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FUNCTIONAL DIFFERENTIAL INCLUSIONS INVOLVING

DISSIPATIVE AND COMPACT MULTIFUNCTIONS

Tzanko Donchev, Sofia, Bulgaria

Abstract. This paper is a natural exstension of [7J. We examine the main qualitative properties
of the solution set of differential inclusion with the lag. The right-hand side is supposed to be one side
Lipschitz and with almost continuous convex hull. Afterwards we prove the existence of solutions when
the right-hand side is a sum of one side Lipschitz and almost (upper) semicontinuous multifunction.
which satisfy compactness condition.

1. Preliminaries

Let E be a Banach space. We consider the following differential inclusions with
delay:

x(t) E F(t,x~), Xo = /p. (1)

Here x E E, tEl = [0, 1] and F is a compact valued map from I x X into
E. X = C( [- T, 0]) is the space of the continuous maps from [- T, 0] into E and
Xt(s) = x(t - s) for s E [-T,O]. We replace the compactness or Lipschitz condition
usually used in litereture by one side Lipschitz one. In the next section we extend in
a natural (but not trivial) way the main results of [7]. Namely we prove the existence
of solutions generalizing the corresponding result of [7, 8]. We also show that the
solution set of (1) is dense in the solution set of

x(t) E coF(t,xt), Xo = /p. (2)

So we generalise the corresponding results of [11,14]. We also show that the solution
set of (2) is R{j set. In the last section we prove the existence of solution for the
system:

x(t) E F(t,xt) + R(t,xt), Xo = /p. (3)

Here F(·,·) is one side Lipschitz and R(.,·) satisfies compactness type hypotheses.
In that case we extend the main result of [13] presented for differential equations.
We also improve Theorem 4 of [2], where F is single valued.

All the concepts not discussed in details can be found in [5]. Let E* be a dual
space of E. We let PI (E) = {A c E; nonempty, compact}. For AcE by A, (co A)
denote the closed (convex) hull of A. If x E E. ACE then d(x, A) := infaEA Ix - al.
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p(C,A) = sUPcEcd(c,A) and DH(A,B) = max{p(A, B), p(B,A)} - the Hausdorff
distance. When x, y E E define [x,y]+:= lim h-1{lx+hyl-Jxl} the right derivative

h~O+

of Ixl in direction y. The map [., .]+ is upper semi continuous as a function from E x E
into R and moreover I[x,y]+ - [x,z]+1 ~ Iy - z[. (see [10] p.7). We will consider
continuous multifunctions F : M --* Pf(E), when the later is provided with the
Hausdorff metrics and M is a metric space (commonly M = I x X). Let U be the
united ball in X centered in origin.

Definition 1. The multifunction F : M --* Pf (E) is called lower semi continuous
(LSC) atx when for every open set V nF(x) -I- 0 there exists a neighbourhood A 3 x

such that F(y) n V -I- 0 for all yEA. F is almost LSC (ALSC) when to every e > 0
there exists a compact Ie with meas(1 \Ie) < e, such that F is LSC on Ie x E. (When
F is continuous on Ie X E it is called almost continuous). The multifunction F is
said to be upper semi continuous (USC) at x, when to e > 0 there exists 8 > 0 such
that p(F(x), F(y)) < e, when Ix - yJ < 8.

In the paper we will use also the Hausdorff (ball) measure of noncom pact ness.

(3(B) = inf{r > 0: B can be covered by finitely many balls of radius ~ r}.

If Be .Q c X and centers are chosen from.Q instead of X, then we write (3Q(B)

and have (3(B) ~ (3n(B) ~ 2{3(B).

Recall that the subset B of a metric space is said to be RI5, when it is an
intersection of a decreasing sequence of compact absolute retracts Bn• The set
A C X is called contractible if there exists a continuous h : [0, 1] x A --* A and
x* E A such that h(O,x) = x and h(l,x) = x* on A. From Proposition 5.1 of [1]
we know that B is RI5 set iff it is an intersection of decreasing sequence of closed
contractible Bn with lim (3(Bn) = O.n~=

We consider differential inclusions (1) under the following assumptions.

AI. F: I x X --* Pf (E) and coF(·, .) is almost continuous.
A2. There exists an integrable L(·) such that IF(t, a)1 ~ L(t){l + lal}.

