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ON H-SMOOTH AND H-CONVEX SETS IN LINEAR SPACES

Z. Gajda, Katowice, Poland

Abstract. In this paper the properties of H-smooth and H-convex sets are
investigated. It is shown that any H-convex set is convex. The centric, balan-
ced and convex hulls of an H-smooth set, as well as its radial frontier are studied.
A necessary and sufficient condition is given for an H-convex set to be strictly con-
vex.

1. Let X denote a linear space over the field of all real or complex
numbers.
If M = X is an absorbent set, then the functional py: X - R
defined by
pu(x):=inf{ea >0:xcaM}, xeX

is called the Minkowski functional of M.

The notion of H-smooth and H-convex set in a linear space was
introduced by T. Precupanu in [3]. Such sets are of interest because
the Minkowski functional p,, corresponding to an absorbent and
H-smooth or H-convex set M < X is a Hilbertian semi-norm, that
is a semi-norm which satisfies the parallelogram law:

P+ F o x—3)2 =2p0 () + 2P0 () v,y X

(see [2] and [3]).

We modify slightly the definition of an H-smooth set in compar-
ison with those occurring in [1] and [2].

Definition 1. A non-empty subset M of a linear space X is called
H-smooth if and only if for any a,feR, a >0, >0 and each
x eaM, y € BM there exist ag, o €R, ao > 0,8, >0 such that

ay + B < 2(a® + B7); ¢y
x+yeagM; @)
x —yefo M. (3)
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The conditions of the definition just proposed are easier to check
in concrete cases. We shall prove that our definition is actually equi-
valent to the one in [1]. This fact is useful in the proofs of some theo-
rems concerning properties of H-smooth sets.

LEMMA 1. Lae M < X be an H-smooth set. Then for any x e M
there exists a A €(0, 1] such that — x € AM.

Proof. Let us fix an x e M. If x = 0, we can put A = 1. Suppose
that x # 0. We write e : = inf {4 >0:x€AM]}. Since x € M, we have
a < 1. There exists a sequence (a,),en Of positive numbers such that
a, > a and x €a, M for each ne N. Put §, : = 2a,. Then 2x e, M
for n e N. From the H-smoothness of the set M it follows that for
each n € N there exist a5, > 0 and f,, > 0 fulfilling the following
conditions:

Qo+ Bon < 2(a} + ) = 10a3; 4)
3x = x + 2x € ap,n M; (5
—x=x—2x€fo. M. (6)

If it were ay,, = 0 or By, = 0, we would have x = 0, opposite to our
hypothesis. So we have a,, > 0 and f,,, > 0. Hence and from (5)
it follows that ag,, > 3a. In view of (4) we obtain
Bon<1002 — a3, < 10a2 — 9a® for neN,
that is
Bon < /10 a2 — 9a?, for each neN.

Letting now #n tend to infinity we deduce that lim inf §,, < a. Hence
and from (6):

infiA>0:—xeAlM}<ax<l

If @ <1, we have inf{A > 0: — x € AM} < 1. In such a case there
exists an A €(0,1) for which — x € AM.

Suppose now that a = 1. Since x € M, 2x € 2M, it follows from the
H-smoothness of the set M that there exist numbers ¢q > 0 and §, > 0
fulfilling the conditions:

3x =x+ 2x €ay M; N
—x=x—-2x€efo M; )
&+ 55 <2(12 + 22) = 10.

Since x # 0 and conditions (7) and (8) hold, we deduce that a; >0
and f, > 0. Hence, by (7) we get ao > 3a = 3.

Consequently,
52<10—0a}<10—9=1 whence o<1 and —=xef, M.

This ends the proof of our lemma.
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Example 1. An H-smooth set need not be symmetric. For, take
¥ e(— 1L 1DN{0}, M:=(—1, D\ {xo}. If a >0, § >0, x caM,
y €M, then |x| <a, |y <f. Hence

lx + 3> + [x —3|* =2 (x|* + |y]?) <2(a® + ).

One can find numbers a, > 0, f, > 0 such that |x + | < a,, |x —
—y | <Poap+5<2(®+*) and x+yFax, x—y#
# flo Xo. Thus x +yecaq M, x —y €, M, which shows that M
is an H-smooth set. If x; # 0, the set M is not symmetric.

PROPOSITION 1. A non-empty set M < X is H-smooth if
and only if for each a > 0, >0 and each xeaM, yefM there exist
numbers aq > 0, Bo > O fulfilling conditions (1), (2) and (3).

