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SOME FUNCTIONAL EQUATIONS RELATED TO
QUADRATIC FUNCTIONS

Gy. Szabo, Debrecen, Hungary

Abstract. It is introduced the functional equation F (x + u) + F (x - u) =
= F (x + v) + F (x - v) for any x, u, v E L, IIuli = IIvII = 1, where L is a real inner
product space of dim L ;;;,2. Our main result states that its only llregular« solution is
essentially the norm square funetion II '112•

Introduction

In this paper (L, 11.1\) denotes a real linear normed space with
dim L;;;, 2 and (d, +) an abelian group such that for any a Ed

there exists a unique b Ed (denoted by -} a) with b + b = a.

Consider the functional equation

F (x + u) + F (x - u) = F (x + v) + F (x - v), x, u, V EL, (1)

IIuli = Ilvll = 1

where F : L -7 .s/ is the unknown function. This equation has appeared
in the following statement (see [7]): If a continuous funetion F :R2 -+ R
has the same integral on every semidisk of the unit radius, then it
satisfies (1).

\VIealso deal with the slightly modified equation

F (x + u) + F (x - u) = F (x + v) + F (x - v), x, u, V EL, (2)

Ilull = Ilvll; F (O) = O,

and show that if the norm on L is derived from an inner product
<. , .> : L x L -+ R, then (2) is equivalent to the more familiar equation

F(x + y) = F(x) + F(y), x,y EL, <x,y) = O. (3)

Nonnegative or continuous solutions of (3) have been known before
(see e. g. [8], [3]), but we are informed that J. Riitz has recently found
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the general soIution, discussing the equation (3) on a so called »ortl:o
gonality space« (see [6]). The soIutions of (3) are called orthogonally
additive functions.

In Section 1 we investigate the connection between the equations

(I), (2) and (3) on inner product spaces obtaining the one point
continuous soIutions of (1).

The case of spaces without an inner product is studied in Section 2.
\X:e also obtain the general soIution of (2) without using results of [6],
but with the help of the well known norm square equation (see [2])

F(x + y) + F(x - y) = 2F(x) + 2 F(y), x,)' EL. (4)

We conclude that there are generally no other tha n additive solutions
of the above equations (1)-(3) on such a space.

1. The case of inner product spaces

In thi1> Section we assume that (L, <., .») is an inner product

space with dim L;;;. 2 and the norm li ·11 = V <. ,.\. The general soIu
tion of (3) is given by

1.1. THEOREM ([6]). The function F : L --,"d is ort/zogollally
additive tj and only ii there exist additive mappings a : R -7d, A : L -7 d
such that

F(x) = a(llxlll) + A (x), x EL. (1.1)

be proved as follows. Let x, y EL, (x, y) = O. Then

= II-} (x - y)11 from which it follows

1.2. COROLLARY. Equations (2) and (3) are ml/wally eq1ti~'alent.

Proof. The implication (3) ~ (2) can be verified by a simple
computat1on according to Theorem 1.1. The converse implication can

1 .

"2 (x +y)

(1, 1 ) (1 1F(x+y)=F 2[x-r-Y]+2[x+y] +F 2[x+Y]--f[x+

+ y]) = F C [x + y] + ~[x - y]) + F (~ [x +y] - ~ [x - y]) =

= F(x) + F(y).

1.3. COROLLARY. The equation (3) implies t/Ze equation (1).

Now, we restrict ourse1ves to the soIutions of (1).
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1.4. LElvlMA. Por any .A. ER there is adense additive subgroup
DJ. c R such that ii p is a solution of (1) with P (O) = O, then for all
w, Z EL, [[wil = zj) = 1, (w, z) = O,

F (i.w + f.-lz) = P (J.w) + P (f.-lz), f.-l ED;.,
holds true.

Proof. Consider the additive subgroup D;. generated by the set

PJ. = {2p~k.) = 2 VI - J,2j4P IkE N, k> jJ.jj2}.

Since lim (p(~ + 1) - p~"») = O, the subgroup D;. is dense in R.
k-~ 00

Now let P be a solution of (1) with P (O) = O and w, ZE L, [Iwll =
iizi: = 1, <w, Z> = O. Define the functions;.LI and J.LI~k.)(k r:= N, k >

> ) :/2, j = 1,2, ... , k) on R by

J.J (f.-l) = P (J,w + f.-lz) - P (f.-lz),

( 1.2)

k

Obvious1y ;.J = ~ J,J~) for all k, Now we show that the functions
j=l

i.LI~k.) are periodic with the period 2p~k.) = 2 VI -J.2j4P. Substituting
into (1) the vectors

(2j - 1 1 + [ ! (k)] )~ r.W p, T P;. z, ( 1 1 (k.»)2k r,w + PJ. Z ,

for x, U, v respective1y, we get the desired result

i.j~k.) (f.-l + 2p)~») = P (~ J.w + [p + 2p)~)] z) - p (j k 1 J.zo +

Thus i.LI is periodic with the period 2p~k.) for all k, and hence any
f.-l E DJ. is a period of J,J. This means that

;.J (f.-l) = J.LI (O) = P (J,w) - P (O) = P (J.w), ,U EDi ..

