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HYPERBOLAS, ORTHOLOGY, AND ANTIPEDAL TRIANGLES

Zvonko Cerin, Zagreb, Croatia

Abstract. We obtain several characterisations of the Kiepert, Jarabek, and Feuerbach hyperbolas of
a triangle ABC using the anti pedal triangles of a variable point P in the plane and the notion of orthologic
triangles. Our arguments are algebraic and use complex numbers.

1. Introduction

Among conics that pass through the vertices A, B, C of a scalene triangle ABC
and its orthocenter H - all of them are equilateral hyperbolas - the most interesting are
Feuerbach, Kiepert, and Jarabek hyperbolas, These are hyperbolas that go through
the incenter I, the centroid G, and the circumcenter 0, respectively, They have been
extensively studied in the past. The following are some more recent papers that
consider them: [1]' [2], [6]' [7], [5]' [12]' [21], [20]' and [24],

In this paper we shall present new characterisations of the Kiepert, Jarabek, and
Feuerbach hyperbolas associated to a triangle ABC. We shall use the same method
for all three hyperbolas, Our idea is to associate to every point Pits antipedal triangle
pa pb pc and to look for triangles XYZ having the property that P lies on a hyperbola
if and only if the triangles po pb pc and XYZ are orthologic,

Recall that triangles ABC and XYZ are orthologic provided the perpendiculars
from the vertices of ABC on the sides YZ, ZX, and XY of XYZ are concurrent.

The point of concurrence of these perpendiculars is denoted by [ABC, XYZ], It is
well-known (see [8] or [17]) that the relation of orthology for triangles is reflexive
and symmetric. Hence, the perpendiculars from the vertices of XYZ on the sides
BC, CA, and AB of ABC are concurrent at the point [XYZ, ABC],

In this definition and throughout this paper all triangles are nondegenerate, that
is, their vertices are not collinear. The last assumption implies that in our approach
we must exclude some points P so that ours are characterisations of three named
hyperbolas without a small number of their points.

For a triangle ABC, let W(ABC) denote the complement in the plane of the
union of the side lines BC, CA, AB and the circumcircle Yo of ABC. Recall that
for a point P in W(ABC), the antipedal triangle popbpc of P has intersections of
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perpendiculars from A, B, Con AP, BP, CP as vertices. Let d denote the function
that associates to a point Pits antipedal triangle papb pc.

The domain of the function d is W(ABC) because it follows immediately from
Thales Theorem and incidence arguments that the points pa, pb, and pc coincide if
and only if P lies on the circumcircle Yo.

Let Y be a curve in the plane. Let § be a function from a subset S of the
plane that associates to each point P of S a triangle §(P). A triangle XYZ is called
(§, y)-generating provided XYZ is orthologic to §(P) if and only if a point Pis
in the set y n S.

Let YF, YJ, and YK denote the Feuerbach, Jarabek, and Kiepert hyperbola of the
triangle ABC, respectively. With the above definitions and notation we can formulate
the results of this paper as contributions to the following problem.

PROBLEM. For Y E {rF, YJ, yK},jind (d, y )-generating triangles.

Observe that when we know that, for y E {YF, YJ, yK}, a triangle XYZ is
(d, y)-generating, then we have the following characterisation of y:

The hyperbola y is the closure of all poillts P ill W(ABC) such that the triangles

pa pb pc alld XYZ are orthologic.

The vertices of the triangles XYZ which we prove in this paper to provide
solutions to the above problem are all endpoints of segments of controlled length
perpendicular to sides of ABC. A more formal description uses the following
notation.

For a triple h = (SJ, S2, S3) of real numbers and for triangles ABC and XYZ, let
[ABC, XYZ, h] denote the triangle UVW such that UX, VY, WZ are perpendicular
to BC, CA, AB and the directed distances IUXI, IVY!, IWZI are equal to SJ, S2, S3,

respectively. When SJ = 0, we put U = X, and we do similar assignments when S2

and S3 are zero. For SJ > 0 the vector XU points towards outside of ABC while for
SJ < 0 it points towards inside.

For an expression e in terms of side lengths a, b, and c of the triangle ABC
and a real number h, let e[h] denote the triple (h e, h cp( e), h l/I( e)). More precisely,
the coordinates e[hh, e[hh, e[hh of e[h] are products with h of e, the first cyclic
permutation cp( e) of e, and the second cyclic permutation l/I( e) of e, respectively. For

example, a[h] = (ha, h b, h c) and if Wa = b+~-a, Wb = c+~-b, and We = a+~-c,
then wa[h] = (h Wa, h Wb, h we).

With this notation at hand, we can describe our task in this paper as a search for
expressions e and points X, Y, and Z in the plane of the triangle ABC such that the
triangles [ABC, XYZ, e[h]] are (d, y)-generating for y either YF, yJ, or YK'

Recall that the triangles [ABC, XYZ, e[h]] have already been used for charac
terisations of Kiepert and Feuerbach hyperbolas. Indeed, the original description of
the Kiepert hyperbola is that it is the locus of centers of perspective of triangles ABC
and XhYhZh, where XhYhZh = [ABC, AmBmCm, a[h]] and Am, Bm, Cm are midpoints
of sides (see [6]).

Another application of triangles XhYhZh on vertices of similar isosceles triangles
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build on sides of ABC is a result in [13] which shows that triangles ABC and Xh YhZh

are orthologic and the point [ABC, XhYhZh] traces again the Kiepert hyperbola as h
goes through the reals.

