ON FUNCTIONS WITH a-CLOSED GRAPHS

D. S. Janković, Beograd

Abstract

The concept of α-closed graph has been introduced by S. Kasahara [9]. In this paper functions with α-closed graphs are further investigated. Also, several sufficient conditions for a function to be continuous are established.

1. Introduction

In 1979, S. Kasahara [9] introduced the concept of α-closed graph of a function, which generalizes the concepts of closed, strongly--closed, and almost-strongly-closed graph of a function, with the help of a certain operation of topology τ into the power set of $\cup \tau$. By using the notion of functions with α-closed graphs S. Kasahara unified several known characterizations of compact spaces, nearly-compact spaces, and H-closed spaces.

In the present paper we further investigate functions with α --closed graphs, and, particularly, functions with strongly-closed graphs. We generalize the notion of locally closed functions due to R. Fuller [2] and generalize some earlier results for locally closed functions. We also give some sufficient conditions for a function to be continuous.

We point out that all the consequences of theorems that follow are not cited.

2. Preliminary definitions and theorems

Throughout, X and Y denote topological spaces (X, τ) and $\left(Y, \tau^{\prime}\right)$, respectively, and $f: X \rightarrow Y$ denote a function from X into Y. By $\mathrm{Cl}(A)$ and Int (A) we denote the closure and the interior of a subset A of a topological space, respectively.

Definition 2.1 [9]. An operation a on τ is a function from τ into the power set of $\cup \tau$ such that $U \subset U^{a}$ for each $U \in \tau$, where U^{α} denotes the value of α at U. An operation α on τ is regular if for each $x \in X$ and for each $U, V \in \tau$ such that $x \in U \cap V$, there exists a $W \in$ $\in \tau$ such that $W^{\alpha} \subset U^{a} \cap V^{a}$.

Mathematics subject classifications (1979): Primary 54C10; Secondary 54D30.
Key words and phrases: α-closed graph, α-compactness, α-closure, α-continuity.

The function a defined by $U^{a}=U$ (resp. $U^{a}=\mathrm{Cl}(U), U^{a}=$ $=\operatorname{Int}(\mathrm{Cl}(U)))$ for each $U \in \tau$ is an operation on τ and it is called the identity (resp. closure, interior-closure) operation on τ [9].

Let α be an operation on the topology τ of X.
Definition 2.2. A point $x \in X$ is in the α-closure of a set $A \subset X$ ($x \in \mathrm{Cl}_{a}(A)$) if $U^{a} \cap A \neq \emptyset$ for each open neighborhood U of x. A set $A \subset X$ is α-closed if $\mathrm{Cl}_{a}(A) \subset A$.

If α is the identity operation on τ, then the α-closure coincides with the closure in the usual sense. In the case where a is the closure (resp. interior-closure) operation on τ, the a-closure is identical with the ϑ-closure [15] (resp. δ-closure [15]).

Let α be an operation on the topology τ^{\prime} of Y.
Definition 2.3 [9]. The graph $G(f)$ of a function $f: X \rightarrow Y$ is α-closed if for each $(x, y) \in(X \times Y)-G(f)$ there exist open sets U and V containing x and y, respectively, such that $\left(U \times V^{a}\right) \cap$ $\cap G(f)=\emptyset$.

Evidently, if a is the identity (resp. closure, interior-closure) operation on τ^{\prime}, then the α-closedness of a graph is identical with the closedness (resp. strong-closedness [7], almost-strong-closedness [8]) of the graph.

The following lemma will be used in the sequel.
LEMMA 2.4. A function $f: X \rightarrow Y$ has an a-closed graph if and only if for each $(x, y) \in(X \times Y)-G(f)$ there exist open sets U and V containing x and y, respectively, such that $f(U) \cap V^{a}=\emptyset$.

Let a be an operation on a topology τ of X.
Definition 2.5 [9]. A subset A of X is α-compact if for every open cover \mathscr{C} of A there exists a finite subfamily $\left\{U_{1}, \ldots, U_{n}\right\}$ of \mathscr{C} such that $A \subset \cup_{i=1}^{n} U_{i}^{a}$.

