ON FUNCTIONS WITH *a***-CLOSED GRAPHS**

D. S. Janković, Beograd

Abstract. The concept of a-closed graph has been introduced by S. Kasahara [9]. In this paper functions with a-closed graphs are further investigated. Also, several sufficient conditions for a function to be continuous are established.

1. Introduction

In 1979, S. Kasahara [9] introduced the concept of α -closed graph of a function, which generalizes the concepts of closed, stronglyclosed, and almost-strongly-closed graph of a function, with the help of a certain operation of topology τ into the power set of $\cup \tau$. By using the notion of functions with α -closed graphs S. Kasahara unified several known characterizations of compact spaces, nearly-compact spaces, and *H*-closed spaces.

In the present paper we further investigate functions with a-closed graphs, and, particularly, functions with strongly-closed graphs. We generalize the notion of locally closed functions due to R. Fuller [2] and generalize some earlier results for locally closed functions. We also give some sufficient conditions for a function to be continuous.

We point out that all the consequences of theorems that follow are not cited.

2. Preliminary definitions and theorems

Throughout, X and Y denote topological spaces (X, τ) and (Y, τ') , respectively, and $f: X \to Y$ denote a function from X into Y. By Cl (A) and Int (A) we denote the closure and the interior of a subset A of a topological space, respectively.

Definition 2.1 [9]. An operation α on τ is a function from τ into the power set of $\cup \tau$ such that $U \subset U^{\alpha}$ for each $U \in \tau$, where U^{α} denotes the value of α at U. An operation α on τ is *regular* if for each $x \in X$ and for each $U, V \in \tau$ such that $x \in U \cap V$, there exists a $W \in$ $\in \tau$ such that $W^{\alpha} \subset U^{\alpha} \cap V^{\alpha}$.

Mathematics subject classifications (1979): Primary 54C10; Secondary 54D30. Key words and phrases: a-closed graph, a-compactness, a-closure, a-continuity.

The function a defined by $U^a = U$ (resp. $U^a = \operatorname{Cl}(U)$, $U^a = \operatorname{Int}(\operatorname{Cl}(U))$) for each $U \in \tau$ is an operation on τ and it is called the identity (resp. closure, interior-closure) operation on τ [9].

Let α be an operation on the topology τ of X.

Definition 2.2. A point $x \in X$ is in the *a*-closure of a set $A \subset X$ $(x \in \operatorname{Cl}_{\mathfrak{a}}(A))$ if $U^{\mathfrak{a}} \cap A \neq \emptyset$ for each open neighborhood U of x. A set $A \subset X$ is *a*-closed if $\operatorname{Cl}_{\mathfrak{a}}(A) \subset A$.

If a is the identity operation on τ , then the *a*-closure coincides with the closure in the usual sense. In the case where a is the closure (resp. interior-closure) operation on τ , the *a*-closure is identical with the ϑ -closure [15] (resp. δ -closure [15]).

Let α be an operation on the topology τ' of Y.

Definition 2.3 [9]. The graph G(f) of a function $f: X \to Y$ is *a-closed* if for each $(x, y) \in (X \times Y) - G(f)$ there exist open sets U and V containing x and y, respectively, such that $(U \times V^a) \cap \cap G(f) = \emptyset$.

Evidently, if a is the identity (resp. closure, interior-closure) operation on τ' , then the *a*-closedness of a graph is identical with the closedness (resp. strong-closedness [7], almost-strong-closedness [8]) of the graph.

The following lemma will be used in the sequel.

LEMMA 2.4. A function $f: X \to Y$ has an a-closed graph if and only if for each $(x, y) \in (X \times Y) - G(f)$ there exist open sets U and V containing x and y, respectively, such that $f(U) \cap V^a = \emptyset$.

Let α be an operation on a topology τ of X.

Definition 2.5 [9]. A subset A of X is a-compact if for every open cover \mathscr{C} of A there exists a finite subfamily $\{U_1, ..., U_n\}$ of \mathscr{C} such that $A \subset \bigcup_{i=1}^n U_i^a$.