The Feuerbach hyperbola is the locus of centers of perspective of triangles ABC

and PhQhRh, where PhQhRh = [ABC, ApBpCp, l[h]] andAp, Bp, Cp are projections
of the incenter onto sides (see [11]).

Another application of triangles PhQhRh, whose vertices are intersections of
circles concentric to the incircle with perpendiculars through incenter to sides, is
a result which shows that triangles ABC and PhQhRh are orthologic and the point
[ABC, PhQhRh] again traces the Feuerbach hyperbola as h goes through the reals.

2. Preliminaries on complex numbers

We shall use complex numbers because they lead to the simplest expressions.
Hence, our proofs are entirely algebraic. Every book on the use of complex numbers
in geometry from the references below gives excellent and adequate introductions
to this technique of proof. In this section we give only the most basic notions and
conventions.

A point P in the Gauss plane is represented by a complex number p. This
number is called the affix of P and we write P = p or P(p) to indicate this. The
complex conjugate of p is denoted p. However, we shall be avoiding this notation
by using next letter (now letter q) for the complex conjugate and sometimes write

P(p, q) or P = (p, q) in order to describe affix of a point and to describe its complex
conjugate. In order to avoid quotients, we shall use z* for 1/ z.

In the sections on the Kiepert and Jarabek hyperbolas, we follow the standard
assumption that the vertexes A, B, and C of the reference triangle are represented
by numbers u, v, and w on the unit circle so that the circumcentre 0 of ABC is the
origin. Hence, the affix of 0 is number 0 (zero) and complex conjugates of u, v, and
ware l/u, l/v, and l/w (or, in our notation, u*, v*, and w*).

Most interesting points, lines, circles, curves,... associated with the triangle
ABC are expressions that involve symmetric functions of u, v, and w that we denote
as follows.

O"=u+v+w, 't"=vw+uw+uv, JI=uvw,

O"a= -u + v + w, O"b= U - v + w, O"e = U + v - w,

't"a= -v w + W u + u v, 't"b = v w - w u + u v, 't"e = V W + w u - u v,

JIa = vw, Jib = WU, JIe = uv, 8a = v - w,

8b = W - u, 8e = u - v, ~a = V + W, ~b = W + U, ~e = U + v.

For each k ~ 2, O"b O"ka, O"kb, and O"keare derived from 0", O"a, O"b,and O"e with the
substitution u = uk, v = vk, W = wk. In a similar fashion we can define analogous
expressions using letters 't", JI, 8, and~. We shall use corresponding small Latin
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letters to denote analogous symmetric functions in a, b, and c (lengths of sides of
ABC). For example, m = abc, s = a + b + c, t = be + c a + a b, Za = b + c, and
S2a = b2 + c2 - a2.

The expressions which appear in triangle geometry :.lsually depend on sets that
are of the form {a, b, c, ... , x, y, z} (that is, union of triples ofletters). Let cp and
lfI stand for permutations I b, c, a, : .. , Y, Z, x I and I c, a, b, ... , Z, x, Y I.

Let f = f(x, y, ... ) be an expression that depends on a set S = {x, y, ... }
of variables and let e : S ----+ S be a permutation of S. Then F is a short notation

for f(e(x), e(Y), ... ). For permutations e, ... , .; of S we shall use §e, ...,~ f and

P e, ..., ~ f to shorten f + fe + ... + f~ and ffe .. ·f~· Finally, §f and Pf replace
§rp,1/I f and Prp, 1/1 f·

For real numbers f, g, and h, let (f, g, h) be a notation for - f J..I. + §u2(gv + hw).
For example, (6,1, 1) = u2v + u2w + v2u + v2w + w2u + w2v - 6uvw. Let S be
the area of ABC.

Since points, lines, conics,... associated to a triangle often appear in triples
in which two members are build from a third by appropriate permutation, we shall
often give only one of them while the other two (relatives) are obtained from it by
cyclic permutations.

Let us close these preliminaries with few words on analytic geometry that we
shall use.

In triangle geometry lines play an important role so that we have special notation
[f, g, h] for the set of all points P(p, q) that satisfy the equation f p + g q + h = O.
This set is a line iff there is a complex number Z i= 0 such that z g is the complex
conjugate of z f and z h is a real number.

Let X(x, a), Y(y, b), and Z(z, c) be three points and let £ be a line [f, g, h]

in the plane. Then the line XY is [a - b, y - x, bx - ay], the parallel to £ through
X is [f, g, -ga - fx] and the perpendicular to £ through X is [t, -g, ga - fx].

The conditions for points X, Y, and Z to be collinear and for lines £1 = [f, g, h]'

£2 = [k, m, n], and £3 = [r, s, t] to be concurrent are ~ = 0 and r = 0, where

x a 1

~= ~(X, Y, Z) = y b 1

z c

and

f g h

r = n£l, £2, £3) = k m n

r s

Moreover, the (oriented) area of the triangle XYZ is /4!1, where I = A is the
imaginary unit.

There are some notable exceptions to the rule that complex numbers give simpler
expressions than trilinear and barycentric coordinates. As a convenience to readers
that are more familiar with these coordinates, we shall describe transformation

formulas between all three systems and present these shorter forms in relevant cases.