Proof. We have to prove necessity only. Suppose that M is an
H-smooth set and take ¢ >0, §> 0, x e aM, y € M. Let us consider
the following four cases:

l1.a >0 and § > 0. Then the existence of numbers a4 > 0,
Bo = 0 with properties (1), (2) and (3) follows from the definition of
H-smoothness.

2.a=0and § =0. In such a case x =3y = 0 and we can put
ap = fo=0.

3.a>0,=0. Then y =0 and putting ay =f¢: =a we
obtain x +y=x€a, M, x—y=x€foM, al+f;=2a*=
= 2(a? + f3).

4. a=0,8>0. Then x =0 and in view of Lemma 1 there
exists B, €(0,8] such that — y e, M. Setting a, : = f we have
xty=yea M, x—y=—yefoM, a5+ p;<2p*=2(a>+p?).

The above cases exhaust all the possibilities and the proof is completed.

Remark 1. Zero need not belong to an H-smooth set. The set
M:=(—1,1) \\ {0} may be used as an example.

PROPOSITION 2. If M < X is an H-smooth set, then the set
M, : = {0} U M is H-smooth.

Proof. Let us take @ >0, 8 >0, x ea My, y € § M,. Then the
following cases are possible:

1. xeaM, y e BM;
2.x=0e0-M, yepM;

3. xeaM, y=0€0-M;

4. x=0e€0'M, y=0e0-M.
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On account of Proposition 1 in each of the above cases there exist
ao > 0, 8o > 0 such that

aA+p<2@+pNx+yveagMcays My, x —yefoM < foMy
which proves that M, is an H-smooth set.

2. Definition 2. An H-smooth and balanced subset of a linear
space is said to be H-convex.

In [1] we find the definition of the so called strictly H-convex
set. We shall show that this definition does not distinguish any new
class of sets. Every H-convex set satisfies the condition which appears
in the definition. In the present paper the notion »strictly H-convex
set« will be used in another sense.

THEOREM 1. If M c X is an H-smooth and absorbent set, then
foranya > 0,8 >0and any x ca M,y € BM there exist ag > 0, o = 0
fulfilling conditions (1), (2), (3) and the following condition:

max (ag, fo) < a + f. )

Proof. The Minkowski functional p,, of the set M is a Hilbertian
semi-norm. If a >0, 8 >0, xeaM, y €M, then p, (x) < a and
P (3) < B. Suppose first that py (x) <a or pp (y) <f. In such a
case we have

Par (6 + )% + par (x — ) = 2(pw (%)% + par (3)%) < 2(a® + %)

and
Pux+y)<pux) +pom () <a+ B,

Pu(x— ) <pu(x) +pu(—y) <a+p

Then we can find numbers a; > 0 and f§, > 0 such that

P+ <a <a+f,pulx—3) <fy <a+p
and
a; + 1 <2(a® +B7).

Hence it follows that there exist numbers a, > 0, i, > 0, ao < ay,
Bo <fB: for which x +yea, M and x — y €, M. Moreover,

@+ % <2(@®+ B2, a0 <a+p and B, <a + 8.

It remains to consider the case where p, (x) = a and p, (3) = 8.
From the H-smoothness of the set M it follows that there exist a; >
>0, B, > 0, such that

ai +p1 < 2(a® + 8%,
x+yea, M, x—yef, M.

(10
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Put ap:=pyu(x+3), Bo:=pu(>x—y). From the definition of
the Minkowski functional we get a, < a; and B, < f;. If it were
ap < ay or By <fj;, we would have

o+ >al +B =) o — ) =
=2(pm (0> + pu (M = 2(a® + B2,

contrary to (10). Thus ap = a5, =81, x +yecaoM and x —y e
€ fq M. Moreover,

@+ 2 = 2(a? + ) and
g =pu(x +) <pu(x) +ppu() =a+5
Bo=0m(x—3)<py(® +px(—y) =a+8

This completes our proof.

The previous theorem remains true in the case where M < X
is an arbitrary H-smooth set (not necessarily absorbent). Namely,
we have the following:

THEOREM 2. If M < X 1s an H-smooth set, then for any a >
>0,8>0and any x ca M, y € f§ M there exist numbers ag > 0, o > 0
such that conditions (1), (2), (3) and (9) are fulfilled.