Denote Xo = {a EX: max Ja(s)1 = la(O)J, s E [-Tl, 0].

A3. There exists a Kamke function u such that for every a - (3 E Xa we
have

Iffx E F(t, a) then there existsfy E F(t, (3) such that

[a(O) - (3(O),!x - fy]+ ~ u(t, la - (3J).

Recall that the almost continuous function u : I x R+ --* R is said to be Kamke

function when it is bounded on bounded sets u(t, 0) == 0 and the unique solution of
s(t) = u(t,s), s(O) = 0 is s(t) == O.

Remark 1. One can suppose that L(t) == 1 preserving A1-A3.

Indeed the map t --* I~L(s) ds is continuous and strictly increasing. Let 80
- 1 _

be its inverse. Define F(t,a) = L(8(t))F(8(t),a) for (t,a) E I x X, where

I = [0, II L(t) dt]. It is easy to see thatX E F(t,xr) iff y(t) E F(t, Yr) for y = x( 8(t)).
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Furthermore it is not difficult also to see that u(t, r) = L( e\t)) u( e(t), r) is a Kamke
function iff u(t, r) is.

Therefore if x(t) E coF(t,xl + U) + f(t)U, then d Ix(t)1 ~ 2 + f(t) + Ixl.dt

Consequently Ix(t)1 ~ et(lxol + 2+ I~f(s)ds). Here Iolf(t)dt ~ 1 andf(t) ~ O.

One can suppose that F(·, .) is bounded by a constant M since A2 and the fact that
we will consider only x(·) satisfying the conditions above. We suppose also that
lu(t,s)1 ~ M, since it is bounded on the bounded sets.

Definition 2. The absolutely continuous (AC) function x: I -+ E is said to be

a) c-solution whend(x(s), F(s,xs)) < c+i\-e(t) fora.e. s E I, where 101 Ae(t) dt ~
c and 2M ~ Ae(t) ~ O.

b) quasitrajectory when there exists a sequence {xi (. )}~ I such that Ix" (t) 

x(t)1 -+ 0 uniformly on I and d(..ti(t), F(t,X:)) -+ 0 for a.e. tEl.

c) polygonal when there exists a countable family of semiopen intervals Iq C I
00

such that [0, 1) = U Iq, IpnIq = 0 if q =I- p and x(·) is a constant on every Iq•
q=1

PROPOSITION 1. For every 8 > 0 there exists a decreasing sequence of positive
00

numbers {c;}~1such that L. r;(t) ~ 8, where r;(·) are AC with h(t) ~ u(t, r;(t)) +
;=0

4(c; + A;(t)), r;(O) = O. Here 0 ~ A;(t) ~ 2M for a.e. t and 101 A;(t) dt ~ C;.

The proof is omitted since is very similar of the one of Lemma 3 of [6].

LEMMA 1. Denote G(t, a) = coF(t, a). Under AI, A2for every c > 0 there

exists afinite subdivision 11 = {t;}~1 such that ifx(·) is ACfunction withxo = t/J and
x(t) E G(t;,x;) thenDH(G(t,Xt),G(ti,x;)) ~ c+Ae(t)fora.e. t E [t;,ti+d. Here

i= 0, 1, ... ,N and x; = Xli' 0 ~ Ae(t) ~ 2M and I] Ae(t) dt ~ c. Furthermore the
quasitrajectory sets of (I) and (2) coincide.

This lemma is proved in [7] for continuous G(·, .) and the problem without time
lag (see Lemma 1 and 3 in [7]). The proof given there holds also in our case except
for trivial modifications.

2. The main qualitative properties

In this section we prove that the solution set of (2) can be approximated by the
solution set of the discrete inclusion:

x(t) E coF(t,x;), t E ['t';, 't'i+d, Xo = t/J, Xi = lim Xt (4)
t-t'fj-

where Xi denotes xTj' i= 1, ... , N. Since F is compact valued the last result implies
that the solution set of (2) is C(I, E) compact. So we can use similar approach as in
case of compactness type conditions.
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THEOREM 1. Denote by RN the solution set of (4), when !:w = 0 = to < ... <
tN = 1and by RRP the solution set of(2). Then under Ai - A3 there exists a sequence