The above formula for the area of a triangle implies that a point P(p, q) has
with respect to the base triangle ABC the absolute barycentric coordinates (ex, f3, y),
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where a = 8";4 and f3 and y are relatives of a and na = P + J1aq - Sa. It followsb c

that a point P with barycentric coordinates (a, f3, y) has affix

ua+vf3+wy

P= a+f3+y

In order to have connection between complex and trilinear coordinates it suffices to
recall that absolute trilinear coordinates (x, y, z) and absolute barycentric coordi
nates (a, f3, y) of the same point are related by formulas

ax by ez
a=2S' f3=2S' y=2S'

where S is the area of ABC and the lengths of the sides are

a = 18al = )2 - S'2<lJ1;, b = j8bl = )2 - S2bJ1/;, e = 18cl = )2 - S2cJ1;.

3. Statements of results

LetnF = 6 and nJ = nK = 5. For X = K, F, J, let Xi, for i = 1, ... , nx, denote
the following expressions.

Kl = a, K2 = az~, K3 = a2 z~, K4 = aSa z~, Ks = a3.

Fj=1, F2=S~, F3=asa, F4=as~, Fs=s'2<lZaS~, F6=ZaS~.

1r=a*, J2=SaZ~, h=as;', J4=Z~S;', Js=a*s;'.

For i = h, J4, Js we must assume in addition that ABC has no right angle.

THEOREM 1. Let h # 0 be a real number. For any triangle PQR homo

thetie to the triangle ABC, for X = K, J, F, and for i = 1, ... , nx, the triangle

[ABC, PQR, Xi[h]] is ($', Yx)-generating.

Remark. Since there can be at most two values of the parameter h for which
the vertices of the "triangle" [ABC, PQR, Xi[h]] are collinear, we must exclude these
values in addition to the value h = O. In the above statement this is implicit in the
assumption that we consider only nondegenerate triangles.

In the above theorem the triangle PQR can be, for example, the triangle ABC,

the complementary triangle AmBmCm, the anticomplementary triangle AaBaCa, the
Euler triangle AfBfCf, and the opposite triangle AsBsCs, where Am, Bm, Cm de
note midpoints of sides of the triangle ABC, Aa, Ba, Ca intersections of parallels
through vertices to sides, Af, Bf, Cf midpoints of segments joining vertices with the
orthocenter H, and As, Bs, Cs reflections of vertices at the circumcenter O.

THEOREM 2. For any triangle PQR homothetie to the triangle ABC,for X = K, F,

J, andfor i, j = 1, ... , nx, the triangle

[ABC, [ABC, PQR, Xi[h]], Xj[k]]
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is (.f2I, Yx )-generatingfor all real numbers h and all real numbers k except the value

-h aij, where aij is the (i, j) entry of the matrix Mx with

2z2z~2xy

vU

\'
1ll:!..L

2Z
v

u

MK

v
}C }C
vx= 2zy

u;:

u
!!.!!. ux

2Z
yv z

I
-...L

...L
2x

x)'vxux

•
y= s2, Z = Za Zb Zc,

u = 4 s t - 4 m - s3,
X = s2,

\I'

~L~L
v

xxzu

v = s3 - 2 s t + 2 m,

~ ~..Y... v v
w xy sx z su

:r x)' ~:!.1.!1..
s v s u

MF= :! sx !
y v y

1 sx !
u

-
w X)' s.l'

..L
su

!! ~ !.!!.. !!. ~
)' v x)' x z

X = 2m, Y = Sa SbSc, Z = S2aS2bS2c, U = 4st-6m-s3, v = u+2m, w = 16S2,

1 ..L -.L ...E- 1:...
ms 4m2 msu sx

ms.!.LLmy
;:

4mzuxz

M]=

4m2
4mz 4m;:4m2

)'

sy susx

msu
!!.su mu

)'Z

)'4mz xz
sx

~sxx;:
)'

my4m2mu

X = Sa Sb Sc,

Y = S2a S2b S2c,Z = Za Zb Ze,u=4st-4m-s3.

Remark. Observe that some important triangles related to the triangle ABC

are of the form [ABC, AmBmCm, K1 [h]] for a suitable constant h. For example, the
first Brocard triangle AbBbCb (for h = 2 Sj S2), the Torricelli triangles AvB"Cv and
AuBuCu on vertices of equilateral triangles build on sides either towards outside or

towards inside (for h = ±/3j2), and Napoleon triangles AvnBvnCvn and AunBunCun

on centers of these equilateral triangles (for h = ±/3j6).

The orthic triangle AoBoCo and the three images triangle ArBrCr whose ver
tices are reflections of A, B, and C at opposite sides of ABC are of the form
[ABC, ABC, JI [h]]. Also, the tangential triangle A,B,C, (formed by tangents to
the circumcircle at vertices of ABC) has the form [ABC, AmBmCm, h[h]].

Let v denote the expression a (b2 + c2 - a2).
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THEOREM 3. Let k ¥- 0 and h be realllll11zbers. For any triangle PQR homo

thetic to the triangle ABC, for X = K, F, J, andforJ = 1, ... , nx, the triangle

[ABC, [ABC, PQR, v[h]]' Xj[k]]

is (d, Yx )-generating.

THEOREM 4. Let k and h ¥- 0 be realnunzbers. For any triangle PQR honzo

thetic to the triangle ABC, for X = K, F, J, andfor J = 1, ... , nx, the triangle

[ABC, [ABC, PQR, Xj[h]], v[k]]

is (d, Yx)-generating.

