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A HOMOTOPY THEORY FOR GRAPHS
G. Malle, Klagenfurt, Austria

Abstract. Some concepts and theorems are transferred from algebraic topo-
logy to graph theory and put in a combinatorial setting. The first part of this paper
deals with combinatorial analogues to continuity, homotopy, path homotopy, con-
traction, retraction, fundamental group etc. The last analogue (called string funda-
mental group of a graph) is investigated in greater detail. It is shown that this group
is isomorphic to the usual fundamental group of the graph if the girth is at least 5.
The second part of this paper deals with string connected graphs, i. e., connected
graphs with trivial string fundamental group. These graphs are characterized by
embedding them in a special way into pseudosurfaces. Furthermore, combinatorial
analogues to deformation retraction, homotopy equivalence etc. are developed.

PART ONE

1. Introduction

The aim of this paper is to transfer some concepts and theorems
from algebraic topology to graph theory and to give them a combina-
torial nature. There are some papers with similar ideas (see e. g. [5]—[8],
[11]—[14]). In particular homotopy theories for graphs can be de-
veloped in several manners. One possibility is to assign to a graph X
a topological space T'(X) in the following way: Let to each edge of
the graph X correspond a 1-dimensional simplex in some R". Identify
the vertices of the simplex according to the graph X and provide the
union of the simplexes with the so called »weak topology« (a subset being
open if the intersection with each simplex is open: see [9, p. 246]).
Then one can apply the usual topological homotopy theory to 7 (X).
Dorfler [3] developed a homotopy theory for hypergraphs. He assigned
in an analogous manner to each hypergraph X a topological space
T (X). His homotopy concept is not the topological one (it is of a
combinatorial nature too), but closely related to the topological con-
cept. The homotopy concept proposed in the present paper seems
to be quite natural for graphs, but is in some details not as closely
related to the topological concept as Dorfler's one.

The first part of this paper deals with combinatorial analogues
to the topological concepts of continuity, homotopy, path homotopy,
contraction, retraction, fundamental group etc. The second part
will deal with analogues to simply connected spaces, deformation
retraction, homotopy equivalence etc.

Mathematics subject classifications (1980): Primary 05 C 10.
Key words and phrases: Graphs, combinatorial homotopy, combinatorial fun-
damental groups.
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We consider only finite graphs without loops and without multiple
edges. The vertex set of a graph X is denoted by V (X), the edge
set by E(X). If two vertices x and y are adjacent, we write x ~ y.
We denote the edge connecting the vertices x and y with xy or so-
metimes [x,y]. Quite often we use the sets N ={0,1,2,...} and
N,=1{0,1,2,...,n}. For further graph theoretical terminology see
[1] or {4], for algebraic topological terminology see e. g. [2], [9] or
[10].

Let us take the following gangster problem as the starting point
for our considerations: Suppose the vertices of a graph to be towns
and the edges roads. In each town there is a member of a gangster
syndicate, The gangsters decide to meet in one of the towns. For
safety reasons they decide: Each day they will move from one town
to an adjacent one or rest in the same town and if two of the gangsters
are in adjacent towns originally, then at all steps of the journey these
gangsters must be in adjacent towns or be in the same town. The
problem is: For which graphs is it possible for the gangsters to meet
in one of the towns?

Examples. A meeting is possible in the graph X as indicated
in Fig. la. Obviously it is not possible in the graph Cs (Fig. 1b).

G-

165 23 12,345
Fig. 1a
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Fig. 1b

In the following the ideas of this problem and related ideas will
be treated in a more formal way.

2. Net homotopy and net contraction

We begin by defining a graph theoretical version of continuous
maps:

Let X, Y be graphs. A map f: V(X) - V (Y) is called a homo-
morphisim from X to Y, if

x~y ) ~f(y) or f&)=r()



A homotopy theory for graphs 5

for all x,y € V(X). Instead of f: V(X) > V(YY) we hereafter write
f: X->Y.

Note that the word »homomorphisme« is used in the graph theo-
retic literature in different senses. (See e. g. [4] and [8]).

If f:X->Y and f~':Y - X are homomorphisms, then f
is an isomorphism between the graphs X and Y. Thus isomorphism
between graphs corresponds to homeomorphism between topological
spaces.