I1N such that lim DH(RRP, RN) = O.
N-HYO

Proof. Fixe> O. LetDH(G(t,xr),G(t;,x;)) ~ e+A£(t),foreveryt E [t;,tHI)

and every solution x(·) of (4). We claim that for every solution y(.) of (2) there exists
a solution z(·) of (4) such that Iy(t) - z(t)1 ~ r(t), where ;(t) ~ u(t, r) + e + A£(t),

r(O) = O. We are going to prove the claim. Suppose first the needed z(·) exists on
[0, td. Given Jl > 0 we consider the multifunction

{ G(t, a)

) {v E G(t;, z;):lv-y(t)l=d(y(t), G(t;, z;))}r (t, a =
)l cl{ vEG(t;, z;):[y(t)-a(O), y(t) -v]+

< u(t, ly(t)-a(O)I)+DH(G(t;,z;), G(t, a))+.u} elsewhere.

Now it is not difficult to show that r(., .) is nonempty compact valued and almost
lower semi continuous. Therefore the differential inclusion

u(t) E r)l(t,Ut); Uti = Z;

has a solution Z)l(') defined on [t;, t;+d. Thus [Z)l(t) - y(t), Z)l(t) - y(t)]+ ~

u(t, IZ)l(t) - y(t)l) +.u + e + A£(t). Consequently Iy(t) - z)l(t)1 ~ r)l(t), where
;)l(t) ~ u(t, r)l) + e +.u + ).,£(t).

Let.u -+ O. Since {Z)l (. )})l>o is a compact net there exists a density point z(·)

as.u -+ O. It is easy to show that z(·) is the needed solution of (4), satisfying the
claim condition. By induction one can show that this z(·) exists also on [0,1].

Let z(·) be AC with d(z(t),G(t,Zr)) < e + A£(t). It is not difficult to show
that to 8 > 0 there exists a polygonal solution y(.) such that Iz(t) - y(t)1 ~ 8 and
d(y(t), G(t,Yr)) ~ e + A£(t) + 8 + Ao(t),

Given e > 0 and 8 > O. We claim that for every polygonal z(·) with
d(z(t),G(t,Zt)) ~ e + A£(t) there exists a polygonal y(.) with d(y(t),G(t,Yr)) ~

8 + Ao(t) such that Iz(t) - y(t)1 ~ r(t). Furthemore ;(t) = u(t, r(t)) + 2(e + 8 +
A£(t) + Ao(t)) and r(O) = Izo - Yolo

Let.u > 0 be arbitrary and let u(·,·) be continuous on 1)l x R+. where
meas(l)l) > 1 -.u. If such y(.) exists on [0, T) with T < 1, then y exists also on
[0, T] since is Lipschitz. Furthemore T E [K', v), which are successive points of the
corresponding to z(·) subdivision, i.e. z(t) = z(K') + (t - K')z(K') on this interval.
If ZT - YT E Xo we choosef E G(T,YT) such that [z(T) - y(T),z(T) - f]+ ~

d(z(t), G(T, z(T))) + u(T, Iz(T) - y(T) I) . If ZT - YT ~ Xo we choosef E G(T, YT)

arbitrary. ConsequentlythereexistS'l' > Tsuchthatsettingy(t) = y(T)+(t-T)f one

has [z(t) -y(t), z(t) -y(t)]+ ~ u (t, Iz(t) -y(t) I) +~(e+8+.u+A)l (t)+A£(t) +Ao (t))

on [T, 't") n 1)l or Zr - yy ~ Xo on [T, -r). Since.u is arbitrary one can suppose that

;(t) = u(t, r(t)) + 2(e + 8 + A£(t) + Ao(t)). By simple application of Zorn lemma
one can prove that y(.) exists on the whole 1. Taking into account Proposition 1 and
choosing appropriate sequence e; we can conclude that there exists a solution x(·) of

(1) such that Ix(t) -z(t)1 ~ r£(t) where ;£(t) = u(t, r£(t)) +3(e+A£(t)), r£(O) = O.
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From Lemma 1 one can conclude thatlimDH(RRP, RN) = o for appropriate sequence
t1N of subdivisions of! since lim r£(t) = O. 0

£-+0

COROLLARY 1. Let H(t, a) C G(t, a) be almost USe. Under AI-A3 the solu

tion set of

i(t) E H(t,xt), Xo = 1/1, (5)

is non empty R/j set.