If α is the identity (resp. closure, interior-closure) operation on τ , then an α -compact set is compact (resp. H(i) set [5], N-closed relative to X [1]). An H(i) space [12] is α -compact space for the closure operation α on τ . A space is H-closed if it is H(i) and Hausdorff. If α is the interior-closure operation on τ , then an α -compact space is nearly-compact [13].

Definition 2.6 [16]. A space X is C-compact if every closed subset of X is an H(i) set.

Definition 2.7 [17]. A function $f: X \to Y$ is almost-open if for each open set V in Y, $f^{-1}(\operatorname{Cl}(V)) \subset \operatorname{Cl}(f^{-1}(V))$.

Every open function is almost-open, but the converse is not true [17].

Let a be an operation on the topology τ' of Y.

Definition 2.8 [9]. A function $f: X \to Y$ is a-continuous if for each $x \in X$ and for each open neighborhood V of f(x) in Y there exists an open neighborhood U of x in X such that $f(U) \subset V^{\alpha}$.

If a is the identity operation on τ' , then the a-continuity concides with the continuity. The weak-continuity [11] (resp. almost-continuity [14]) is the a-continuity for the closure (resp. interior-closure) operation on τ' .

Other terms and notations not explained herein are those of Kelley [10].

3. Functions with α -closed graphs

In the remainder of this paper α will be an operation on the topology τ' of Y.

THEOREM 3.1. Let a be a regular operation on τ' , and let $f: X \to Y$ be a function with an a-closed graph. If A is a compact subset of X, then f(A) is an a-closed subset of Y.

Proof. Let A be a compact subset of X. Suppose that f(A) is not a-closed in Y. Then, there exists a point $y \in \operatorname{Cl}_a f(A) - f(A)$. Therefore, $y \neq f(x)$ for each $x \in A$. Since f has an a-closed graph, by Lemma 2.4 it follows that for each $x \in A$, there exist open sets U(x) and V(x) containing x and y, respectively, such that $f(U(x)) \cap$ $(V(x))^a = \emptyset$. Now $\{U(x) : x \in A\}$ is an open cover of A and, since A is compact, there is a finite subset $\{x_1, \ldots, x_n\}$ of A such that $A \subset \subset \bigcup_{i=1}^n U(x_i)$. The regularity of a implies that there is an open neighborhood V of y such that $V^a \subset \bigcap_{i=1}^n (V(x_i))^a$. Then $f(A) \cap V^a \subset \subset \bigcup_{i=1}^n (f(U(x_i)) \cap V^a) \subset \bigcup_{i=1}^n (f(U(x_i))) \cap (V(x_i))^a) = \emptyset$. Therefore $y \notin \operatorname{Cl}_a f(A)$. This contradiction completes the proof.

The proof of the following theorem is omitted since it is similar to that of Theorem 3.1.

THEOREM 3.2. Let $f: X \to Y$ be a function with an a-closed graph. If B is an a-compact subset of Y, then $f^{-1}(B)$ is a closed subset of X.

Definition 3.3. A function $f: X \to Y$ is locally a-closed if for each neighborhood U of x there is a neighborhood V of x such that $V \subset U$ and f(V) is a-closed in Y.

If a is the identity operation on τ' , then the locally a-closedness of a function coincides with the locally closedness [2]. A function f will be called locally ϑ -closed (resp. locally ϑ -closed) if it is locally a-closed and a is the closure (resp. interior-closure) operation on τ' .

Definition 3.4. A function $f: X \to Y$ is a-closed (resp. almost a-closed) if f maps closed (resp. regularly-closed) subsets of X onto a-closed subsets of Y.

Clearly, if a is the identity operation on τ' , then the *a*-closedness (resp. almost *a*-closedness) of a function coincides with the closedness (resp. almost-closedness [14]). In the case when a is the closure operation on τ' , the *a*-closedness (resp. almost *a*-closedness) of a function will be called ϑ -closedness (resp. almost ϑ -closedness). We shall say that a function is ϑ -closed (resp. almost ϑ -closed) if it is *a*-closed (resp. almost *a*-closed) and *a* is the interior-closure operation on τ' .