Equating this with (1.2) comp1etes the proof.

1.5. LEMMA. If P is a salutian of (1), then for any y, w, ZE L,
Ilwli = Ilzll = 1, (w, z) = O, it holds
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F(J..w + pz + y) = F(J..w + y) + F(pz + y) - F(y), P EDA' (1.3)

Proof. Define the function Gy : L -+ .SJ!by

Gy (x) = F (x + y) - F (y), X EL.

A simple computation shows that Gy is a solution of (1) with Gy (O) =
= O. Thus by Lemma 1.4, for every w, z E L, Ilwll = I!zli = 1, <w, z) =
= O it follows that

Hence, according to the definition of Gy the lemma is proved.

1.6. THEOREM. Let .SJ! be equipped with a Hausdorff topology

for which the operations a + b, - a, ~ a are continuous. If a solution

F. of (1) is continuous at O with F (O) = O, then F is orthogonally additive.

Proof. Let a solution F of (1) be continuous at O with F (O) = O

and let x, y EL, <x,y) = O. Set l[xll = A, liA = p, J.-1 X = w,
p - 1Y = z. Choose a sequence J'n EDI" J'n -+ J. and then another
sequence Pn EDA_An' Pn -+ p. Set y;, = [J.. - J.,,] ZI) and y: = [p 
- Pn] Z. Then by the previous lemma

F(AW + pz) = F(J'n W + pz + y:) =

= F (An W + y~) + F (pz + y~) - F (y~) =
= F (J.w) + F ([J. - An] W + Pn z + Y~) - F (y~) =

= F (J.w) + F([J. - An] W + y;) + F (Pn z + y~) - F (y~) - F (y~) =

= F (A.w) + F (pz) + F (y~ + y:) - F (y~) - F (y~).

Letting n -+ 00, the continuity at O completes the proof.

1.7. COROLLARY. If the solution F of (1) is cominuous at O,
then it has the form

F(x) = c(l!xI12) + C(x) + b, X EL (1.4)

wlzere c : R -+ d, C: L -+.SJ! are continuous additive mappings and
bE.sJ!.

Proof. By Theorems 1.6 and 1.1, the function F - F (O) can be
written in the form (1.1). It is dear that a and A are continuous fun
ctions at O. Because of their additivity, they are continuous everywhere,
so if we denote them by c and C respectively, the statement is obtained
with b = F (O).
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1.8. THEOREM (Main result). Let d = R, then the function
F = li '112 is the only solution of (1) which is continuous at O with F(O) = O

and F (u) = 1 for all u EL, liull = 1.

Proof. By Corollary 1.7, for every UE L, Ilu!1 = 1 we have

1

C (u) =2 (F (u) - F (- u)) = O.

Thus C is equal to zero by its linearity. Furthermore b = F (O) =O

and c is a continuous solution of the Cauchy equation, and so it has
the form c (}.)= c (1) . I,. Here c (1) = c (1IuI12) = F (u) = 1 (see [6]).

1.9. Renzark. In each of the statements proved above, the con
tinuity at O can be replaced by the continuity at any point of L, and
it implies the continuity on the whole L. Indeed, if the solution F
of (1) is continuous at y E L, then the function Gy defined in the proof
of Lemma 1.5 is of the form (1.4). Thus Gy is continuous on the whole
L, and so is F.

2. The case of nor med linear spaces

In what folIows we consider the equations (1)-(3) on a real
normed linear space (L, 11·11), dim L;> 2. For (3) to make a sense on
such a space, it is necessary to define an »orthogonality relation« in L
which turns it into an orthogonality space. Because of the lack of such
anaturai concept, several ones have been introduced (see e. g. [4],
[9]). In [8] the folIowing concept of orthogonality is considered:.
The elements x and y of L are said to be orthogonal (shortly x ...L y),
if Ilxll < Ilx + Ayll for all A ER.

Anyway, the additive functions will solve (3) as well as (1) and
(2). However, nontrivia1 continuous even solutions do not exist in
general. Namely, we can quote here the result obtained by K. Sun
daresan.

