k Euclidean vectors t], ... , tn-b one 3-isotropic vector
tn-k+1> ... , one k-isotropic vector tn-2. We introduce supplementary curvatures
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K~~k' ... , K~~3 : I --> R such that the following Frenet's equations hold

tl I
t/

tn-k'

tn-k+/
tn-2'

Klt2,

-Ki-Iti-I + Kiti+l, i = 2, ... , Il - k - 1,
(2)

-Kn-k-Itn-k-I + Kn_ktn-k+l,
(2)

Kn_k+jtn-k+j+I, j = 1, ... , k - 2,
O.

B d" d . 1 d h . (I) (/-1) 0Yprocee mg m uctIve y un er t e assumptIOns Kn-k == Kn-k == ... == Kn-k ==

we obtain supplementary curvatures K~~k+i' I = 1, ... , k - 1, i = 0, ... , k - I
1, for which the following explicit expressions hold. For the higher curvatures

(I) (I)
Kn-k+l, ... , Kn-2 we have

(/) 
Kn-k+i -

or

( ')'
(n-k+l) . (n-k+l) I. (/) I. (/) .. (I)

( ((Xn-k+i+I+1 . Xn-k+I+I) . Kn-k+I) . Kn-k+2) ..... Kn-k+i-I

i = 1, ... , k - 1- 1

( (/) )2_Kn-k+i -

rn-k+i+I+I,I, ...,L(x', ... , x(n-k+i+I))rn_k+i+I_I,I, ...,L(x', ... , x(n-k+i-I))

r2 ( I x(n-k+i)) ,n-k+i+I.I •...•1 x, ... ,
i = 1, ... , k - 2.

For the next curvature K~~k we get

2 r ( I (n-k+I))r( I (n-k-I))
(K(/)) = n-k+I+I,I, ...•1 X , ... , x x , ... , x .n-k r2(x', ... , x(n-k))

Now the following statements hold.

THEOREM 5. Let c be a simple e(n-I)-curve such that Kn-k == K~~k == ... ==

(/-1) - 0 I - 1 kIT" (/) - 0 if d I if . .Kn_k = , - , ... , -. 11ell Kn-k+i = I all all Y I C IS a curve 111 a
(k-1- i - I)-isotropic (n -1- I)-plane, i = 1, ... , k-1- 1.

COROLLARY 4. Let c be a simple e(n-I)-curve. Theil c is a curve in a non

. . ( k) I if d I if - (I) - - (k-I) - 0Isotropic Il - -p aile I an on Y I Kn-k = Kn-k = ... = Kn-k = .

Case 3. Finally, let us consider the case when Kn-k+j == 0, j = 1, ... , k - 2,
holds. By Proposition 7 it follows that c lies in a (k - j - I)-isotropic hyperplane
spanned by vectors x', ... , x(n-I). By constructing the Frenet's (n - I)-frame
we get n - k Euclidean vectors tl, ... , tn-b one I-isotropic vector tn-k+l •... ,

one j-isotropic vector tn-k+j, one (j + 2)-isotropic vector tn-k+j+J, ... , one k
isotropic vector tn-I. Since the geometry of the (k - j - I)-isotropic hyperplane,
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j 1, ... , k - 2 coincides with the geometry of the space l~=i, we introduce

supplementary curvatures K~~k+j' ... , K~~2 : I ~ R such that the following Frenet's
equations hold

tI'

t/
tn-k+/

tn-k+/

tn-I'

KIt2,

-Ki-Iti-I + Kiti+I,

Kn-k+itn-k+i+I,
(I)

Kn_k+ltn-k+I+I,
O.

i = 2, , IJ - k,

i = 1, ,j - 1,

l = j, , IJ - 2,

In the same way as before we obtain the explicit expressions for the supplementary
curvatures. We get

(I) _
Kn-k+j+i -

(( , )'
(n-k+l) . (n-k+1),. ' " . (I)

( ((Xn-k+j+i+2 . Xn-k+I ) . Kn-k+I) ..... Kn-k+j-I) . Kn_k+j

• (I) )'.... Kn-k+j+i-I ,

i = 0, ... , k - j - 2,

or

( (I) )2_Kn-k+j -

:r ( , (n-k+j+I)):r ( , (n-k+j-I))n-k+j+2J+I X , ... , X n-k+j X , ... , x
:r2 .(X' X(n-k+j))n-k+j , ... ,