Let IK = {b, K, Kb, Km, u, ub, v, vb, un, vn}, h = {h, 0, r, t, tr, w, Hh, Ho, 0,

Ot},andh= {e, ep. er, k, kr, p, PP. Ie, Ik, Ip, Oi}. Foreachelementiofthese
three sets we define a triangle AiB;Ci by describing the vertex Ai' The vertices Bi

and Cihave analogous descriptions. Let Ae be the centre of the A-excircle, Aep the
projection of Ae onto BC, the point Aer is the reflection of Ae at BC, the vertex Ak

is the second intersection of the bisector of the angle A with the circumcircle, Akr is

the reflection of Ak at BC, the point Ap is the projection of the incentre I onto BC,

the vertex App is the projection of Ap onto AI, AOi is a projection onto BC of any
point different from 0 on line 10 joining the incentre with the circumcentre, Alp is
a projection onto BpCp of any point different from central point X65 [10] on line 10,
Ale and Alk are projections onto BeCe and BkCk of any point on 10 different from
the incentre I, the point Ab is the projection of the Grebe-Lemoine point K onto the
perpendicular bisector of BC, the vertices AK, AKb, and A Kill are the projection of any
point different from the circumcentre 0 on the line KO onto BC, BbCb, and OAm,

vertices Au and Aun are the vertex and the centre of the equilateral triangle build on
BC towards inside, Av and Am are the vertex and the centre of the equilateral triangle
build on BC towards outside, Aub and Avb are projections of the Grebe-Lemoine
points of AuBuCu and AvBvCv onto perpendicular bisectors of BuCu and BvCv, Ah is
the second intersection of altitude line AH with the circumcircle, Ao is the projection
of A onto BC, the point Ar is the reflection of A at BC, the intersection of tangents
to the circumcircle at Band C is AI> the reflection of At at BC is Atr, All' is the
intersection of common tangents of the A-excircle with B-excircle and C-excircle,
AHh and AHo are the projections onto BhCh and BoCo of any point X on the Euler line
of ABC different from the orthocentre H, and Ao and AOt are the projections onto
BC and BeCt of any point X on the Euler line of ABC different from the circumcentre
O.

Some of the cases in the following theorem are clearly consequences of the
previous theorem (for example, the first Brocard triangle AbBbCb has the form
[ABC, AmBIIlCm, Kj [k]], for a suitable k ¥- 0). Moreover, in some cases we must
make additional assumptions about the triangle ABC. For example, for i = b, the
triangle ABC can not be equilateral and for i = t and i = w it can not have right
angle.
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THEOREM 5. For X = K, J, FJor i E Ix, andforall real numbers h, the triangle

[ABC, A;B;C, v[h]] is (.1'1, Yx)-generating.

THEOREM 6. For X = K, J, F, for any i E Ix, and for all j, j' = 1, ... , nx the
triangles

[ABC, [ABC, AiB;Ci, v[h]]' Xj[k]],

[ABC, [ABC, AiBiC;, Xj[h]], v[k]]'

[ABC, [ABC, AiB;C, Xi' [h]], Xj[k]],

are (.1'1, Yx )-generating for all real values of constants hand k except exactly one
value of either h or k. The matrices of exceptions are similar to the matrices MK,

Mj, and MF from the Theorem 2.
An important source of (.1'1, Yx)-generating triangles is the following general

result.

THEOREM 7. Let Q E W(ABC) be a point different from the orthocentre H. The
antipedal triangle QaQbQc of Q with respect to ABC is orthologic with the triangle
papbpc if and only if P lies on a conic through the points A, B, C, H, and Q.

COROLLARY. For X = K, J, F, the antipedal triangle QaQbQc with respect to
ABC of any point Q on the hyperbola Yx outside the circumcircle Yo and different
from the ortllOcentre His (.1'1, Yx)-generating.

The next result can also be useful in search for (.1'1, Yx)-generating triangles.

THEOREM 8. For X = F, J, K, if DEF is a (.1'1, Yx)-generating in W(ABC),
then triangles

[ABC, DEF, v[h]] and [ABC, DEF, Xi[h]]

(i = 1, ... , nx) are also (.1'1, Yx )-generatingfor all real numbers h with at most one
exception.

4. Preliminaries for proofs

Let us first determine the affixes of points pa, pb, and pc. Since the affix of
A is u and the affix of Pis p, the line AP is [1 - u q, u(p - u), u2 q - p], where q
is a complex conjugate of p. The lines BP and CP are relatives of AP. It follows
that the perpendicular perA at A to AP is [1 - Lt q, u(u - p), u2 q + P - 2 u]' while
the perpendiculars pers and pere at Band C to BP and CP are its relatives. The

intersection of perB and pere is a point pa with affix n~[Ila(p q - 2) + P (Sa - p)],
where na = p + Ila q - Sa. The affixes of pb and pc are relatives of the affix of pa.

Recall that points pa, pb, pc coincide if and only if the point P lies on the
circumcircle Yo with the equation p q - 1 = 0.

THEOREM 9. Triangles XYZ and PQR with affixes of vertices x, y, Z, p, q, and
rare orthologic if and only if (XYZ, PQR) = 0, where

(XYZ, PQR) = § [x (q - i') + x (q - r)].
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Proof The line QR is [ij - 1', r - q, q l' - ij r] so that the perpendicular peraR
through X onto QR is the line [ij - 1', q - r, x (1' - ij) + i (r - q)]. The perpen

diculars perkp and pe,y,Q through Y and Z onto RP and PQ are relatives of peraR'
These three perpendiculars are concurrent if and only if e = 0, where e denotes
the determinant

ij-1' q-rx (r - ij) + i (r - q)

1'-[J

r-py ([J - 1') + Y (p - r)

p-q

p-qz (ij - [J) + z (q - p)

But, e = (XYZ, PQR) nz, where 111 = P (ij - 1')+ q (r - [J) + r ([J - ij). Since
nz = 0 if and only if points P, Q, and R are collinear (and our assumptions ex
clude this possibility), we conclude that the triangles XYZ and PQR are orthologic
if and only if (XYZ, PQR) = O.