Proof. Put M, : = {0} U M. On account of Proposition 2, M,
is an H-smooth set. Let Y be the set of all points x € X for which
there exists a > 0 such that x ea M,. Since M, is an H-smooth
set and 0 € M, in view of Lemma 1, one can easily check that Y is a
linear subspace of the space X in which M, is an absorbent set. From
Theorem 1 it follows that for any e >0, § >0, xcaM, yef M
there exist a; > 0, f; > O fulfilling condition (10) and

x+yea; My, x —y€p; My, max(a;, ;) <a+ B
Put
{al, for x +yea, M
%70, for x+y¢a;, M (e x-+y=0)

{1, for x —yef M
Bo:= 0, for x —y¢p M (i.e. x —y=0).

The numbers ap > 0, f, > 0 fulfil conditions (1), (2), (3) and (9).

The example of an H-convex but not convex set, which was
given by E. Kramar in [1], and Muntean and Precupanu in [2], is
improper. Namely, we have the following

THEOREM 3. Every H-convex set M c Xis convex.
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Proof. Take x,yeM and te[0,1]. Then txetMand (1 —
—1)ye(l — ) M. From Theorem 2 it follows, in particular, that
there exists an ao > 0 such that tx + (1 —t)ycao M and ¢ <
<t+(1—1)=1. Since M is balanced, we have tx + (1 —¢) y € M.
This ends the proof.

In the proofs of Theorems 1 and 2 we have made use of the fact
that the Minkowski functional of an H-smooth set is a Hilbertian
seminorm. Now we shall give another quite elementary proof of the
convexity of an H-convex set. Having such a proof one is able to
obtain immediately the subadditivity of the Minkowski functional
corresponding to an absorbent H-convex set. Now, we proceed with the

Proof. Let M < X be an H-convex set. If x,yeM, t€(0, 1),
then wetM, (1 —t)ye(l — ) M. From the H-convexity of the
set M it follows that there exists an aq > 0 such that

x+ (1 —0yeaeM and o} <2(? + (1 —0)?).
Since the set M is balanced we obtain

x+(1—nyef2@ + 1 -2 M.

Putting t = —;— we have —2f—y € M. By induction one can prove that
%x—}— (1 —;})yeM for any k,neN, k <2
Fix x,yeM, te(0,1), put 2 =1tx + (1 — )y and take arbitrary

rts

numbers 7, s €(0, 1) such that »r <t <sand ¢t = >

. k . .
Since the set 4 : = {7 e0,1):k,neN, k< 2"} is dense in the
interval (0, 1) we can choose two sequences (r,),enx and (s,),en such
that r,, s, €4, r,<r, s<s, for eachneNand r, > r, 5, > s.

Sp— t
Spn — Ty

Defining ¢, : = we have £, (0, 1), t =¢,7, + (1 — 1, s, for

s—1

1
Ty Hence:

each neN and ¢, >

g=tx+{l—0Dy=[tarn+ A —t)sadx +[1 —tyr,— (1 —
_ln)sn]y:zn [rnx+(1 _rn)y] +(1 —l,,) [Snx+(l ’"Sn)y]'

Since r,x + (1 —rp)yeM and s,x + (1 —s,)y €M the relation
zel/2(@ + (1 —t,)*) M holds for each neN. As a consequence
of the fact that /2 (2 + (1 —£,)%) - 1 we obtain inf{a >0:z¢€
ea M} < 1, whence Az € M follows for each 2¢e[0,1) because M
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is a balanced set. We define T(x,y):={uecX :u=ax+ fy,
a,fe[0,1), a +8 < 1}. Obviously T (x,y) = T (y,x) and

Ty)={ueX u=220x+ ({1 —10y), A€[0,1), t [0, 1]}.

Hence T (x,y) = M for any x,y € M.

Now we are going to prove that for any x, y € M we have
(my):={x+(1—-—0yeX:te(0 1)} c M.

If x and y are linearly dependent over R, then the fact that M is a
balanced set implies (x, y) = M. Suppose further on that x and y
are linearly independent over R. Put

P:={ueX:u=ax+by, a,bcR, a+b< 1}
={ueX:u=ax+by, a, bR, a+b>1},

PnS =9, PuS=Ling {x, y} and consider two cases.

Case 1. There exists a v € S N M. We shall show that (x,y) <
< T(x,y) Y T (y, v). There exist a,b R such that a + 6> 1 and
v = ax + by. At least one of the numbers a and b has to be positive.
Suppose e. g. that a > 0.