( (I) )2 _Kn-k+j+1 -

:r ( , (n-k+j+2)):r (' (n-k+j))n-k+j+3J+I X, ... , X n-k+j X, ... , x

:r2 (x' X(n-k+j+I))n-k+j+2J+I ' ... ,

( (I) )2 _Kn-k+j+i -

:r ( , (n-k+j+i+I)):r ( , (n-k+j+i-I))n-k+j+i+2J+I X, ... , X n-k+j+iJ+I X, ... , x

:r2 ( , X(n-k+i))n-k+j+i+IJ+I X, ... ,

i = 2, ... , k - j - 2.

Furthermore, the following proposition is true.
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PROPOSITION 10. Let c be a simple C(n-Il-curve such that I(n-k+j == O. j =
1, ... , k - 2. Theil I(~~k+j+i == 0 if alld ollly if c lies in a (k - j - i - 2)-isotropic
(11 - 2)-plalle, i = 0, ... , k - j - 2.

Let us now suppose that I(n-k+j == I(~~k+j == O. Then c lies in a (k - j - 2)
isotropic (11 - 2)-plane spanned by n - k Euclidean vectors tl, ... , tn-b one 1
isotropic vector tn-k+I, ... , one j-isotropic vector tn-k+j, one U + 3)-isotropic
vector tn-k+j+I, , one k-isotropic vector tn-2. Again we introduce supplementary

curvatures I(~~k' , 1(~~3 : I --+ R such that the following Frenet's equations hold

tl'
t/

tn-k+/

tn-k+/

tn-2'

I(lh,
-I(i-Iti-I + l(iti+l,

I(n-k+itn-k+i+I,
(2)

I(n_k+ltn-k+l+ I,
O.

i = 2, , Il - k,

i = 1, ,j - 1,

I = j, , n - 3,

By proceeding inductively under the assumptions I(n-k+j == I(~~k+j

(I-I) - 0 b' 1 (I) I - 1 k 1'-I(n-k+j = we 0 tam supp ementary curvatures I(n-k+j+i' - , ... , - , I -
0, ... , k -j - 1- 1, for which the following explicit expressions hold

(I) _
I(n-k+j+i -

( ( (( (x~,:;'0~+I+I ,,~,:;':; I»)' ,".-Hl)' , .. ,".-.+J-I)' '";~k >J)'

. (I) )'.... I(n-k+j+i-I ,

i = 0, ... , k - j - I - 1,

or

( I(~~k+j) 2 =
r ( , (n-k+j+I))r ( , (n-k+j-I))n-k+j+I+lj+I •...j+1 X, ... , X n-k+j+I-l X, ... , x

r2 (x' X(n-k+j))n-k+j+1 , ... ,

( (I) ) 2I(n-k+j+l =

r ( , (n-k+j+2))r ( , (n-k+j))n-k+j+1+2j+I •...j+1 X , ... , X n-k+j+1 X , ... , x

r2 ( , (n-k+j+I))n-k+j+I+lj+I •...j+1 X , ..• , x

( I(~~k+j+i) 2 =

rn-k+j+i+l+lj+I, ...j+I(X', ... , x(n-k+j+i+I))

r2 (x' X(n-k+j+i))n-k+j+i+lj+I, ...j+1 , ... ,
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T' ( I (n-k+j+i-I))'1 n-k+j+i+I-Ij+I, ...j+1 X, ... , X

i = 2, ... , k - j - I - 1.

The following statements hold.

285

THEOREM 6. Let c be a simple c(n- I) -curve such that Kn-k+j == K~~k+j == ... ==

(I-I) - 0 1- 1 k' 1 '1'1 (I) - O;F d I ;F . .Kn_k+j = , - , ... , - } - . 11lell Kn-k+j+i = IJ all Oil Y l.J C IS a curve III a
(k - j - 1- i-I )-isotropic (Il - I-I )-plalle, i = 0, ... , k - j - I - 1.

COROLLARY 5. Let c be a simple C(n-I)-curve. Theil c is a curve ill a 1l01l

. . . ( k ') I ;F d I ;F - (I) - - (k-j-l) - 0ISOtl'OPIC Il - +} -p aile l.J all Oil Y IJ Kn-k+j = Kn-k+j = ... = Kn_k+j = .
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