Proof. The fact that the solution set S of (5) is nonempty compact follows from
Theorem 1. From Lemma 2.2 of [5] we know that there exists a sequence Hn (t, a) of

locally Lipschitz multifunctions such that HIl(t, a) C coH(t + ill! nAkj; a + ill U)
00

where meas(!\ U Ak) = 0 and G(·,·) is continuous, while H(·,·) is USC onAk x X
k=!

for every k. Furthermore from Lemma 5.2 of [1] we know that there exists a single
valuedfn(t, a) C Hn(t, a) such thatfn(-, a) is strongly measurable, whilef(t,·) is
locally Lipschitz. Let i(·, "C, a) be the unique solution of

z(t) =fn(t,ur) on ["C,1], Z, = a

which depends continuously on ("C, a). Let Sn be the solution set of (5) with Hn

instead of H and let h : [0, 1] X SII ~ SIl.be defined by h(s, u)(t) = z(t) if t E [0, s]

and h(s,u)(t) = i(t,s,us) if t E (s,l]. Obviously S C SIl+l C Sn' We have
{3(SIl) ::; DH(S, Sn) ~ 0 as n ~ 00 since S is compact. Moreover Sn are closed
contractible. Taking into account S = n Sn and lim {3(Sn) = 0 one has that S is

Il~l n-+oo

R/j set. 0

COROLLARY 2. The solution set of (1) is nonempty connected and dense subset

ofRRP'

Proof. Since extF(t, a) c F(t, a) we can suppose that F(·,·) is ALSC. Let
8 > 0 and letf (.) with It (t) I ::;M be a positive measurable function. We claim that

for every AC y(.) with d(y(t), F(t, y(t))) < f (t) there exists a solution x(·) of (1)
such that Ix(t) - y(t)1 ::; r(t), where r(t) ::; u(t, r) +f(t) + 8.

Suppose firstf(·),Y(·) and u(·,·) are continuous. Define the map:

{ F(t, a) a - Yr ~ Xo

() {v E F(t, a) : Iv - y(t)1 = d(y(t), G(t, a))} a = Yrr t a =
J1 ' cl{v E F(t, a) : [y(t) - a(O),y(t) - v]+

< u(t, Iy(t) - a(O)J) + 8 +f(t)} elsewhere.

Let ~ E f(t, a) and let (t;, a;) ~ (t, a). Since u(·, .),y(.),y(.) and f(-) are
continuous and [., .]+ is USC, one has that there exists ~n such that

[y(tn) - all(O),y(tn) - ~Il]+ < u(tn, Iy(tll) - an(O)[) + 8 +f(tn)

moreover ~n ~ ~ as n ~ 00. Thus f(.,.) is ALSC. When f(·),y(·) are not
continuous one can use Lusin's theorem. Recall also that u(·, .) is almost continuous.
The existence of solutions of i(t) E r(t, Xt), x(O) = Xo can be proved with the help
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of Theorem 3 of [4] as in [1] (see also [8]). Every solution x(·) of the last differential
inclusion satisfies claim's inequality. The proof of the connectedness of the solution
set of (2) is standard. The connectedness of the solution set of (1) can be proved as
in [7]. 0

3. Main result

In this section we prove the existence result for differential inclusion, which
right-hand side is a sum of one side Lipschitz and satisfying compactness conditions
multifunction.

The following lemma is proved in [9].

LEMMA 2. Let Y be a Banach space, 0 =F D C Y be compact convex. If
F: D -+ 2D be use with non empty R(j values. then F admits a fixed point.

Consider the system (3), where F satisfies AI-A3 and R is nonempty compact
valued satisfying the assumptions

Bl. IR(t, a)\ ~ c(t){1 + lal} for every a, where c(t) is an integrable
function.

Taking into account Remark 1 we set c(·) = 1 if needed. Hence we suppose without
loss of generality that IF(t, a) + R(t, a)1 ~ M, i.e. the right-hand side of (3) is
bounded.

B2. There exists a Kamke function w(·, .) such that

{3(R(t, A)) ~ w({3(A)), for every bounded A C X.

Furthermore we assume that R satisfies at least one of the following
assumptions:

(1) a) R(., a) admits strongly measurable selector and R(t, .) has a closed
graph.

(2) b) R(·, .) is almost LSC.