It is obvious that the class of α -closed functions is contained in the class of almost α -closed functions. Also, if the domain of an almost α -closed function is a regular space, then the function is locally α -closed.

LEMMA 3.5. If a function $f: X \rightarrow Y$ is locally a-closed and has closed point inverses, then f has an a-closed graph.

Proof. Let $(x, y) \in (X \times Y) - G(f)$. Then $x \notin f^{-1}(y)$ and since $f^{-1}(y)$ is closed, there exists an open neighborhood U of x such that $U \cap f^{-1}(y) = \emptyset$. The locally *a*-closedness of f implies that there is a neighborhood V of x such that $V \subset U$ and f(V) is *a*-closed in Y. Since $y \notin f(V)$, there exists an open neighborhood W of y such that $f(V) \cap W^a = \emptyset$. Let V_0 be an open neighborhood of x such that $V_0 \subset V$. Then $f(V_0) \cap W^a = \emptyset$ and hence, by Lemma 2.4 it follows that f has an *a*-closed graph.

The following theorem is an immediate consequence of Lemma 3.5.

THEOREM 3.6. If a function $f : X \rightarrow Y$ is almost α -closed with closed point inverses and X is a regular space, then f has an α -closed graph.

If α is the identity operation on τ' , then Lemma 3.5 becomes Corollary 3.8 of [2], and Theorem 3.6 is an improvement of Corollary 3.9 of [2].

The following theorem shows that the converse of Theorem 3.1 holds if X is locally compact and regular.

THEOREM 3.7. Let a be a regular operation on τ' . If $f : X \to Y$ is a function where X is locally compact and regular, the following conditions are equivalent.

(a) f maps compact sets onto a-closed sets and has closed point inverses.

(b) f is locally α -closed and has closed point inverses.

(c) f has an a-closed graph.

Proof. Assuming (a), let U be a neighborhood of some $x \in X$. Since X is locally compact and regular, X has a compact basis of each point and hence, there is a compact neighborhood V of x such that $V \subset U$. Therefore, f(V) is a-closed and (b) is verified. By Lemma 3.5, (b) implies (c). Thus it remains to show that (c) implies (a). If f has an α -closed graph, then Theorem 3.1 gives that f maps compact sets onto α -closed sets. Since points are α -compact, Theorem 3.2 establishes that f has closed point inverses.

If a is the identity operation on τ' , then Theorem 3.7 becomes Theorem 3.11 of [2].

LEMMA 3.8. If a function $f: X \rightarrow Y$ is almost a-closed and has ϑ -closed point inverses, then f has an α -closed graph.

Proof. Let $(x, y) \in (X \times Y) - G(f)$. Then $x \notin f^{-1}(y)$ and since $f^{-1}(y)$ is ϑ -closed, there is an open neighborhood U of x such that $\operatorname{Cl}(U) \cap f^{-1}(y) = \emptyset$. Since $\operatorname{Cl}(U)$ is regularly-closed, the almost *a*-closedness of f implies that $f(\operatorname{Cl}(U))$ is *a*-closed in Y. Therefore, there is an open neighborhood V of y such that $f(\operatorname{Cl}(U)) \cap V^{\alpha} = \emptyset$. By Lemma 2.4 it follows that f has an *a*-closed graph.

Since ϑ -closure and closure coincide for subsets of a regular space, Theorem 3.6 follows from Lemma 3.8.

Now, we utilize Lemma 3.8 (resp. Lemma 3.5) to obtain a sufficient condition for a function to be α -continuous.

THEOREM 3.9. If $f: X \to Y$ is an almost a-closed (resp. a locally a-closed) function with ϑ -closed (resp. closed) point inverses and Y is a-compact, then f is a-continuous.

Proof. It follows from Lemma 3.8 (resp. Lemma 3.5) and Theorem 11 of [9].

COROLLARY 3.10. Let $f: X \to Y$ be an almost α -closed function from a regular space X into an α -compact space Y such that $f^{-1}(y)$ is closed for every $y \in Y$. Then f is α -continuous.