If a is the identity (resp. closure, interior-closure) operation on τ, then an a-compact set is compact (resp. $H(i)$ set [5], N-closed relative to X [1]). An $H(i)$ space [12] is a-compact space for the closure operation α on τ. A space is H-closed if it is $H(i)$ and Hausdorff. If α is the interior-closure operation on τ, then an α-compact space is nearly-compact [13].

Definition 2.6 [16]. A space X is C-compact if every closed subset of X is an $H(i)$ set.

Definition 2.7 [17]. A function $f: X \rightarrow Y$ is almost-open if for each open set V in $Y, f^{-1}(\mathrm{Cl}(V)) \subset \mathrm{Cl}\left(f^{-1}(V)\right)$.

Every open function is almost-open, but the converse is not true [17].

Let α be an operation on the topology τ^{\prime} of Y.

Definition 2.8 [9]. A function $f: X \rightarrow Y$ is α-continuous if for each $x \in X$ and for each open neighborhood V of $f(x)$ in Y there exists an open neighborhood U of x in X such that $f(U) \subset V^{a}$.

If α is the identity operation on τ^{\prime}, then the α-continuity concides with the continuity. The weak-continuity [11] (resp. almost-continuity [14]) is the α-continuity for the closure (resp. interior-closure) operation on τ^{\prime}.

Other terms and notations not explained herein are those of Kelley [10].

3. Functions with α-closed graphs

In the remainder of this paper α will be an operation on the topology τ^{\prime} of Y.

THEOREM 3.1. Let a be a regular operation on τ^{\prime}, and let f : $: X \rightarrow Y$ be a function with an α-closed graph. If A is a compact subset of X, then $f(A)$ is an a-closed subset of Y.

Proof. Let A be a compact subset of X. Suppose that $f(A)$ is not a-closed in Y. Then, there exists a point $y \in \mathrm{Cl}_{a} f(A)-f(A)$. Therefore, $y \neq f(x)$ for each $x \in A$. Since f has an α-closed graph, by Lemma 2.4 it follows that for each $x \in A$, there exist open sets $U(x)$ and $V(x)$ containing x and y, respectively, such that $f(U(x)) \cap$ $(V(x))^{a}=\emptyset$. Now $\{U(x): x \in A\}$ is an open cover of A and, since A is compact, there is a finite subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of A such that $A \subset$ $\subset \cup_{i=1}^{n} U\left(x_{i}\right)$. The regularity of α implies that there is an open neighborhood V of y such that $V^{a} \subset \cap_{i=1}^{n}\left(V\left(x_{i}\right)\right)^{a}$. Then $f(A) \cap V^{a} \subset$ $\subset \cup_{i=1}^{n}\left(f\left(U\left(x_{i}\right)\right) \cap V^{i}\right) \subset \cup_{i=1}^{n}\left(f\left(U\left(x_{i}\right)\right) \cap\left(V\left(x_{i}\right)\right)^{a}\right)=\emptyset$. Therefore $y \notin \mathrm{Cl}_{a} f(A)$. This contradiction completes the proof.

The proof of the following theorem is omitted since it is similar to that of Theorem 3.1.

THEOREM 3.2. Let $f: X \rightarrow Y$ be a function with an a-closed graph. If B is an α-compact subset of Y, then $f^{-1}(B)$ is a closed subset of X.

Definition 3.3. A function $f: X \rightarrow Y$ is locally α-closed if for each neighborhood U of x there is a neighborhood V of x such that $V \subset U$ and $f(V)$ is α-closed in Y.

If α is the identity operation on τ^{\prime}, then the locally α-closedness of a function coincides with the locally closedness [2]. A function f will be called locally ϑ-closed (resp. locally δ-closed) if it is locally α-closed and α is the closure (resp. interior-closure) operation on τ^{\prime}.

Definition 3.4. A function $f: X \rightarrow Y$ is α-closed (resp. almost α-closed) if f maps closed (resp. regularly-closed) subsets of X onto α-closed subsets of Y.