D

Let us observe that the condition for orthology of two triangles in both barycen
tric and trilinear coordinates is very complicated because it involves eighteen coor
dinates of vertices of these triangles. This is the main reason why we are making all
calculations with complex numbers.

5. Proof of Theorem 1 for X = K and i = 1

Since triangles ABC and PQR are homothetic, there is a point T(x, y) and a

real number ~ =j:. -1 such that P = T/ (u + ~x), Q = ((J(P), and R = lfI(P), where
T/=(~+I)·.

Let h be a real number. Let U, V, and W be vertices of the triangle [ABC, PQR,

KI [h]]. Then V = P + Ih(v - w), where I = Fl. Also, V = ((J(V) and tV= lfI(V).
Since

t.(U, V, W) =
T/ (u + ~x) + I h Da

T/ (v + ~x) + I h Db

T/ (w + ~x) + I h Dc

U· T/ (1 + ~U y) + I h Da J-L;

v· T/ (1 + ~vy) + I h Db J-Lb

w· T/ (1 + ~w y) + I h Dc J-L;

1

1

1

has up to a constant factor the form

it follows that points U, V, and W will not be collinear if and only if h is different
from

$2 ± 2JS4=t2
12S(~ + 1) .
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u* 11 (1 + ~ u y) + / h 8;

v* 11 (1 + ~v y) + / h 8;

w* 11 (1 + ~w y) + / h 8;

Then (P" pb pc, UVW) = 4/ hjKio lP' u* n~, where jo = 1 - P q and

jK = ('r - 3f.lcr)p2 - f.l2(cr2 - 3T)q2 + (4f.lcr2 - cr T2 - 3f.lT)p

- f.l(4T2 - cr2T - 3f.l cr)q + T3 - f.l cr3•

Notice thatjo = 0 is the equation of the circumcircle of ABC whileh = 0 is the
equation of the Kiepert hyperbola of ABC since the vertices A(u, u*), B( v, v*), and
C(w, w*), the orthocenter H(cr, T f.l*), and the centroid G(3* cr, 3* T f.l*) satisfy it.
This shows that UVW is (.d, YK)-generating for all h -I 0 except for at most two
additional values of h found above when points U, V, and Ware collinear.

The polynomial h is rather complicated. When we transfer it to barycentric
coordinates it becomes significantly shorter so that the equation of the Kiepert
hyperbola is /ilK = 0, where /ilK = §8a(u2 - f.la) Y z or /ilK = §d2aYz. The last
form is simpler than the equation (5) in the excellent recent review article [6] on the
Kiepert conics.

6. Proof of Theorem 1 for X = J and i = 1

We first determine P, (2, and R as above. Let h be a real number. Let U, V, and

W be vertices of the triangle [ABC, PQR, h[h]]. Then U = P + / h vw (v - w)*,

V = cp(U), and tv = If/(U).

Notice that points U, V, and W will not be collinear if and only if h is different
from

/Il (3 /Il ± J3/1l2 - §a4 S2a)

4S (~ + 1) S2

This follows from the fact that

11 (u + ~x) + / h 8; f.la

t1(U, V, W) = 11 (v + ~x) + / h 8; f.lb

11 (w + ~x) + / h 8; f.lc

has up to a constant factor the form

(I 3/11(0,1,-1»)2 2 lP's:21+ (6,1, i) +11 crT ua'

Then (p"pbpc, UVW) = 2lhhjolP'n~, where

h = crl- f.lTl + (T - cr2)p+ (~- f.l cr)q.

The equation of the Jarabek hyperbola of ABC is h = 0 since the vertices A, B,

and C, the orthocenter H, and the circumcenter 0(0, 0) satisfy it.
The polynomial h which represents the Jarabek hyperbola is quite simple

so that its forms in other coordinate systems do not lead to significant simpli
fications. For completeness, let us observe that in barycentric coordinates the
equation of the Jarabek hyperbola is 11l] = 0, where In] = §u 8; Sa(u2 - f.la) Y Z

or 11l] = §a2d2aS2aY Z.
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In contrast with the previous two sections, in order to avoid square roots, here
we shall assume that the vertices A, B, and C of the base triangle have affixes u2, v2,

and w2, with the same assumption about u, v, and w. Let {! denote a transformation
which replaces variables u, v, and w with u2, v2, and w2.

This time P = (~+ 1)* (u2 + ~x), Q = qJ(P), and R = 1/1 (P). Let h be a real
number. Let U, V, and W be vertices of the triangle [ABC, PQR, FJ[h]]. Then
U = P + h vw, Y = qJ(U), and Hi = 1/I(U).

Since

I1(U, V, W) =

1] (u2 + ~x) + h tla

1](v2+~x)+htlb

1] (w2 + ~x) + h tlc

tj(1+~u2y) +h"*u- r-a

tj(1+~v2y) + h ,,*v- r-b

tj(1+i;w2y) +h"*\\.,.2 '-c

1

1 ,

has up to a constant factor the form (lz + 1])2 - 1]2 tl* (1 r, it follows that points U,
V, and W will not be collinear if and only if h is different from

m±Jm(s3-4mt+9m)

4S(~ + 1)

Then (papbpc, UVW) = 2hjFjOW'8au* {!(Ila)*, where

jF = r p2_ tl3 (1 q2+(tl (1+2 tl (12 - (12 r) p+tl ((1 r2 -2 (12 tl- tl r) q+r3 - (13 tl.