PRoposmoN 2. Let Y be a Banach space and 0 =F Qn C Y with Qn C Qn+ 1

for n ;::: 1 be such that (3(Qn nA) = 0 for every bounded A and all n ;::: 1. Let

Q = u Qn and let B = {Xk : k ;:::I} be bounded. Then
n;"l

(3n(B) = lim lim d(xk, QIl)'
n~ook~oo

This is Proposition 3 of [2] and can be proved just as Proposition 9.2 in [5]
except for trivial modifications.

Remark 2. Let e c X be compact. It is not difficult to show that under the
conditions of the proposition above one has also

(3Q(B) = lim lim p(Ak, Qn)
Il~ook~oo

where B = U Ak and Ak are compacts.
k;"l

In the following lemmas we consider (3) with F replaced by H.
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LEMMA 3. Let V(·). W(·) be strongly measurable bounded. Let Rv and Rw

be the solution sets of (3) with R(·,·) replaced by V(t). W(t) respectively. If Al
A3 hold then DH(Rv(t),Rw(t)) ~ r(t). where r(O) = 0 and f(t) = u(t, r(t)) +

DH(V(t), W(t)).

Proof. Given J1 > O. For x(·) E Rv we define the multifunction

{ H(t, a)+W(t)

( ) {v E H(t,Xt)+W(t):lv-i(t)l=d(i(t),H(t,xt)+W(t))}SfJ. t,a =
cl{ VEH(t, a)+ W(t):[x(t)-a(O),i(t)-vJ+

< u(t, Ix(t)-a(O)I)+DH(V(t), W(t))+J1} elsewhere.

Obviously SfJ. (., .) is almost LSC nonempty compact valued. Therefore there exists

yfJ.(.) E Rw such that.% = l/> and yJJ.(t) E SfJ. (t, y/)o Hence Ix(t) - ~ (t)1 ~ r(t).

where r(O) = 0 and f(t) = u(t, r(t)) + DH(W(t), V(t)) + J1. Consequently one can
replace J1 by 0 since Rw is compact and J1 > 0 is arbitrary. 0

Consider first the case B2 a). Denote by LipM (A) the set of all Lipschitz with
a constant M functions from [-r, OJ into A. We need of the following proposition.

PROPOSITION 3. For every M > 0 one has (3(A) = {3(LipM (A)), where the

second measure of noncompactness is in X.,
Proof. Let (3(A) = r. Fix e > 0 and suppose that A is a finite set in E such

that A + (r + ~)U J A. Letf(·) be M Lipschitz and letf(tI) = fI,f(t2) =h.
Suppose III - fI I < e and Il2 - hi < e. Consider g(t) = II + l2 -ll (t - tl). It is

t2 - tj

not difficult to see that max Ig(t) - f(t)1 ~ e + M2 (t2 - tl)' Now we divide [-r, OJtE[tl,lz]

on [4~r] + 1 intervals with equallenghts. Here [xJis the greatest integer ~ x. Let

11 be subdivision of I with points {ti}~I' Denote by Sp(A) be the set of all piecewise
linear function with values inA for every ti. As shown DH(Sp(A), LipM (A)) < r+ e.

Therefore (3(A) ~ (3(LipM(A)) ~ (3(A) + e. Since e is arbitrary the proposition has
been proved. 0

Let v(·) be strongly measurable bounded multifunction. Denote by RH(v) the
solution set of

i(t) E H(t,xt) + v(t), Xo = l/>.

LEMMA 4. If {Vdbl eLl (I, E) is unirfomly bounded. then

t

{3[RHLQI vk} (t)] ~ / (s, (3LQI Vk(S) } ) ds.
o

(6)

Proof. Suppose first C C E is compact. Then the solution set of (6) is C(I, E)

compact. I.e. RH(C)(t) is compact for all t. Therefore (3[Rh{ U Vk(t)}] = 0 ifk=l
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00

U Vk(t) C Cfora.e. tEl. We may also assume that closed linear hull Eo of U v,,(I)
k=1 ,,~1
is separable since all Vk(') are strongly measurable. Let E" C E be finite dimensional
subspaces such that Eo = U E". Denote by W" = {v E L1 (I, E,,) : Iv(s) I ~ M a.e.