Let f and g be homomorphisms from X to Y. A map H: V (X) x
*x N, >V (Y)(neN,n>1) is called a net homotopy from f to g, if

() x~y=>H(@xt)~H(y,t) or H(x,t)=H{(y,t) for all
xyeV(X)and all teN,,

Q) Hx,)~H(x,t+ 1) or H(x,t) = H(x,t + 1) for all
x eV (X) and all £ € N,_,,

3) H(x,0) = f(x) and H(x,n) = g (x) for all x e V(X).

If such a map exists, we call f net homotopic to g and write f ~ g.

In this definition the conditions (1) and (2) again are graph theo-
retical versions of continuity. The set N, can be regarded as a set
of finitely many »points of time« and is used instead of the unit inter-
val in algebraic topology.

The proof of the following proposition is left to the reader:

PROPOSITION 1. The net homotopy relation ~ is an equiva-
lence relation on the set of homomorphisms from a graph X to a graph Y.

A graph X is said to be ner contractible to x, € V (X), if the iden-
tity homomorphism 1y : X - X is net homotopic to the constant
homomorphism ¢,, : X - X defined by ¢, (x) = x, for all x e V (X).
In other words: X is net contractible to x, if there exists a net homo-
topy H: V(X) X N, - V (X) such that H (x, 0) = x and H (x, n) =
= x, for all xe V (X). The net homotopy H is called a net contraction
of X to xy. X is said to be net conrractible if there exists a vertex xg €
€ V (X) such that X is net contractible to x,.

Examples. The graph X in Figure la is net contractible. A net
contraction of X is indicated in the figure. Instead of writing H (x, 0),
H(x, 1), H(x,2), ... in the figure each label x is moved. The graph
C; in Figure 1b is not net contractible.

Our »sgangster problem« now can be formulated: Characterize
all net contractible graphs!

THEOREM 1. Let X be net contractible to xo € V (X) and let
v be any vertex of X. Then X is net contractible to0 y.
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Proof. Let H: V(X) X N, >V (X) be a net contraction of X
10 x9 € V(X). Because X is net contractible, X is connected and
therefore there is a path x4 %, %, ... x, (= »). Intuitively speaking
we first move all labels 1o x, and then along this path to y. Formally
we define a net contraction K: V(X)X Npyum >V (X) of X
toy by
H(x,t) if O<et<mn,
Xe_p ° if n<t<n-+m

K(x,t)={

Let Y be a subgraph of a graph X. A ner retraction of X onto Y is a
homomorphism f:X > Y such that f(y) =y for all ye V(Y).
When some net retraction of X onto Y exists, Y is called a net retract
of X.

THEOREM 2. A net rvetract of a net contractible graph is itself
net contractible.

Proof. Let H: V(X) X N, =V (X) be a net contraction of the
graph X to a vertex x, € V (X) and let f: X — Y be a net retraction
of X onto a subgraph Y. Define a map K: V(Y) X N, » V(YY) by

K (x, 1) = f(H (x, 1)).

We show that K is a net contraction of Y to f(xo) € V (Y). In order
to prove this we must show that K is a net homotopy from the iden-
tity homomorphism 1y:Y - Y to the constant homomorphism
Cragy - Y = Y. It is left to the reader to check the conditions (1),
(2), (3) in the definition of a net homotopy.

3. Strings and string homotopy

We define a graph P, by V(P,) =N, and E(P,) = {[t,¢ +
4+ 11{ieNu_1}, ifm > 1, and E(P,) = 0, if m = 0. Here [1,¢ + 1]
denotes the edge joining the vertices ¢ and ¢ -+ 1. P, is a path in the
ordinary graph theoretical sense. Different from this is the topolo-
gical concept of a path, which is a continuous map from the unit in-
terval into a topological space. We define a graph theoretical analogue
to this concept:

A string in a graph X is a homomorphism ¢: P, = X (me N).
An elementary extension of o is a string o*: Py, > X (g €N) de-
fined by
10) if O0<i<k,
o* (1) = {o (k) if k<i<ktg
oc(i—g) if ktg<i<m+tg

for a fixed & € N,. A string ¢° constructed from ¢ by a sequence of
elementary extensions is called an exzension of o.
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Examples. Figure 2a shows a string ¢ in a graph X, Figure 2b
an eclementary extension ¢* of ¢ and Figure 2c an extension ¢¢ of o.
Intuitively speaking one gets an elementary extension of ¢ by inser-
ting g vertices in P, between k and % - 1, whereby these g vertices
get the same image as &.

s {4}
/4

c*16) sf (0= M) 5"(3)

€5 =6 °16)=6®(7i= 5 "2}
=6¢{8l=6%(9)

6*13)=6*h]=5%{5)

s()=512) s =62} 6°12)=6%3)=6°(4) s™1)
0} s*10) =g€{1) &™{0)
Fig. 2a Fig. 2b Fig. 2¢ Fig. 2d

If = is an extension of ¢ then we call ¢ a reduction of . If o™ is a re-
duction of ¢ such that there is no reduction ¢ of ¢™ with g  ¢™ then
we call ¢™ a mintmal reduction of o.

Examples. The string ¢ in Figure 2a is a reduction of ¢* in Figure
2b and a reduction of ¢° in Fig. 2c. A minimal reduction ¢™ of ¢ is
shown in Figure 2d.

Obviously to each string ¢ in X there is a unique minimal re-
duction ¢™. The relation »is an extension of« is a partial order on the
set of all extensions of a fixed string ¢ in X. The set of extensions of
¢ forms a lattice with respect to this relation. ¢™ is the least element
of this lattice.

Now we define an analogue to the topological concept of path
homotopy: Two strmgs o:P, > X and 7:P, > X are called string
homotopic, denoted ¢ ~ 7, provided that ¢ (O) =7(0), c(k)=0()
and that there is a net homotopy H : V (P,) X N, » V(X) from
an extension ¢¢:P, - X to an extension 1°:P, - X such that
H@©,0) =0¢(0)=7(0) and H(m, 1) =c(k) =7 (r) for all teN,.

Examples. The strings ¢ : P, - X and 7 :P; - X shown in
Figure 3a are string homotopic, because ¢(0) =1 (0),6(4) =7 (3) and
there are extensions ¢° : Py - X, 7°: P, - X (shown in Figure 3b)
and a net homotopy H : V (P,) X N, - V(X) from ¢® to z¢ (shown
in Figure 3c) such that H(0,7) = ¢ (0) =7 (0) and H(4,¢) = 0 (4) =
= 7(3) for all t e N,.

si2) 612) Hi2,0)

sl 513 sel1] (3] H(10) 0
610} slhl &°10) s#lh) . Y '

(0} {3 7é0) T8l4) Hl0,0) H(L,O):
—H!L,ﬂ:
) O

.2
<) {2 e} #2)=743) HIL2) H(2 2)=
=H13,2)

Fig. 3a Fig. 3b Fig. 3¢
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LEMMA 1. Let ¢: P, > X and t:P,, > X be strings in a
graph X with 0 ~ v and H : V(P,) X N, > V(X) a net homotopy
from o to v with H(0, t) = c¢(0) =7 (0), H(m, t) =0a(m) =t (m) for all
te N, If 0°: P, +X is an extension of o then there exists a net homo-
topy H° : V (P,) X N, = V (X) from o° to some extension ©° of T such
that H°(0,t) =0 (0) =v(0) and H°(r,t) =0 (m) =1 (m) for all
teN,.

Proof. Let o* be an elementary extension of ¢ : P, - X as de-
fined before. Intuitively speaking one gets a net homotopy H* from
o* to some elementary extension t* of v by defining the labels of the
inserted g vertices to be the label of the vertex & at all steps of the
homotopy H. Formally we define H* : V(P,.,) X N, = V(X) by

H@, ) if 0<i<k,
H*(i,t) = (H(k,{) if R+1<i<k+tg
HGE—g1 if Et+g<i<m+tg

It is easy to see that H* is a net homotopy from ¢* to some elementary
extension ¥ of 7 and that H*(0,7) = ¢ (0) = v (0) and H*(m +
+ g, 1) = o(m) = 7 (m). By repeated application of this construction
one gets a net homotopy H® : V (P,) X N, - V (X) from o to some
extension t¢ of 7 such that H¢(0,¢) = ¢ (0) = 7 (0) and H*(r,1) =
= ¢ (m) = 7 (m).