For fE(O,Lf] we deﬁnea:z—t-, ﬂ;:ﬁ_—_t(‘}__i'_,b)_
a—l[—b a a

Then ac(0,1), 0, ), a+f <ala+b+pF=1,

t=qaa, | —t=ab+ g
and

tx+ U —0y=aax+ (ab + )y =alax + by) + pfy =
=av + Py e T (v,3).
Hence it follows that (x,y) < T (v,y) provided b < 0.

) we define

If b >0, then for te[ —p

_tla+b)—a _1
= p=

Then a€[0,1), fe(0, 1), a+f<a+f(a+d =1 t=a+fa
1 — ¢t =pband

ix+ (1 —y=(a+fa)x + pby = ax + f(ax + by) =
=ax + pve T (x,v).
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Consequently (x,9) < T (v,y) VU T (x,v) which ends the proof of
the inclusion announced. Since T (x,v) c M and T (v,3y) c M we
obtain (x, y) = M.

Case 2. SNM=0. Takea >0, f >0, a > . Then ax € aM,
By € BM and from the H-convexity of M it follows that there exist
ag > 0, B > 0 such that @} + 83 < 2(a® + B?) and ax + fy €aoM,
ax — By € Bo M. Since M N Ling {x,y} = P we have:
ax + fy = ao (ax + by) for some a,6eR, a+b< 1,
ax — Py = B, (cx + dy) for some ¢, deR, c+d< 1.

From the linear independence (over R) of the vectors x and y we
obtain a =waga, f = Pob, a =Pfoc, — B = fod. Hence

O<a+B=ap(atbd)<ay 0<a—p=P8(+d)<pbo
If it were ¢ + 8 < aq or @ — 8 < 8o, we would have
a; +f5 >(@+ B2 +(a— B> =2(®+p,

which leads to a contradiciton. So, we have ¢p =a + f, fo =a —
and, in particular, ax + fy e (a + B) M, that is

ax + fy
a—+ B
Interchanging the roles of x and y we obtain the analogous relation

for @ >0, 8 >0, a<f. Hence, for t€(0,1), we have zx + (1 —
— 1)y € M. This ends the proof.

3. Definition 3. The set M = X is called centric if AM c M
for each 4 €0, 1].

Any centric and symmetric set is balanced.

eM for a >0, >0, a>p.

PROPOSITION 3. If M c X is an H-smooth and centric set,
then M is H-convex.

Proof. We shall prove that M is symmetric. Take an x € M. On
account of Lemma 1, there exists a 4 €(0, 1] such that — x e AM <
< M, which ends the proof.

THEOREM 4. The set M = X is H-convex if and only if it is
H-smooth and convex.

Proof. In view of Theorem 3 one has only to prove that the
condition is sufficient. For, suppose that M is an H-smooth and convex
set and take an arbitrary x € M. From Lemma 1 it follows, in parti-

1
cular, that — x € AM for some A > 0. Hence — T xeM and from
the convexity of the set M we obtain
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[——%x,x] ::{z(—%x)—}—(l—t)xeX:te[O, 1]}CM.

Consequently, 0 e M. So we have Ax=A4x+ (1 —A) -0eM for
each x e M, 1 €0, 1]. This shows that the set M is centric and we
can use the previous proposition to complete the proof.

Now we shall investigate some connections between an H-smooth
set M « X and its centric, balanced and convex hulls i. e. the smallest
sets containing M which are centric, balanced or convex, respectively.
These results are complementary to those presented in [1] and [2].
A centric hull of the set M will be denoted by Cn M, whereas the
symbols Bn M and Conv M will stand for its balanced and convex
hull, respectively.

LEMMA 2. The centric hull of an H-smooth set is H-smooth.

Proof. If a >0, § >0, x caCn M, y € f§ Cn M then, according
to definition of a centric hull, there exist 4, u € [0, 1] such that x e
calM, y e fuM. We have al > 0, fu > 0 and from Proposition 1
it follows that there exist numbers «, > 0, f, > 0, fulfilling the con-
ditions

G+ 3 < 2(a)? + 2 (B) < 207 + 287,
x+ycaoMcaoCnM, x—yefi M = f,Cn M.

Hence Cn M is an H-smooth set.
From Lemma 2 and Proposition 3 it follows:

THEOREM 5. If M < X is an H-smooth set, then Cn M = Bn M.
In particular, the balanced hull of an H-smooth set is an H-convex set.