Clearly, if α is the identity operation on τ^{\prime}, then the α-closedness (resp. almost α-closedness) of a function coincides with the closedness (resp. almost-closedness [14]). In the case when a is the closure operation on τ^{\prime}, the α-closedness (resp. almost α-closedness) of a function will be called ϑ-closedness (resp. almost ϑ-closedness). We shall say that a function is δ-closed (resp. almost δ-closed) if it is a-closed (resp. almost a-closed) and a is the interior-closure operation on τ^{\prime}.

It is obvious that the class of α-closed functions is contained in the class of almost a-closed functions. Also, if the domain of an almost α-closed function is a regular space, then the function is locally \boldsymbol{a}-closed.

LEMMA 3.5. If a function $f: X \rightarrow Y$ is locally α-closed and has closed point inverses, then f has an a-closed graph.

Proof. Let $(x, y) \in(X \times Y)-G(f)$. Then $x \notin f^{-1}(y)$ and since $f^{-1}(y)$ is closed, there exists an open neighborhood U of x such that $U \cap f^{-1}(y)=\emptyset$. The locally a-closedness of f implies that there is a neighborhood V of x such that $V \subset U$ and $f(V)$ is a-closed in Y. Since $y \notin f(V)$, there exists an open neighborhood W of y such that $f(V) \cap W^{a}=\emptyset$. Let V_{0} be an open neighborhood of x such that $V_{0} \subset V$. Then $f\left(V_{0}\right) \cap W^{\alpha}=\emptyset$ and hence, by Lemma 2.4 it follows that f has an a-closed graph.

The following theorem is an immediate consequence of Lemma 3.5.
THEOREM 3.6. If a function $f: X \rightarrow Y$ is almost α-closed with closed point inverses and X is a regular space, then f has an α-closed graph.

If α is the identity operation on τ^{\prime}, then Lemma 3.5 becomes Corollary 3.8 of [2], and Theorem 3.6 is an improvement of Corollary 3.9 of [2].

The following theorem shows that the converse of Theorem 3.1 holds if X is locally compact and regular.

THEOREM 3.7. Let a be a regular operation on τ^{\prime}. If $f: X \rightarrow Y$ is a function where X is locally compact and regular, the following conditions are equivalent.
(a) f maps compact sets onto a-closed sets and has closed point inverses.
(b) f is locally α-closed and has closed point inverses.
(c) f has an a-closed graph.

Proof. Assuming (a), let U be a neighborhood of some $x \in X$. Since X is locally compact and regular, X has a compact basis of each point and hence, there is a compact neighborhood V of x such that $V \subset U$. Therefore, $f(V)$ is a-closed and (b) is verified. By Lemma
3.5,(b) implies (c). Thus it remains to show that (c) implies (a). If f has an α-closed graph, then Theorem 3.1 gives that f maps compact sets onto α-closed sets. Since points are a-compact, Theorem 3.2 establishes that f has closed point inverses.

If a is the identity operation on τ^{\prime}, then Theorem 3.7 becomes Theorem 3.11 of [2].

LEMMA 3.8. If a function $f: X \rightarrow Y$ is almost α-closed and has ϑ-closed point inverses, then f has an α-closed graph.

Proof. Let $(x, y) \in(X \times Y)-G(f)$. Then $x \notin f^{-1}(y)$ and since $f^{-1}(y)$ is ϑ-closed, there is an open neighborhood U of x such that $\mathrm{Cl}(U) \cap f^{-1}(y)=\emptyset$. Since $\mathrm{Cl}(U)$ is regularly-closed, the almost α-closedness of f implies that $f(\mathrm{Cl}(U))$ is α-closed in Y. Therefore, there is an open neighborhood V of y such that $f(\mathrm{Cl}(U)) \cap V^{z}=\emptyset$. By Lemma 2.4 it follows that f has an α-closed graph.

Since ϑ-closure and closure coincide for subsets of a regular space, Theorem 3.6 follows from Lemma 3.8.

Now, we utilize Lemma 3.8 (resp. Lemma 3.5) to obtain a sufficient condition for a function to be a-continuous.

THEOREM 3.9. If $f: X \rightarrow Y$ is an almost a-closed (resp. a locally α-closed) function with ϑ-closed (resp. closed) point inverses and Y is α-compact, then f is α-continuous.

Proof. It follows from Lemma 3.8 (resp. Lemma 3.5) and Theorem 11 of [9].