PROPOSITION 2. String homotopy =~ is an equivalence rela-
tion on the set of all strings in a graph X.

Proof. Reflexivity and symmetry are clear. So we only have
to show the transitivity. leto : P, - X, 7: P, > Xand o : P, > X
be strings in X with ¢ £ 7 anv 7 & w. Then ¢ (0) = 7 (0), o (k) =
=1 (m) and 7(0) = 0 (0), T (m) = w (n). From this it follows that
6(0) = w (0) and ¢ (k) = w (). Because 7o there exists a nct
homotopy H : V(P,) X N, > V(X) from an extension 7’ of 7 to
an extension ¢’ of ¢ such that H(0,¢) = v(0) =0 (0) and H(r, 1) =
= 7(m) =0 (k) for all te N,. Because 7 % w there exists a net homotopy
K:V(Pgy) x N, >V (X) from an extension 7'° of 7 to an extension
o' of w such that K(0,¢) =1 (0) = w (0) and K(s,t) = v (m) =
=w(n) for all te N, Let 7¢:P, > X be defined as sup {z', 7"}
(in the lattice formed by all extensions of 7). By Lemma 1, there
exists a net homotopy H¢:V (P,) X N, - V(X) from ¢ to some
extension ¢° of ¢ with H® (0, 1) = v (0) = ¢ (0) and H* (4, t) = 7 (m) =
= w (n) for all z € N, and there exists a net homotopy K¢ : V (P,) X
X N, =V (X) from 7° to some extension w® of o with K¢ (0,1) =
=7(0) =w () and K®(u, t) = v (m) = w (n) for all 1 € N,. We de-
fineamap L*: V{(P,) X N,;, > V(X) by
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He(G,p—0t)if 0<t<p,

Le(,0) = . .
@ 2) {K"’(z,t—p) fp<t<ptq

It is easy to see that L€ is a net homotopy from ¢® to w® with L¢ (0, ) =
=0¢(0)=w(0) and L* (4, t) =0 (k) = w (n) for all teN,,,. Hence

s
o == .

4. The string fundamental group of a graph

If 6:P, X and 7v:P, - X are strings in a graph X with
o (k) = v(0), then their string product is a string c+7 : Pypp > X
defined by

] o () if 0<i<k,
"*’(’)"{T(i—k) if k<i<k+m.

It is easy to see that (o*7)+m =0 *(7+w), if both sides are defined.
Therefore we are allowed to write o+ 7 * w.

A string loop in a graph X at xoe V(X)isa string a: P, > X
with a (0) = a (m) = x,. The vertex x, is referred to as the base
vertex of a. Two string loops ¢ and § in X having common base vertex
are string homotopic modulo x,, denoted a ~, B, provided that they
are string homotopic as strings.

Since no ambiguities will occur we will write a ~, f instead

of @ X, B.
The proof of the following lemma is left to the reader:

LEMMA 2. Let a,d', B, f' be string loops in a graph X at x4 €
eV(X) If a > as and B~y B then axf ~, o' f'

It is evident that string homotopy modulo x, is an equivalence
relation on the set of all string loops in X with base vertex x,. There-
fore this set is partitioned into equivalence classes. The equivalence
class of the string loop a at x, is denoted by [a] and is called the
string homotopy class of a. The set of all such string homotopy classes
is denoted by S(X,x). If [a], [f]e S(X,x,), then the product
[a] < [B] is defined as follows:

[a] o [] = [a = B].

(Lemma 2 insures that [a] o [8] is well defined.) A null loop at x, is
a constant string loop v :P, =X defined by v() =x, for all
1€ N,

Note that there are infinitely many null loops at x, (contrary
to algebraic topology). But all null loops at x, are string homotopic
modulo x, and hence yield the same string homotopy class.
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If 0: P, > X is a string in X, then the string ¢ : P, > X de-
fined by G (f) = 0 m — 1) for i € N,, is called the reverse string of o.