If α is the identity operation on τ' , then Corollary 3.10 gives us an improvement of Theorem 4.9 of [4].

Utilizing the fact that a space is Hausdorff if and only if its points are ϑ -closed we obtain the next consequence of Lemma 3.8.

LEMMA 3.11. If $f: X \rightarrow Y$ is an almost a-closed injection where X is Hausdorff, then f has an a-closed graph.

Combining Lemma 3.11 and Theorem 11 of [9] we have the following theorem.

THEOREM 3.12. If $f: X \rightarrow Y$ is an almost a-closed injection from a Hausdorff space X into an a-compact space Y, then f is a-continuous.

For the identity operation on τ' , Theorem 3.12 becomes Theorem 4.12 of [4].

In the case where a is the closure operation on τ' , we extend and improve Theorem 3.9, Corollary 3.10 and Theorem 3.12.

THEOREM 3.13. Let $f: X \rightarrow Y$ be an almost ϑ -closed function where Y is minimal Hausdorff (resp. C-compact, H(i)) space.

(a) If $f^{-1}(y)$ is ϑ -closed for every $y \in Y$, then f is continuous (resp. continuous, almost-continuous).

(b) If X is regular, $f^{-1}(y)$ is closed for every $y \in Y$, then f is continuous (resp. continuous, almost-continuous).

(c) If f is an injection and X is Hausdorff, then f is continuous (resp. continuous, almost-continuous).

Proof. In all cases f has a strongly-closed graph. If Y is a C-compact (resp. H(i)) space, then every closed (resp. regularlyclosed) set in Y is an H(i) set. Hence, by Theorem 3.2 it follows that the inverse image under f of every closed (resp. regularly-closed) set is closed. This shows that f is continuous (resp. almost-continuous). In fact, we utilized Theorem 3.2 to prove Theorem 6 of [6] and a slightly improvement of Theorem 9 of [7]. Finally, if Y is minimal Hausdorff, then by Theorem 7 of [6] it follows that f is continuous.

Now, we give some sufficient conditions for a function to have a strongly-closed graph.

LEMMA 3.14. If $f: X \rightarrow Y$ is an almost-open function with a closed graph, then f has a strongly-closed graph.

Proof. Let $(x, y) \in (X \times Y) - G(f)$. Since f has a closed graph, there exist open sets U and V containing x and y, respectively, such that $f(U) \cap V = \emptyset$. This implies that $U \cap f^{-1}(V) = \emptyset$. Therefore, $U \cap \operatorname{Cl}(f^{-1}(V)) = \emptyset$. Since f is almost-open, $U \cap f^{-1}(\operatorname{Cl}(V)) = \emptyset$. Hence, $f(U) \cap \operatorname{Cl}(V) = \emptyset$. So, f has a strongly-closed graph.

The following theorem improves Theorem 3.1 and Theorem 3.3 of [3].

THEOREM 3.15. Let f be an almost-open function from a space X into a minimal Hausdorff (resp. H-closed) space Y. Then f is continuous (resp. almost-continuous) if and only if f has a closed graph.

Proof. We have only to prove the sufficiency. By Lemma 3.14 f has a strongly-closed graph. Now, the proof is parallel to that of Theorem 3.13.

Combining Lemma 3.8 (resp. Lemma 3.5) with Lemma 3.14 we obtain the following theorem.

THEOREM 3.16. If $f: X \to Y$ is an almost-open, almost-closed (resp. locally closed) function with ϑ -closed (resp. closed) point inverses, then f has a strongly-closed graph.

COROLLARY 3.17. If $f: X \rightarrow Y$ is an almost-open, almostclosed function with ϑ -closed point inverses and Y is a minimal Hausdorff (resp. C-compact, H(i)) space, then f is continuous (resp. continuous, almost-continuous).

Clearly if we replace the expressions \ast almost-closed« and \ast ϑ -closed« in Corollary 3.17 with the expressions \ast locally closed« and \ast closed«, respectively, then Corollary 3.17 is still valid.

The following corollary improves Theorem 3.4 of [3] and Theorem 11 of [6].