2.1. THEOREM ([8]). A nontrivial even continuous orthogonally
(1-) additive real valued function on L can exist only if L is an inner
product space.

2.2. Remark. In 1980 J. Riitz found the following unpublished
result, which generalizes Theorem 2.1 in a certain sense: If L = R2*>

and the norm on L is such that the unit ball is a polygon, then any
even orthogonally ( 1-) additive mapping from L into an abelian group
d is identically zero.

Concerning the equation (1), we can only state that the continuous
even solutions found in CorolIary 1.7 do not satisfy it on spaces without
inner produet. Also we can show an example of a normed linear space
for which the assertion of Theorem 2.1 ho1ds. We shalI make use

*> Sinc'e then it has appeared: ]. RaU, On orthogonally additive mappings II, Proe. ef 19th
International Symp. on Functional Equations, Nantes, (1981), 39.
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of the following characterization of inner product spaces and the ge
neral solution of a version of the norm square equation (4).

2.3. LEMMA ([5]). The normed linear space L is an inner product
space with the same norm if and only if there is a fixed constant y "# O, ± I

such that lJ x, y EL and Ilxll = Ilyll then IIYx + yll = l!x + yy!l·

2.4. LEMMA. A function F: L -7 d satisfies the equation

F (x + y) + F (x - y) = 2F (x) + F (y) + F (- y), x, Y EL (2.1)

ii and only lJ there exist a biadditive (additive in both variables separately)
B : L x L -7.s/ and an additive mapping A : L -7 d such that

F (x) = B (x, x) + A (x), X EL. (2.2)

ProoJ. Denoting by Fe and FG the even and odd parts of F res
pectively, we have from (2.1)

~~+~+~~+~+~~-~+~~-~=
= 2 Fe (x) + 2 Fo (x) + 2 Fe (y)

Fe (x +y) - Fo (x +y) + Fe (x - y) - Fo (x - y) = 2 Fe (x) - 2 Fo (x) +
+ 2Fe (y).

Summing up these equations, we obtain the equation (4) in Fe, there
fore it has the required form B (. , .) (see [2]). Now subtracting them
we have

Fo (x + y) + Fo (x - y) = 2 Fo (x).

It gives that 2 Fo (x) = Fo (2x) by taking x = y. Then choosing

w, ZE L arbitrarily and x = ~(w + z), y = -}(zv-z), the additivity
of Fo is proved.

2.5. THEOREM. If the funetion c (II . 112) is a solution of (1) on
L, where c : R -7 d is a non-zero continuous additive mapping, then
L is an inner product space.

ProoJ. First we show that c is a one-to-one mapping. If it would
not be so, then there were real numbers 'JIl "# '/12 such that c ('JI1) =
= C ('/12)' Thus with '/I = 'JI2 - '/11 we have c ('JI) = O, and by the
additivity, c is periodic with the period 'JI "# O. Since c ('/112)+ c ('/112)=
= c ('JI) = O and the decomposition O+ O= O in d is unique, we
obtain c ('/112)= O and '/112is also a period of c. By induction we see
that the numbers 'JI/2k,kEN, are all periods of c. Since lim '/I12k= O,

k-oo
C is constant on a dense subset of R, and by the continuity, c is identi
cally zero on R, which is a contradietion.
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Now let x,y EL, Ilxll = Ilyll = A. =I O and u = ).-1 X, v=A.-1 y.Then the equation (l) for c ("12) at (u + v), u, v gives the equality

c (jl2u + vil2) + C (1IvI12) = c (liu + 2vll 2) + c (IIuI12).

Since c is one-to-one, it follows 112u + vii = IIu + 2v II. Consequent1y
the sufficient condition of Lemma 2.3 ho1ds with y = 2.

2.6. TREOREM. Let L = R2 with the norm II(A., .u)11 = IA.I +
+ l.u I· Then the equation (1) has only trivial conu'nuous even solutions
with values in R.

Proof. First, in a simi1ar way as in the proof of Lemma 1.4, we
show that for every continuous solution F of (1) with F (O, O) = O
(this may be supposed) it ho1ds

F (),' .u) = F (J" O) + F (O, .u), (A.,.u) E R2 (2.3)

(Obvious1y this does not mean the orthogona1 additivity in any sense).
Define the functions "L1 and "L1~k)on R by

"L1 (.u) = F ()" .u) - F (O, p), .u ER

"L1~k)(p) = F (~ A., .u) - F e~1 J., .u),

(2.4)

k

(kEN, k> 1),1J2, j= 1,2, ... ,k). Evident1y for all k "L1 = L "L1T.
;=1

Now we show that the functions ;.L1~k),j = 1,2, ... , k, are periodic
with the period 2 pIr = 2 (1 - IAI/2k). Setting