,,~1
on I}. Furthermore Q" = {RH(w)(t) : W E WIll. Since (MU) nE,,) is compact one
has f3(QIl) = O. Denote Q = U Q". By Remark 2 we have

,,~1

f3({RH(Wk)(t): k ~ I}) ~ f3Q({RH(Wk)(t): k ~ I}) = lim Hm p(RH(Wk)(t),Q,,)"-400 k-4OO

p(RH(Wk)(t),Q,,) ~ inf{DH(RH(wk)(t),RH(w)(t)) : W E W,,}
r

= f u(s, P(Wk(S), E,,)) ds.
o

The multifunction r(s) = {x E W" : IWk(S) - xl ~ P(Wk(S), E,,)} is strongly
measurable and hence admits strongly measurable selector w(s) with Iw(s)1 ~ 2M.
Using Fatou's lemma and the dominated convergence theorem we get

f3[(RH{ U vd(t))] ~ {3Q[(RH{ U vd(t))] = lim lim p(RH(Wk)(t),Q,,)k=1 k=1 "-400 k-4OO
r r

= f u(s,p(wk(s),E,,))ds= f u(s,f3({kQlvd(t) :k~ I))ds.
o 0

o
Denote J = I U[-'t', 0]. Now we are ready to prove the main result in the paper,

which extends the main result of [13] and Theorem 4 of [2].

THEOREM 2. Under the assumptions AI-A4, BI-B2 the problem (3) admits a

nonempty solution set.

Proof Due to growth condition there exists a closed bounded convex set So C
C(J, E) such that co RH (So) c So. HereRH(So) = U RH(Vx(t)) andRH(Vx(t))

xEupM(Sol
is the solution set

y(t) E H(t,Yr) + R(t,xr), Xo = Yo = 1/>.

00
We let S"+1 = coRH(S,,) for n ~ O. Denote S = n S". Obviously S is equicon-

,,=1

tinuous (Lipschitz with a constant M). Denote p,,(t) = f3(S,,(t)). Suppose that
for given c > 0 there exists a sequence {Vk(')} C S" such that f3(RH[S,,(t)]) ~

r

2f3{RH[Vk(t);k ~ I]} + c. Then we obtain P,,+I(t) ~ 2Ju(s,f3(P,,(s))ds + c.
o

Since this is true for all c > 0 andp,,(t) -+ Poo(t) on I we get 0 ~ p(t) ~ Poo(t),
r

where p(t) = f3(S(t)). Furthermore Poo(t) ~ 2 J u(s, (f3(Poo(s))) ds,poo(O) = O.
o

Hence Poo(t) == 0 and p(t) = O. I.e. S =I- 0 is a convex compact set. Thus RHO

is nonempty compact R8 valued with RH : S -+ S. From Lemma 3 we know
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that RH(-) is continuous. Therefore there exists a fixed point x(·). Consequently
x(t) E H(t,xt) +R(t,xt),xo = (/J.

Now we have to show that for bounded B C X and e > 0 there exists a

sequence {ak} C B such that f3(B) ~ 2f3( {Xk; k ~ I}) + e. It suffices to consider
f3(B) > 0 and e E (0, f3(B)). Let r = f3(B) - e and XI E B. Then there exists
X2 E B \ rU + XI since otherwise B C Xl + rU and f3(B) ~ r - contradiction.
Let XI, ... , Xn E B be such that Ix; - xjl ~ r for i =I j. The same arguments yields
Xn+ I E B such that Ix; - Xn+ II ~ r for i = 1, ... , n. By induction there exists a

sequence {Xk H~I C B such that Ix;- Xj I ~ r for i =I j. This implies f3({Xk H~I) ~ 5
and hence f3(B) ~ 2f3( {xd~d + e.

Let now R(·,·) be almost LSC. By virtue of Theorem 3 of [4] there exist
rM+I continuous selectionsfn(t, a) E F(t, a) and rn(t, a) E R(t, a) on A,,, where

extF(·,·) andR(·,·) are LSC on A" x X for every n and moreover meas(!\ U An) =
n=1

O. We letf(t, a) = co n f,,(t, a + eU) and r(t, a) = co n r,,(t, a + eU) for
£>0 £>0

t E An. Obviously for every v : ! -+ E strongly measurable with compact values
f3(Rf(v)) ~ f3(RH(v)), where Rf(v) is the solution set of x(t) E f(t,xt) + v(t),

Xo = (/J. Thus by arguments used above there exists a solution y(.) of

x(t) Ef(t,xt) + r(t,xt), Xo = (/J.

One can show thaty(·) is a solution of (3) as Theorem 6.2 of [5]. 0
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