Observe that jF = 0 is the equation of the Feuerbach hyperbola of ABC since the
verticesA(u2, l/u2), B( v2, l/v2), and C( w2, l/w2), the orthocenter H({!( (1, r tl *)),
and the incenter I(- r, - (1tl *) satisfy it.

Just as with the Kiepert hyperbola, the polynomial jF which represents the
Feuerbach hyperbola is rather complicated. In barycentric and trilinear coordi
nates its equations are far simpler. More precisely, in barycentric coordinates the
Feuerbach hyperbola has the equation mF = 0, where mF = §u 8; Sa (u2 - tla) Y Z

or mF = §a da Sa Y z.

8. Proof of Theorem 2 for X = K, i= 1, andj = 5

Let UVW = [ABC, PQR, K1 [h]] and LMN = [ABC, UV~ Ks[k]]. We know
U, Y, and Hi from the proof of Theorem 1, so that it is not difficult to see that

L= U+lk8;tl;,M= qJ(L),andN= 1/I(L).

Let us note that there exist at most two values of k when points L, M, and N are
collinear. These values have rather complicated form.

The orthology condition for triangles papbpc and LMN is

(papbpc, LMN) =21«6, 1, l>k+2tlh)jdotl;W'Il~,
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This shows that LMN is (d, YK)-generating for all k except the value -2hsi

and at most two more values for which points L, M, and N are collinear.

9. Proof of Theorem 3 for X = K and i= 1

Let UVW = [ABC, PQR, v[h]] and LMN = [ABC, UV~ K1 [k]]. It is easy
to check that U = P + I h Sa /-L*lP'Da, V = cp(U), and W = 1Jf(U). It follows that

L = U + I k Da, M = cp(L), and N = 1Jf(L). Once again there exist at most two
values of k when points L, M, and N are collinear. These values have complicated
expressions in terms of side lengths. Finally, (papbpc, LMN) = 4 I kjdo /-L*lP'Il~.

10. Proof of Theorem 5 for X = F and i= e

-- ..,- .., •.•.. .., _ .

Assume A = U-, B = V-, and C = W-. Recall [14] that Ae = Ta, Be = Tb, and

Ce = Tc. Let U, V, W denote vertices ofthe triangle [ABC, AeBeCe, v[h]]. It is easy

to check that U = Ta + I h S2a /-Li lP'D2a,V = cp(U), and W = 1Jf(U).

Once again there exist at most two values of h when points U, V, and Ware
collinear. These are 2* S* (-m ± Jm (s3 - 4s t + 9 m)) lP's~. Finally, (papb pc,

UVW) is equal to 4jFjO /-L*lP'Dag(lla)*.

11. Proof of Theorem 7

Let Q = (x, y). Then Qa = (/-Laxy - x2 + SaX - 2/-La)(x + /-LaY- Sa)*' Qb =

cp(Qa),andQc = 1Jf(Qa). It follows that (papbpe, QaQbQc) = 4(xy - l)jQiolP'Dall~(X

+/-LaY - Sa)*, wherejQ = ap2 + bq2 + cp + dq + e,

a=/-Ly2-x-Ty+a, b=/-L (a x-X2+/-Ly-T), c=x2_/-L al+sa Sb Scy-a2-T,

d=T x2-sa Sb scx-/-L2l+T2+/-L a, e=(a2+T) x-a x2+/-L Tl-(T2+/-L a) y.

It is obvious thatjQ = 0 is an equation of a conic. One can easily check that it goes
through A, B, C, H, and Q.

12. Outline of proof of Theorem 8

Let i5 = (x, a), E = (y, b), and F = (z, c). The expression (papbpc, DEF)

has two major factors. The first is jo (the equation of the circumcircle). The second
is the polynomial of degree two in p and q. We assume that its coefficients are
equal to the product of a constant with corresponding coefficients of the polynomial
representing Yx. This gives six equations for variables x, a, y, b, z, c. Let the

solutions have index 0 and let Do = Xo, .... Finally, we check that the triangles

[ABC, Do Eo Fo, v[h]] and
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(i = 1, ... , Ilx) are (d, Yx)-generating for all real numbers h except at most one
value.

13. Concluding remarks and an introduction to the appendix

A careful reader should have noticed that we gave proofs of a very few of our
results and that no case of both Theorems 4 and 6 was proved. One reason for this is
that even with complex numbers we quickly get rather complicated expressions with
lots of absolute values that are difficult to handle and hard to write down. In order

to overcome these difficulties we must position a base triangle ABC so that lengths
of sides are rational functions of three parameters. Only in this way we can avoid
square-root and absolute value functions that are creating problems.

In an appendix to this paper we shall describe how one can (with the help from
a computer) do all this calculations using only elementary analytic geometry in the
plane. We shall limit ourselves to proofs of a few cases of Theorems 4 and 6 hoping
that the reader will be able to infer proofs of all our claims following the same
technique.

14. Appendix - Preliminaries

For an expression f, let [f] denote a triple (f, qJ(f), ljf(f)), where qJ(f) and
ljf(f) are cyclic permutations of f. For example, if f = sill A and g = b + c, then

[f] = (SiIlA, SiIlB, sin C) and [g] = (b+c, c+a, a+b).