COROLLARY 3.18. Let f be an almost-open function from a space X into a minimal Hausdorff (resp. C-compact, H(i)) space Y.

(a) If X is regular, f is almost-closed, and $f^{-1}(y)$ is closed for every $y \in Y$, then f is continuous (resp. continuous, almost-continuous).

(b) If f is an almost-closed injection and X is Hausdorff, then f is continuous (resp. continuous, almost-continuous).

REFERENCES:

- D. A. Carnahan, Locally nearly-compact spaces, Boll. Un. Mat. Ital. (4), 6 (1972), 146—153.
- [2] R. V. Fuller, Relations among continuous and various non-continuous functions, Pacific J. Math. 25 (1968), 495—509.
- [3] T. R. Hamlett, Applications of cluster sets in minimal topological spaces, Proc. Amer. Math. Soc. 53 (1975), 477-480.
- [4] _____, Cluster sets in general topology, J. London Math. Soc. 12 (1976), 192-198.
- [5] L. L. Herrington, Remarks on H(i) spaces and strongly-closed graphs, Proc. Amer. Math. Soc. 58 (1976), 277–283.
- [6] L. L. Herrington and P. E. Long, Characterizations of C-compact spaces, Proc. Amer. Math. Soc. 52 (1975), 417-426.
- [7] _____, Characterizations of *H*-closed spaces, Proc. Amer. Math. Soc. 48 (1975), 469-475.
- [8] J. E. Joseph, Characterizations of nearly compact spaces, Boll. Un. Mat. Ital. 13 (1976), 311-321.
- [9] S. Kasahara, Operation-compact spaces, Math. Japonica 24, 1 (1979), 97-105.
- [10] J. L. Kelley, General Topology, D. van Nostrand Co., Princeton, 1955.
- [11] N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly 68 (1961), 44-46.
- [12] C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc., 124 (1966), 131-147.
- [13] M. R. Singal and A. Mathur, On nearly-compact spaces, Boll. Un. Mat. Ital. (4), 2 (1969), 702-710.
- [14] M. K. Singal and A. R. Singal, Almost-continuous mappings, Yokohama Math. J. 16 (1968), 63-73.
- [15] N. V. Velicko, H-closed topological spaces, Mat. Sb. 70 (112) (1966), 98-112; Amer. Math. Soc. Transl. (2) 78 (1968), 103-118.
- [16] G. Viglino, C-compact spaces, Duke Math. J. 36 (1969), 761-764.
- [17] A. Wilansky, Topics in Functional Analysis, Springer, Berlin, 1967.

(Received August 24, 1981).

Građevinski fakultet, pp 895 11000 Beograd, Yugoslavia

O FUNKCIJAMA SA α-ZATVORENIM GRAFOM

D. S. Janković, Beograd

Sadržaj

Pojam a-zatvorenog grafa je uveo S. Kasahara [9]. U ovom radu je nastavljeno ispitivanje funkcija sa a-zatvorenim grafom, te posebno funkcija sa jako-zatvorenim grafom. Važniji su rezultati:

Ako je a regularna operacija na topologiji τ' prostora (Y, τ') i ako je $f: X \to Y$ funkcija sa α -zatvorenim grafom, onda je slika svakog kompaktnog skupa α -zatvorena.

Ako je $f: X \to Y$ lokalno *a*-zatvorena funkcija i $f^{-1}(y)$ zatvoreno za svako $y \in Y$, onda f ima *a*-zatvoren graf.

Ako je $f: X \to Y$ gotovo *a*-zatvorena funkcija i $f^{-1}(y)$ ϑ -zatvoreno za svako $y \in Y$, onda f ima *a*-zatvoren graf.

Ako je $f: X \to Y$ gotovo-otvoreno gotovo-zatvoreno preslikavanje, $f^{-1}(y) \vartheta$ -zatvoreni za svako $y \in Y$ i Y je minimalan Hausdorff-ov (resp. C-kompaktan, H(i)) prostor, onda je f neprekidno (resp. neprekidno, gotovo-neprekidno) preslikavanje.