THEOREM 3. The set S (X, x,) 15 a group under the operation o,

Proof. The details are left to the reader. We only make some
remarks concerning the neutral element and the inverse elements.
If a € S (X, x0) and v is an arbitrary null loop at xo, then a* » is an
extension of a and therefore a =¥ ~, a. Thus [a] o [v] = [al].

If ae S{X,x,),a:P,, »~X and » is an arbitrary null loop at xg,
then there exists a net homotopy H : V(P,,) X N, = V(X) from
a + '@ to an extension »°: P,, — X of v given by

a(max{0,7 —¢}) if O<i<m,
a{min{m,i+1}) if m<i<22m.

H{,1) = ‘
Obviously H (0,1) = H(2m,t) = x, for all te N,,. Thus a*a ~,, v
and therefore [a] o {a] = [¥].

The group S (X, x,) with the operation o is called the string funda-
mental group of X at x,.

THEOREM 4. If a graph X is connected and x,, X1 are vertices
of X, then the string fundamental groups S (X, xo) and S (X, x,) are
isomorphic.

Proof. Because X is connected, there exists a string o : P, - X
with ¢ (0) = x, and o (m) = x;. If a is a string loop at x,, then o *
*a*0 is a string loop at x;. We define a function ¢ : S(X, xo) >
- S (X, x,) by

6 ([a]) = [0 xa* o] for [a] € S (X, x0).

It is easy to see that ¢ ([a]) is independent of the choice of represen-
tative from [a] and therefore & is well defined. It is left to the reader
to show that & is an isomorphism from S (X, x,) to S (X, x;). (Com-
pare [2], p. 67, Theorem 4.3.)

Because of Theorem 4, we sometimes omit the base vertex in
the notation for the string fundamental group of a connected graph
X and speak of the string fundamental group S (X). But as in alge-
braic topology, Theorem 4 does not guarantee that the isomorphism
between S (X, x,) and S(X, x;) is unique. Different strings from
X, 10 x; may lead to different isomorphisms.

In the following we assign to a graph X a topological space T(X)
as described in the introduction. The vertices of X and the corres-
ponding points in T (X) are denoted by the same symbol. Let
G (T (X)) be the fundamental group of T (X).

In which way is S (X) related to G (T (X))? In order to give a
(partial) answer to this question, we need some further definitions.
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By I we denote the interval [0, 1} in R and by {a, b) the simplex
in R"(n » 1) with vertices a,b. If H: V(P,) X N, >V (X) is a
net homotopy from a string ¢ :P, > X to a string 7:P, > X,
then let p,;, : I - T(X) be a path from H(,) to H ({+ 1,0)
(0 < ¢ < m — 1) which is chosen in such a way that

CHGD,HGE+ Loy if HGO+ HGE+ 1,1,
pue(l) = {{H @ t)} it HG)=H(®G@+ 1,90.

If p: I >T(X) and g :I - T(X) are paths in T (X) with p (1) =
= ¢ (0), we denote their path product by p *¢. (Compare [2], p. 63.)

LEMMA 3. Let X be a graph with girth > 5 and ¢ : P,, - X
and v : P,, > X string loops in X at xo € V(X). If H: V (P,) X N, >
=V (X) is a net homotopy from ¢ to v with H(0,t) = H(m,t) =
= xo for all t e N,, then the loop po,o*P1,0* .- *Pm—1,0 AL Xo 1S
homotopic modulo xqo to the 100p Poy* Pim* oo * P 1,ne

Proof. We consider the step from ¢ to ¢ 4+ 1. What can happen
to H(4,t) and H (@ + 1,¢) at this step? All possible cases are shown
in Figure 4. (Cases which differ only by changing the roles of H (3, )
and H (i + 1, 1) are only stated once.) Because X has girth > 5, the
cases in Figure 4g-j cannot occur. Thus we only have to investigate
the cases in Figure 4a-f. We show that in all these cases the path
pi,: is homotopic to the path p;,.,. We do this by writing down ho-
motopies which are indicated in Figure 4a-f by certain names. Note
that the simplexes corresponding to the edges of X are chosen in
some R"(n > 1). In Figure 4f note that the union of the simplexes
corresponding to the two edges is homeomorphic to a straight line
segment in some R"(n > 1), therefore it suffices in this case to find
a homotopy from p;, t0 p; ., under the assumption that H (@ — 1, 1),
H(i,¢) and H({ + 1,¢) lie on a straight line in some R"(n > I).
Because we consider 7 and ¢ fixed for the moment, we use the para-
meters ¥, s € I and define the following homotopies:

identity: id (s, 7) = pi,e (5,

contraction: co (s, ) = p;, () +r (H (%, t) — p; (5)s
dilatation: di(s,7) = H(5, ) + r (pis41 () — H(G D),
reflexion:  re (s, 7) = pr, (8) + 7 (Pi,e (1 — 5) — pi: (5))s
translation: tr (s, 7) = p;, (5) + 7 Pres (&) — pie (5)-

To write down the corresponding homotopies, with the roles of H (7, 1)
and H (#+ 1,¢) changed, is left to the reader. All these homotopies
are »straight line homotopies« and this can be interpreted as if the
point H (7, r) moves with »constant velocity« along a straight line to the
point H (z, ¢ + 1) and analogously the point H ( + 1, 1) to the point
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H(@+ 1,t + 1). Thus, if f, is a homotopy from po, to po.+1 and
f1 a homotopy from p;, to p;,.,,;, both homotopies of the kinds
mentioned above, it follows that f, (1, ) = f; (0, ) for all r € I. (This
result also can be attained by direct computation for all possible pairs
f1, f2.) Thus the map A; defined by

[fo (2s, 1) for 0<s< %,
hy (s, 1) = .
fi1@2s—1,r) for —:—2—<s<1

is a homotopy from po, * p1,s 10 Poss1 * Pre+1-

Next we construct a homotopy from pg. * Pi1.c * P2 tO Do *
*Prei1 * Parsr1. Let f, be a homotopy of p,,; t0 ps,4, Of one of the
kinds mentioned above. Because f; (1,7) = f, (0,r) for all r €I and
hy(I,r)=f ({1,r) it follows that %, (1,7) =f,(0,7r) for all rel
Thus the map A, defined by

1
h1 (25,7') for 0<S<7,
hZ (S? r) = l
f2(2s — 1,9 for—2—<s<1

is a homotopy from po,; * P1,:*P2.c 10 Poss1 * Prrs1 * D2s1-

Proceeding in this way we can construct a homotopy /,,_; from
Poi*Pre* .. *Pm_1, 10 Posas *Pret1* .o *Pm1,+1- DBecause
HO,t)=H@O,t+1)=x, and H{mt)=H(m, t + 1) = xp, it
follows that %, _, (0,7) = h,_, (1,7) = xo for all rel. Thus po, *
*Pia*... % Ppm_y, is homotopic modulo X, t0 pg i1 *Piyesr * .o
* pm_1,:+1- Because this holds for all 1 € N,_,, it follows that pgq *
*Pro*...*P,_10 is homotopic modulo x5 10 po,*Pim* ... *
*Pu—1.n

Hii+\, Hiistte1)
identity identity
O >0 Pit Pirn
Hiit)= Hlit+Y)=
=Hli+14) =Hfi+1,141]
Hi H Hij 1)
Fig. 4a Fig. 4b
Hii+1.H Hii+1,1+1)
contraction dilatation
P Piter
Hii ) Hii t+1)= HiL H= Hiit+1)
=Hii+1, 1+ =N H
Fig. 4c Fig. 4d
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Hii+\H Hii t+)) Hli+1H
reflexion frunsluhon
p{_' p —p pl. .
Hii H Hifet 141 Hiit) Hirl 1) HIEY
Fig. 4e Fig. 4f
Hiiv 1 H Hiil, F+Y) Hiis\ Hir Y
_—_—:>>nﬁm+u =>D
Hiit Hiit Hiit+Y)
Fig. 4g Fig. 4h

Hif 1Y Hiis\

- >:>

Hii Y Hiit)
Fig. 4i Fig. 4j

Hiit+i)=

Hiiti=
= Hlist HY

=HliH

THEOREM 5. If the connected graph X has girth > 5, then
S(X) and G (T (X)) are isomorphic.