Let T denote a function that maps each triple [a] of real numbers to a number

T([a]) = (a + b + c)(b + c - a)(a - b + c)(a + b - c).

c = re,b=rgp,
W

We shall position the triangle ABC in the following fashion with respect to
the rectangular coordinate system in order to simplify our calculations. The ver
tex A is the origin with coordinates (0, 0), the vertex B is on the x-axis and
has coordinates (r e, 0), and the vertex C has coordinates (g q r/ W, 2 f g r / W ) ,

where e = f + g, W = f g - 1, p = f2 + 1, q = f2 - 1, s = g2 + 1, t = g2 - 1,
u = f4 + 1, and v = g4 + 1. The three parameters r, f, and g are the inradius and
the cotangents of half of angles at vertices A and B. Without loss of generality, we
can assume that both f and g are larger than 1 (i. e., that angles A and B are acute).

Nice features of this placement are that all central points from Table 1 in [10]
have rational functions in f, g, and r as coordinates and that we can easily switch
fromf, g, and r to side lengths a, b, and c and back with substitutions

rfsa=--,
W

(b+C)2_a2

f = JT([a]) ,

(a + c? - b2

g = JT([a])

JT([a])r=-~---
2 (a + b + c)
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Moreover, since we use the Cartesian coordinate system, computation of distances
of points and all other formulas and techniques of analytic geometry are available
and well-known to widest audience. A price to pay for these conveniences is that
symmetry has been lost.

The third advantage of the above position of the base triangle is that we can
easily find coordinates of a point with given trilinears. More precisely, if a point P

with coordinates x and y has projections Pa, Pb, and Pc onto the side lines BC, CA,

andAB and A = PPa/PPb and f.l = PPb/PPe, then

eg (Pf.l + q) rx---------
- fSAf.l+gpf.l+ew'

2efgr
y= .

fSAf.l+gpf.l+ew

This formulas will greatly simplify our exposition because there will be no need
to give explicitly coordinates of points but only its first trilinear coordinate. For
example, we write X6 [a] to indicate that the symmedian point X6 has trilinears equal
to a: b : e. Then we use the above formulas with A = a/b and f.l = b/e to get the
coordinates

((fqt+2gu)egr fge2wr)
2 (pv + f g q S + g2 u)' p v + f g q S + g2 U •

of X6 in our coordinate system.
Let UVW denote a function which to a triple (P, Q, R) of points P(x, x'),

Q(y, y'), and R(z, Z') and a triple (ha, hb, he) of real numbers associates a triple
(U, V, W) of points, where

( 2gha I t ha)
U x+--,x +- ,

S S ( 2fhb I qhb)
V y---,y +- ,

P P
W(z, z' - he),

On the other hand, for triangles PQR and XYZ, let OR(PQR, XYZ) be the sum

§ [p(y - z) + p' (Z' - y')],

where P(p, p'), Q(q, q'), R(r, r'), X(x, x'), Y(y, y'), and Z(z, Z'). Observe that
triangles PQR and XYZ are orthologic if and only if OR(PQR, XYZ) = O.

Let P(x, y) be a point. Then the vertices of the antipedal triangle pa pb pc are

pa (2 g w y2 - w t x y + 2 r g e w x + r (2 w + s) (f t - 2 g) y - 2 ,z g e2 ww(2gx+ty-2rge) ,

(r e - x)(2g w y - t w x + r g (w2- e2)))w(2gx+ty-2rge) ,

ph ((WqX+2fwy-rgp2)y (WqX+2fwy-rgp2)x)w(qy-2fx) , w(qy-2fx) ,

( x2 - rex)pc re-x, y .
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Since triangles ABC and PQR are homothetic, there is a point T(x, y) and a
real number ~ different from -1 such that with T/ = (~+ 1)* ,

P(T/~x, T/~Y), Q(T/(~x+er), T/~Y), R(T/(~x+gw*qr), T/(~Y+2fgw*r)).

Let h be a real number. Let (U, v, W) = UVW(P, Q, R, Kdh]). Then U,

V, and Ware vertices of the triangle [ABC, PQR, Kdh]]. Since Kdh] = (fhrsw*,

ghpnv*, ehr), it follows that U(Px + 2fghrw*, Py + fhrtw*), W(Rx, Ry - ehr),

and V(Qx- 2fghrw*, Qy + ghqnv*), wherePx and Py denote the first and the second
coordinate of P.

Let k be a real number. Let (L, M, N) = UVW( U, v, ~ v[k]). Then L, M, and
N are vertices of the triangle [ABC, UV~ v[k]]. Since v[k] = 2efgkr3w*2(qs, pt,

e2 - w2), it follows that

L(Ux + 4efg2kqr3w*2, Uy + 2efgkqr3tw*2),

M(Vx - 4ef2gkr3tw*2, Vy + 2efgkqr3tw*2),

N(Wx, Wy + 2efgkr3(w2 - e2)w*2).

The orthology condition is OR(P" pb PC, LMN) = h11l011lKq~q~y*w*2, where

qa = 2g(er - x) - ty, qb = qy - 2fx, Ino = 2w(x2 + l) - 2erwx + r(w2 - e2)y,

11lK= 2fg(f - g)(w + 2)(x2 - erx -l)-
2(iu + fgqt + f2t2 - 6f2i)xy + egr(2gu + fqt - Sf2g)y.