THEOREM 6. If M < X is an H-smooth set, then Conv M =
= Bn M. In particular, the convex hull of an H-smooth set is an H-convex
set.

Proof. The set Bn M = Cn M is H-convex and so it is convex.
Hence Conv M < Bn M = Cn M. If x € M then, in view of Lemma 1,

we have -_73—6 e M for some A > 0. Thus [—lx, x] < Conv M and, in

particular, 0 € Conv M.

If xeCn M, then there exist A €[0,1] and y € M such that x =
=Ay=Ay + (1 —A4) - 0eConv M. Consequently, Cn M < Conv M
whence Conv M = Cn M = Bn M.

Following T. Precupanu, by the radial frontier of a set M = X
we mean the collection of all points x € X \ {0} such that (x, ») N
NM=6 and [x;, x] "M # @ for each x; € (0, x), where (0, x) : =
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={txeX:0<t <1}, [xpx]:={x;, +(I—)xeX:0<t< 1},
(%, >):={xeX:t>1}

The radial frontier of M will be denoted by Fr M.

LEMMA 3. For any M < X equality ¥r M =Fr Cn M holds.

Proof. Let us first fix an x e Fr M. Then x # 0 and (x, >) N
NM=90. If it were (x, >)N"CnM # 0, it would exist a ¢t > 1
such that zx € Cn M. Then zx € AM for some A€(0,1) and so we

would have —;— > 1 and % x € M, contrary to our hypothesis. Conse-

quently, (x, >) N Cn M = 0. For any x; € (0, x), we have [x,,x] N
NM#B. Since McCnM, we get [x,x] "CnM # @; hence
x € FrCn M. Now, suppose that x e FrCn M. Then x # 0 and
(x, >)NM=6, sincc Mc CnM. For any x,;e(0,x) one has
[xi,x]"CnM#80. If x,=t,x1t,€(0,1) and txeCnM for
some f € [£, 1], then there exists a 4 € (0, 1] such that txe AM i. e.

; xeM. Since (x, )N M = 8, it must be ;
t

hand, 7 > t >ty consequently % x€[x;,,x]NM and xeFr M. This

< 1. On the other

ends the proof.

From Lemma 3 and Theorems 5 and 6 it follows:

PROPOSITION 4. If M c X is an H-smooth set, then Fr M =
= Fr Bn M = Fr Conv M.

In [2] it has been proved the following lemma
LEMMA 4. If M c Xis an absorbent set, then
FrM={xeX:pyx) =1}

In view of the properties of the Minkowski functional one can
therefore obtain

LEMMA 5. If M < X is an absorbent and centric set, then

MUFrM={xeX pyx) <1}
and
MNFrM={xeX: :py(x <1}

The authors of [2] have introduced the concept of a radially
bounded set, i. e. a set M «— X with the property that for each x €
€ X \ {0} there exists a a, > 0 such that x ¢ aM for a > a,.
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For an absorbent set M < X the following conditions are equiva-
ent (see [2] Lemma 2):

(&) M is radially bounded;
(#) py (x) = 0 if and only if x = 0;
(#i7) {0} U Fr M is an absorbent set.

Consequently, if a set M < X is absorbent, H-convex and satisfies
one of the two equivalent conditions (¢) or (é%), then the Minkowski
functional p, is a Hilbertian norm. It is easy to check that the following
lemma is true.

LEMMA 6. If p: X - R is a Hilbertian norm, then the sets
M, :={xeX:px)=1} and M,:= M, U {0} are H-smooth
whereas Mz 1 = {x e X :p(x) < 1} is H-convex.

The next two theorems yield a completion of Theorem 2 from [2].

THEOREM 7. Let M <« X be an absorbent, radially bounded
and H-smooth set. Then

(@) Fr M and {0} U Fr M are H-smooth sets;

(b) if M is an H-convex set, then so are M U Fr M and M \ Fr M;
(c) Ban MUFrM and Bn M\ Fr M are H-convex sets;

(d) Conv M U Fr M and Conv M\ Fr M are H-convex sets.

Proof. The Minkowski functional of the set M is a Hilbertian
norm. Assertions (@) and (b) follow immediately from Lemmas 4, 5
and 6. To prove (¢) and (d) let us notice that Bn M = Conv M is an
absorbent, radially bounded and H-convex set as well as Fr Conv M =
= Fr Bn M = Fr M. It remains to use ().