Proof. We choose a vertex x, € V (X) as base vertex for the string
loops in X and the corresponding point in T (X) as base point for
the loops in T(X). Let ¢ : I - T{X) be a loop in T(X) at x,. If
one traverses the unit interval from 0 to 1, let v4, 24, ..., 2, be the
points corresponding to vertices occuring in this order. Then we de-
fine a string loop a; : P, > X in X at x5 by a,({) = v, (0 < 7 < m).
In this way we can assign to each loop in T (X) at x, a string loop
a, in X at x,. Now we define a map @ ([a]) = [a4].

@ is a homomorphism:

? ([a] o [BD) = @ (la * B]) = [a = B)s = [a; = B] = [a] o [B] =
= @ ([a]) - @ ([BD.

@ is one-to-one: Suppose D ([a]) = @([ﬁ]) Then [a,] =

= [B,] and therefore a; ~, B;. Hence there is a net homotopy
H:V(P,) X N, >V (X) from an extension af:P, - X of aq, to
an extension /3’ P, >X of B, with H(0,¢t) = H(m, t) = x, for
all e N,. We put «f = ¢ and f¢ = 7. Then, by Lemma 3, the loop



14 G. Malle

$0,0*P1,0 %+ * Pm_1,0 is homotopic modulo x, to the 100D po.* Py *
* ... %P1, BuUt sINCe Poo*P10* ... * Pm~1,0 1S homotopic modulo
%0 10 @ and Pon* Pin* ... * Pm—1,n i homotopic modulo x, to f, it
follows that a is homotopic modulo x; to f. Therefore [a] = [f].

® maps G (T (X), %) onto S (X, xo): Let [a,] e S(X, xo). Let
a™ : P, - X be the minimal reduction of a,. Let U € T (X) be the
union of all points af (7) ¢ € V (P,)) and simplexes {aj (), af (¢ +
+ 1)>(EeNy_;). Define a loop a:I »>T(X) in T(X) in such a
way that @ (I)= U and the points a®(0), a (1), ..., a™ (k) occur in
this order if one traverses the unit interval I from O to 1. Then
@ ([]) = [@™] = [a,]- This completes the proof that @ is an isomor-
phism from G (T (X)) to S(X).

Remark. If X has girth < 4, the theorem is not true. E. g. for the
complete graph K3 the group S (Kj;) is trivial, but G (T (Kj3)) is
infinite cyclic.

Because G(T (X)) is a free group (see [9], p. 197), the following
corollary of Theorem 5 is an immediate consequence.

COROLLARY. If the conmected graph X has girth » 5, then
S(X) is a free group.

PART TWO

This part of the paper deals with analogues to simply connected
spaces, deformation retraction, homotopy equivalence etc.

5. String connected graphs

We call a graph X string connected if it is connected and its string
fundamental group S(X) is trivial.

In order to characterize string connected graphs we neced the
concept of a pseudosurface (see [15, p. 48]) which is defined as fol-

lows. Let 4 denote a set of Z n,m; > 0 distinct points of S, (closed

orientable 2-manifold of genus R), with 1 <my <m, <... <my.
Partition 4 into n; sets of m, points each, 7= 1,2, ...,t. For each
set of the partition, identify all the points of that set. The resulting
topological space is called a pseudosurface, and is designated by
S (k5 1y (my), 1y (my), ..., n, (m,)). Each point resulting from an iden-
tification of m; points of S, is called a singular point. If a graph G is
embedded in a pseudosurface, we assume that each singular point is
occupied by a vertex of G; such a vertex is called a singular vertex.

Let C be a cycle in a graph Y. We call Y a pseudoplanar
(planar) net of C if Y can be embedded in a pseudosurface S (0; n; (my),
n (M2), ..., m (m,)) (a sphere S(0;0(0),0(0),...,0(0) = S,) in
such a way that one region is bounded by C and all other regions are
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triangles or quadrangles. We call such an embedding of Y a proper
embedding of Y. If C = Y < X and Y is a pseudoplanar (planar) net
of C, we call Y a pseudoplanar (planar) net of C in the graph X. If
there exists a pseudoplanar (planar) net of C in X, we say that C has
a pseudoplanar (planar) net in X. An example of a planar net Y, of
a cycle C is shown in Figure 5a, an example of a pseudoplanar net
Y, (which is not a planar net of C) is shown in Figure 5b. One gets Y,
from Y,; by identifying the vertices @ and b. The example in Figure
5b shows that a cycle C having a pseudoplanar net in a graph X must

not have a planar net in X. If in the following we speak of a pseudo-
surface, we always mean a pseudosurface of the form S (0;n, (m,),
ny (my)s ..., #, (my)). If a pseudoplanar (planar) net Y of C is embedded
properly in a pseudosurface (a sphere), we call each region, except
the one bounded by C, a region of Y.