Notice that Ino = 0 is the equation of the circumcircle of ABCbecause it is equiv
alent to the equation (x - 2*er? + (y + 4*(w2 - e2)rw*? - 16*p2?s2w*2 = 0 of
the circle with center at the circumcenter O(2*er, -4* (w2 - e2)rw*) and the radius
equal to the circumradius 4*prsw*. Also, inK = 0 is the equation of the Kiepert
hyperbola of ABC since the vertices A(O, 0), B(eh, 0), and C(gqrw*, 2fgrw*), the
orthocenter H(gqrw*, 2*qrtw*), and the centroid G(3*r(ft + 2gq), 3*2fgrw*) sat
isfy it. This shows that LMN is (d, YK)-generating for all real numbers h:j:. 0 and
k.

16. Appendix - Proof of Theorem 4 for X = J and j = 2

We first determine P, Q, and R as above. Let h be a real number. Let U, V, and

W be vertices of the triangle [ABC, PQR, h[h]]. Since

h[h] = 2hw((2w + s)*, (2w + p)*, w*(w + 2)*),

it follows that U(Px + 4ghws*(2w + s)*, Py + 2htws*(2w + s)*),

V(Qx - 4fhwp*(2w + p)*, Qy + 2hqwp*(2w + p)*), W(Rx, Ry - 2h(w + 2)*).
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Let k be a real number. Let (L, M, N) = UVW( U, V, W; v[k]). Then L, M, and
N are vertices of the triangle [ABC, UVW; v[k]]. It follows that

L(Ux + 4efg2kqr3w*2, Uy + 2efgkqr3tw*2), N(Wx, Wy + 2efgk(w2 - e2)r3w*2),

and M(Vx - 4ef2gk~tw*2, Vy + 2efgkq~tw*2).

The orthology condition is

OR(p"pbpc, LMN) = 2efg1unomjq:q;,y*w*(w + 2)* p*s* (2w + p)*(2w + s)*,

where

mj = 2w(w+2)(J-g)(w2-e2)(l+erx-x2)+w(2g2u+2f2v+20f2g2_3uv)xy

+ r(2gv(f' - 1) + ft3u - 2f2(v + 4i)(ft + gq))y.

Observe that mj = 0 is the equation of the Jarabek hyperbola of ABC since the
vertices the orthocenter, and the circumcenter 0(2* er, -4* (w2 - e2)rw*) satisfy it.
This shows that LMN is (d, Yj )-generating for all real numbers h :f:- 0 and k.

17. Appendix - Proof of Theorem 4 for X = F andj = 2

We first determine P, Q, and R as above. Let h be a real number. Let UVW be

the triangle [ABC, PQR, F2[h]]. Since F2[h] = 2*r* h(J*, g*, we*), it follows that

U(Px + j*ghr*s*, Py + 2*j*hr* s*t), V(Qx - fg*hp*r*, Qy + 2*g*hp*qr*),

and W(Rx, Ry - 2*e*hr*w).

Let k be a real number. Let (L, M, N) = UVW(U, V, W; v[k]). Then L, M, and
N are vertices of the triangle [ABC, UVW; v[k]]. It follows that

L(Ux +4efikqr3w*2, Uy+2efgkqr3tw*2), N(Wx, Wy + 2efgk(w2 - e2)r3w*2),

where

mF = 2(J - g)(x2 - erx - y2) + (4 - q - t + w(2 - w))xy + r(Jqs - 2gp)y.

Observe that mF = 0 is the equation of the Feuerbach hyperbola of ABC since
the vertices, the orthocenter, and the incenter [(Jr, r) satisfy it. This shows that LMN
is (d, YF )-generating for all real numbers h :f:- 0 and k.
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18. Appendix - Proof of Theorem 6 for X = F, i = Oi,j' = 1, and} = 2

An arbitrary point X different from the circumcenter 0 on the line 10 joining
the incenter with the circumcenter can be represented as a point with coordinates

X(2'1Jr(e~ + 2f), -4'1Jr((wz - eZ)~ - 4w)w')

for a real number ~ different from -1, where 17= (~+ I)'. Projections P, Q, and
R of X onto the sidelines BC, CA, and AB are

P(2*1Jrs'w'(s(ft + 2gqg + 2(fs + 2g)w), 17grs'w'(fs~ + 2gw)),

Q(2'17(gp~ + 2fw)p'qrw', 17f(gp~ + 2fw)p'rw'), R(2'1Jr(e~ + 2f), 0).

Let h be a real number. Let (u, v, W) = UVW(P' Q, R, Fdh]). Then U, V, and
Ware vertices of the triangle [ABC, PQR, Fdh]]. It follows that

U(Px + 2ghs', Py + hs't), V(Qx - 2fhp', Qy + hqp'), W(Rx, -h),

where Px and Py denote the first and the second coordinate of P.

Letkbe areal number. Let (L,M, N) = UVW(U, V, \Y,Fz[k]). ThenL,M,and
N are vertices of the triangle [ABC, UV\Y, F2[k]]. Hence,

L(U.< + j*gkr's', Uy +2'j*kr's't), M(Vx - fg'kp'r', Vv +2'g'kp'qr'),

and N(Wx, Wy - 2'e'kr'w).

The orthology condition is 2'17n1onllnlFP'q~qbr' s'w'y', where

nil = (~+ 1) [4efghr + (e2 + f2gZ - l)kJ + 4efgrZ,

This shows that LMN is (d, YF)-generating for all real numbers hand k which
satisfy the relation nil t o.
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