(2i - 1 ~ (k) ) (1 ~ (k») _ (1 ~ (k»)X = ~ 11., .u + pl , u = \ 2k /", p" . ' v - 2k 11., - pl

into (1), we get

;.L1~k)(.u + 2p(l') = F ( ~ A,.u + 2P)~) - F (i ~ 1A., .u + 2P~k») =

Rence ;.L1 is periodic with the period 2p~k) and also with 2 (plk+ 1) 

- p~k») for all k. Since lim (plk+ 1) - p~k») = O, "L1 is constant on
k-oo

a dense subgroup of R, and because if its continuity, it is constant
on R:

"L1 (.u) = kd (O) = F (A, O) - F (O, O) = F (A, O), .u ER.

This and (2.4) together imp1y (2.3).
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Let the functions J and g be defined by

J ().)= F ()., O), g ({t) = F (O, ,u), )., (t ER.

If Fis even, then so are J and g. These functions satisfy the well-known
quadratic equation (4), i. e. for J

J (). + ~)+ J (). - ~) = 2J().) + 2J(~), I., ~ ER. (2.5)

If 1~1 < 1, then (2.5) is a direct consequence of (1) and (2.3). Indeed,
for 1] = 1 - I~Iwe have

2 [Jm + g (1])] = F(~, 1]) + F (- ~, - 1]) = F (O, 1) + F (O, - 1) =
= 2g (1) = 2 [J().) +g(1)] - 2J().) = F()', 1) + F(t;, - 1) - 2J(},) =

=F~+~~+F~-~-~-~W=

= [J(). + ~)+ g (1])] + [J(;' - ~) + g (1])] - 2J().).

Now suppose that (2.5) ho1ds for I~I<nEN. Let n <: ~ <n+ 1.
Then by (1), (2.3) and our assumption

J(). +~) + J(). - ~) - 2J().) = [2J(). + ~- 1) + 2g (1) - J(), +

+ ~- 2)] + [2J(). - ~ + 1) + 2g (1) - J(). - ~ + 2)] - 2J().) =

= 4 [J().) + J(~ - 1)] - 2 [J(I,) + J(~ - 2)] + 4g (1) - 2J().) =

= 4J(~ - 1) - 2J(~ - 2) + 4g(1).

It is seen that J (). + ~)+J (). - ~) - 2J ().) does not depend on
I" thus choosing ), = O, we obtain (2.5) for I~I< n + 1. This proves
(2.5) by induction.

By Lemma 2.4, it is dear that the continuous solutions J and g
of (2.5) are of the form

J().) = c' ).2, g ({t) = c" (t2, )., (t ER.

Since F satisfies (1), we have

c' =J(1) = F(1, O) = F(O, 1) = g (1) = c".

Finally from (1) with c = c' = c"

(1) (1) 1 1 1
c=J(l)+g(O)=J - +g - =-c+-c=-c2 2 4 4 2

which gives c = O. This comp1etes the proof.

2.7. Remark. It is not difficult to see that the assertion of Theorem
2.6 ho1ds for functions continuous only at asing1e point.
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In the rest of the paper we redu ce the problem of equation (2)
to the norm square equation.

2.8. THEOREM. The equation (2) implies the rnodijied norm
square equation (2.1).

Proof. Let F : L -+ d be a solution of (2), and x, y E L, Ilyi! <
<; IIxll· Consider the connected sphere

Zy = {z EL IIIzli = Ilyl!}

and define the funetion D : Z y -+ R by

D(z) = Ilx + zli -llx - zi!, z EZy.

Ilyl!

For ZI = rXIT x and Z2 = - ZI we have ZI' Z2 E Zy, and

D (Z1) = Il+ ::~lllllxll -Il - ::~:}IIIxii = 211yll > O

D (Z2) = D (- Z1) = - D (ZI) <; O.

Since D is continuous, there is an element Zo E Zy such that D (zo) = O.

Let u = ~ (x + zo), v = ~ (x - zo)' It is dear that Ilull = IIvll, so
the equation (2) at u, u, v and v, v, u is of the form

and
F(x + zo) + F(O) = F(x) + F(zo)

F(x - zo) + F(O) = F(x) + F(- zo),

respeetive1y. Finally from these equations we get the desired result
by using (2) with IlA = Ilzoll :

F (x + y) + F (x - y) = F (x + zo) + F (x - zo) =

= F (x) + F (zo) + F (x) + F (- zo) = 2F (x) + F(y) + F( - y).