COROLLARY 3.10. Let $f: X \rightarrow Y$ be an almost a-closed function from a regular space X into an a-compact space Y such that $f^{-1}(y)$ is closed for every $y \in Y$. Then f is α-continuous.

If a is the identity operation on τ^{\prime}, then Corollary 3.10 gives us an improvement of Theorem 4.9 of [4].

Utilizing the fact that a space is Hausdorff if and only if its points are ϑ-closed we obtain the next consequence of Lemma 3.8.

LEMMA 3.11. If $f: X \rightarrow Y$ is an almost α-closed injection where X is Hausdorff, then f has an α-closed graph.

Combining Lemma 3.11 and Theorem 11 of [9] we have the following theorem.

THEOREM 3.12. If $f: X \rightarrow Y$ is an almost α-closed injection from a Hausdorff space X into an a-compact space Y, then f is α-continuous.

For the identity operation on τ^{\prime}, Theorem 3.12 becomes Theorem 4.12 of [4].

In the case where α is the closure operation on τ^{\prime}, we extend and improve Theorem 3.9, Corollary 3.10 and Theorem 3.12.

THEOREM 3.13. Let $f: X \rightarrow Y$ be an almost ϑ-closed function where Y is minimal Hausdorff (resp. C-compact, $H(i)$) space.
(a) If $f^{-1}(y)$ is ϑ-closed for every $y \in Y$, then f is continuous (resp. continuous, almost-continuous).
(b) If X is regular, $f^{-1}(y)$ is closed for every $y \in Y$, then f is continuous (resp. continuous, almost-continuous).
(c) If f is an injection and X is Hausdorff, then f is continuous (resp. continuous, almost-continuous).

Proof. In all cases f has a strongly-closed graph. If Y is a C-compact (resp. H (i)) space, then every closed (resp. regularly--closed) set in Y is an $H(i)$ set. Hence, by Theorem 3.2 it follows that the inverse image under f of every closed (resp. regularly-closed) set is closed. This shows that f is continuous (resp. almost-continuous). In fact, we utilized Theorem 3.2 to prove Theorem 6 of [6] and a slightly improvement of Theorem 9 of [7]. Finally, if Y is minimal Hausdorff, then by Theorem 7 of [6] it follows that f is continuous.

Now, we give some sufficient conditions for a function to have a strongly-closed graph.

LEMMA 3.14. If $f: X \rightarrow Y$ is an almost-open function with a closed graph, then f has a strongly-closed graph.

Proof. Let $(x, y) \in(X \times Y)-G(f)$. Since f has a closed graph, there exist open sets U and V containing x and y, respectively, such that $f(U) \cap V=\emptyset$. This implies that $U \cap f^{-1}(V)=\emptyset$. Therefore, $U \cap \mathrm{Cl}\left(f^{-1}(V)\right)=\emptyset$. Since f is almost-open, $U \cap f^{-1}(\mathrm{Cl}(V))=$ $=\emptyset$. Hence, $f(U) \cap \mathrm{Cl}(V)=\emptyset$. So, f has a strongly-closed graph.

The following theorem improves Theorem 3.1 and Theorem 3.3 of [3].

THEOREM 3.15. Let f be an almost-open function from a space X into a minimal Hausdorff (resp. H-closed) space Y. Then f is continuous (resp. almost-continuous) if and only if f has a closed graph.

Proof. We have only to prove the sufficiency. By Lemma 3.14 f has a strongly-closed graph. Now, the proof is parallel to that of Theorem 3.13.

Combining Lemma 3.8 (resp. Lemma 3.5) with Lemma 3.14 we obtain the following theorem.

THEOREM 3.16. If $f: X \rightarrow Y$ is an almost-open, almost-closed (resp. locally closed) function with ϑ-closed (resp. closed) point inverses, then f has a strongly-closed graph.

COROLLARY 3.17. If $f: X \rightarrow Y$ is an almost-open, almost--closed function with ϑ-closed point inverses and Y is a minimal Hausdorff (resp. C-compact, $H(i))$ space, then f is continuous (resp. continuous, almost-continuous).

Clearly if we replace the expressions »almost-closed" and " ϑ --closed" in Corollary 3.17 with the expressions "locally closed" and "closed", respectively, then Corollary 3.17 is still valid.