The result below has been obtained in [2] under the additional
assumption that M is a symmetric set. We will show that this assump-
tion may be omitted.

THEOREM 8. If M <= X is an absorbent, radially bounded set
and Fr M is an H-smooth set, then the Minkowski functional p, of the
set M is a Hilbertian norm.

Proof. The equivalence of conditions (?) and (&) implies that
{0} UFr M is an absorbent set and, on account of Proposition 2,
this union is H-smooth. Thus, the Minkowski functional pio}y prar is
a Hilbertian semi-norm. However, pioyyera = P (See [2] Lemma 3)
and since M is radially bounded, we deal with a norm.

4. Definition 4. An absorbent subset M of a space X is said to
be strictly convex if and only if it is convex and for any x,y € M,
x # y and any ¢t €(0, 1) there is py (¢x + (1 — 1) ¥) < 1, where py
denotes the Minkowski functional of M.
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Now we are going to give a necessary and sufficient condition
for an H-convex set to be strictly convex. In [2] it has been pointed
out that each absorbent, H-smooth and radially bounded set is strictly
convex. There exist, however, H-convex and strictly convex sets
which are not radially bounded. As an example one can take the set
M = {(xy, %) € R?: x| < 1}.

Definition 5. An absorbent set M <« X is called strictly H-convex
if and only if it is balanced and for any x,y € M, x # y and each
a >0, B > 0 there exist numbers «q > 0, f, > 0 fulfilling the con-
ditions:

ag + o < 2(a® + %) (0
ax + Py €ag M; (11)
ax — By € o, M; (12)

a, <a-+f. (13) |

Remark 2. Every strictly H-convex set is H-convex.

Proof. Let M <= X be a strictly H-convex set. It is sufficient
to show that M is H-smooth. Take ¢ >0, § > 0, x caM, y € BM.
Then we have x = au, y = fv for some uw,ve M. If u # v, there
exist numbers ao > 0, B, > O fulfilling condition (1) and such that

x+y=autfprveaM, x —y =au — fvep, M.
If u=9, we put o : =a + f, fo : = |a — p]| getting
ay + 85 =20 +p), x+y=(@+Buca, M,

x—y=(a—Pfu=PFsgn(a —Puech, M. Thus, our remark is
proved.

THEOREM 9. Let M = X be an absorbent set. The following
three conditions are equivalent:

(a) M s a strictly H-convex set;
(b) M is a strictly convex and H-convex set;
(¢) M is a strictly convex and H-smooth set.

Proof. (a) = (b). On account of Remark 2 it suffices to prove that
M is strictly convex. The set M, being H-convex, is convex. Take
xyeM, x #y, t €(0,1). From the strict H-convexity of the set M,
settinga : = ¢, § : = 1 — t, we obtain, in particular, tx + (1 — )y =
= ax + By € ap M, for some a, > 0 with the propertya, <a + f = 1.
Hence:

pu(x + (1 —0y) <1l
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() = (a). The set M is balanced. Let us fix x,ye M, x # y,
¢ >0, 8 > 0. Then ax € M, fy € SM and, according to Theorem 1,
there exist numbers a; > 0, f, > 0 such that o} + 2 < 2 (a? + $?),
ax +fyeay M, ax — fyefoM and a; < a + f.

Since M is a strictly convex set the following inequality holds:

ax - /S'y)
& TeY 1,
PM( P <

whence py(ax +B8y) <a+ 8. If a, <a+f, we put ag: = a.
On the other hand, if a; = ¢ -+ 8, we can choose a, > 0 such that

pulax -+ By) <ap <a; =a -+ f.

In both cases, the numbers a, and f, fulfil conditions (1), (11), (12)
and (13).

The equivalence of conditions (&) and (c) is a consequence of Theorem 4.
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O H-GLATKIM I H-KONVEKSNIM SKUPOVIMA U LINEARNIM
PROSTORIMA

Z. Gajda, Katowice, Poljska

Sadrzaj

U radu se istraZuju svojstva H-glatkih i H-konveksnih skupova.
Dokazano je da je H-konveksan skup konveksan. Nadalje se proucavaju
centri¢ne, balansirane i konveksne ljuske H-glatkih skupova. Dan je
nuzdan i dovoljan uvjet da H-konveksan skup bude striktno konveksan.