2.9. COROLLARY. If L is an inner product space, then a function
F is a solution of the equation (2) ij and only ij there exist additive map
pings a : R -+ d and A : L -+ d such that

F (x) = a (II xii 2) + A (x), X E L. (2.6)

Proof. By Theorem 2.8 and Lemma 2.4, F can be written in the
form (2.2). Obviously

1
B (x, x) = 2 (F (x) + F ( - x)), X E L,
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thus B (x, x) = B (y, y) if x, y EL, Il xii = !!yij. Now let a: R --+ <'Cl

be defincd by

a (i,) = sgn (i.) B (VIi. i u, VIi. I u), i. ER

where u E L is arbitrary with Il u II = 1. It follows that for any x E L
B (x, x) = a (I! X[12). To show the additivity of a let i" /-' E R+ and
x, y E L with lixii 2 = i., iiYil2 = I', (x, y> = O. Then by the equation

(2) for ac!I·[(2) with u = ~ (x + y), v = -}(x - y) at u,u,v we have

a (i. + /-,)= a (11x+ y112) = a er! xii 2) + a (1IyI12) = a (i.) + a (/-,).

2.10. THEOREM. If L is not an inner produet space, then the
solutions of the equation (2) are exactly the additive functions A : L --+ S'I.

Proof. By Lemma 2.4 and Theorem 2.8, any solution F of (2)
has the form (2.2). We show that B is identically zero. Notice that by
(2) for the even part Fe of F

I
= 2 (Fe(O + v) + Fe(O - v)) = Fe(v) = B(v,v) (2.7)

for all li, V E L, IIuil = ilvi! .li I "

Further, by Lemma 2.3, there are elements u', v' EL such that
liu'i! = !iv'll and !]2u' + v'll < I!u' + 2v'il. Consider the connected
sphere

u = {u EL! Ilull = Ilu'I!}

and define the continuous function q : U --+ R by

_ 112u + v'll
q (u) - liu + 2v'[1 '

UE U.

Clear1y q (v')= 1 > q (u'), thus there is an element UoE U such
that kll = q (uo) < 1 is rational. Setting Vo = v', x = 2uo + vo, y =
= Uo + 2 Vo for any W E L, i. = ilwli/iixll we have Ilwll = P.xll and
so by (2.7) Fe (w) = Fe (i.x). Further the equation (2) at the points
}, (uo + vo), A.Uo,i.vo gives

Fe (,h) + Fe (i,'vo) = Fe (i. [uo + vo] + AUo) + Fe (i.vo) =
= Fe (i, [uo + vo] + i.vo) + Fe (i.uo) = Fe O.y) + Fe (i.uo).
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Renee we have Fe (w) = Fe (J,x) = Fe (J,y) regarding the equality
liI,uoll = liJ,vo!l and (2.7). Then aeeording to Phil = IIHYii, (2.7) and
the biadditivity of B imp1y that

F Fe (w) = F Fe (J.x) = f2 B (h, h) = B (Ih, Ih) =
= B (kAY, kJ.y) = k2 B (J.y, J.y) = k2 Fe (2y) = k2 Fe (w).

Thus for any w E L eF - k2) Fe (w) = O holds, and regarding the
inequalities q (uo) < kll <; (l- 1)11< 11(1+ 1)< 1 = q (vo) we obtain
the following partieu1ar equalities

(21 - 1) Fe (w) = O, (21 + 1) Fe (w) = O.

Final1y substraeting them we have 2 Fe (w) = O and so Fe (w) =ce O
for any w E L beeause of the uniqueness of the 2-division in sl.

2.11. COROLLARY. A real narmed linear space L is an inner
praduct space with the same narm zj and anly zj the equatian (2) allows
a nanadditive salu tian an L.

2.12. Remark. The problem whether the equation (1) has a so
1ution of the form (2.2) different from (1.1) on an inner produet space
L, is open. Rowever, we notiee that for a function F derived from a
biadditive mapping B : L x L -+ SI to be a solution of (1), it is ne
cessary and sufficient that B(u, u) = constant ho1ds for uEL, !lu!1 = 1.
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NEKE FUNKCIONALNE JEDNADŽBE KOJE SE ODNOSE NA
KVADRATNE FUNKCIJE

Gy. Szabo, Debrecen, Madžarska

Sadržaj

U radu je uvedena funkcionalna jednadžba F(x + u) + F(x - u) =
= F(x + v) + F(x - v), x, U, v EL, IIull = Ilvll = 1, gdje je L realan
prostor sa skalamim produktom i dim L >12. Glavni rezultat kaže da
je njeno jedino »regularno« rješenje u biti kvadrat norme tj. 11-/12•