The following corollary improves Theorem 3.4 of [3] and Theorem 11 of [6].

COROLLARY 3.18. Let f be an almost-open function from a space X into a minimal Hausdorff (resp. C-compact, $H(i))$ space Y.
(a) If X is regular, f is almost-closed, and $f^{-1}(y)$ is closed for every $y^{\prime} \in Y$, then f is continuous (resp. continuous, almost-continuous).
(b) If f is an almost-closed injection and X is Hausdorff, then f is continuous (resp. continuous, almost-continuous).

REFERENCES:

[1] D. A. Carnahan, Locally nearly-compact spaces, Boll. Un. Mat. Ital. (4), 6 (1972), 146-153.
[2] R. V. Fuller, Relations among continuous and various non-continuous functions, Pacific J. Math. 25 (1968), 495-509.
[3] T. R. Hamlett, Applications of cluster sets in minimal topological spaces, Proc. Amer. Math. Soc. 53 (1975), 477-480.
 192-198.
[5] L. L. Herrington, Remarks on $H(i)$ spaces and strongly-closed graphs, Proc. Amer. Math. Soc. 58 (1976), 277-283.
[6] L. L. Herrington and P.E. Long, Characterizations of C-compact spaces, Proc. Amer. Math. Soc. 52 (1975), 417-426.
[7] \quad Characterizations of H-closed spaces, Proc. Amer. Math. Soc. 48 (1975), 469-475.
[8] F. E. Foseph, Characterizations of nearly compact spaces, Boll. Un. Mat. Ital. 13 (1976), 311-321.
[9] S. Kasahara, Operation-compact spaces, Math. Japonica 24, 1 (1979), 97-105.
[10] 7. L. Kelley, General Topology, D. van Nostrand Co., Princeton, 1955.
[11] N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly 68 (1961), 44-46.
[12] C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc., 124 (1966), 131 -147.
[13] M. R. Singal and A. Mathur, On nearly-compact spaces, Boll. Un. Mat. Ital. (4), 2 (1969), 702-710.
[14] M. K. Singal and A. R. Singal, Almost-continuous mappings, Yokohama Math. J. 16 (1968), 63-73.
[15] N. V. Velicko, H-closed topological spaces, Mat. Sb. 70 (112) (1966), 98-112; Amer. Math. Soc. Transl. (2) 78 (1968), 103-118.
[16] G. Viglino, C-compact spaces, Duke Math. J. 36 (1969), 761-764.
[17] A. Wilansky, Topics in Functional Analysis, Springer, Berlin, 1967.
(Received August 24, 1981).
Gradevinski fakultet, pp 895 11000 Beograd, Yugoslavia

O FUNKCIJAMA SA α-ZATVORENIM GRAFOM

D. S. fanković, Beograd

Sadržaj

Pojam α-zatvorenog grafa je uveo S. Kasahara [9]. U ovom radu je nastavljeno ispitivanje funkcija sa a-zatvorenim grafom, te posebno funkcija sa jako-zatvorenim grafom. Važniji su rezultati:

Ako je a regularna operacija na topologiji τ^{\prime} prostora (Y, τ^{\prime}) i ako je $f: X \rightarrow Y$ funkcija sa a-zatvorenim grafom, onda je slika svakog kompaktnog skupa α-zatvorena.

Ako je $f: X \rightarrow Y$ lokalno a-zatvorena funkcija i $f^{-1}(y)$ zatvoreno za svako $y \in Y$, onda f ima α-zatvoren graf.

Ako je $f: X \rightarrow Y$ gotovo α-zatvorena funkcija i $f^{-1}(y) \vartheta$-zatvoreno za svako $y \in Y$, onda f ima α-zatvoren graf.

Ako je $f: X \rightarrow Y$ gotovo-otvoreno gotovo-zatvoreno preslikavanje, $f^{-1}(y) \vartheta$-zatvoreni za svako $y \in Y$ i Y je minimalan Hausdorff-ov (resp. C-kompaktan, $H(i)$) prostor, onda je f neprekidno (resp. neprekidno, gotovo-neprekidno) preslikavanje.