Let us distinguish in the following between a cycle and a circuit.
In a cycle xo x; ... X (= xo) each x; is adjacent to x;,, O < i< m —
— 1) and all vertices, except x,, and x,, are pairwise distinct. In a
circuit % X ... X (= xo) €ach x; is adjacent to %, O <i<m — 1),
but the vertices need not be pairwise distinct. Furthermore, by 4 A B
we denote the symmetric difference of the sets 4 and B and, if R
is a region, by E (R) the set of edges in the boundary of R.

LEMMA 4. Let C=1x¢%, ... X (= %0), m > 5, be a cycle and
let Y be a planar net of C . If Y is embedded properly in a sphere and
Y has r regions, then there exists a region R of Y such that the graph
C', induced by E (C) A E(R), is a cycle containing x, that has a planar
net Y' embedded properly in this sphere with Y' having r — 1 regions.

Proof. We distinguish two cases.

Case 1. There is a path x;y; y, ... ¥,%; with 1 <7/ <j<m—1
and y, ¢ V(C) for 1 < k < r (Figure 6a). Among all these paths we
choose one for which the number of regions of Y inside the cycle
Xo X1 oo Xy V1 V2 - VrX; %54 ... Xo 1S maximum. Then the cycle
XiV1Y2 o YeX;Xj_1 ... X121 % must be the boundary of a region
R which has the desired properties.
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Case 2. There is no path as in Case 1. But since m > 5, there
must exist a path xo ¥y ¥ ...y, 5 with 1 <i<m — 1 and y, ¢ V (C)
for 1 < k < r (Figure 6b). Among all these paths we choose one for
which the number of regions of Y inside the cycle xo %3 ... x; ¥, ¥,-1 ...
...¥1 xo is maximum. Then the cycle Xo¥1¥2 ... ¥, % X141 ... Xo
must be the boundary of a region R, which has the desired properties.

LEMMA 5. Let C=xp%x1...%Xn(=1%), m>5, be a cycle
and let 'Y be a pseudoplanar net of C. If Y is embedded properly in a
pseudosurface S (0; ny (my), ny (M), ..., n,(m,)) and Y has r regions,
then there exists a region R of Y such that the graph C' induced by
E(C)AE(R) is a cycle contaning x, that has a pseudoplanar ner Y’
embedded properly in this pseudosurface with Y' having r — 1 regions.

Proof. We form a new graph Y from Y by undoing the identi-
fications of the m, points of S, to one singular vertex of S (0;n, (m,),
ny, (my), ..., n, (m,)) for i = 1,2, ..., ¢ (This process is shown in Fi-
gure 7 for a singular point with m, = 2, occupied by a singular vertex
u of X.) Formally this can be done as follows. Each singular vertex

4A\

Fig. 7

ue V(Y) has an open neighbourhood in S (0:ny (my), n, (my), ...
...» 1 (m,)) homeomorphic to the union of open discs O, (u), O, (), ...

s> On, (). We can choose O; (), O, (4), ..., O,, () so small that
each edge incident with » has a nonempty 1ntersectxon with exactly
one of Oy (u), Oy (W), ..., O, (W), where O, (u) = O;(u) \ {u},i{ =



A homotopy theory for graphs 17

= 1,2, ...,n, For each singular vertex u € V (Y) we delete all edges
incident with u and replace u by #, vertices u‘¥, u'®, ..., 4™, We
join each vertex # (1 <7 < n,) with each nonsingular vertex v of
Y for which the edge uv in Y has a nonempty intersection with O, (u)
Furthermore, we join two vertices ¥ and v (I<i<m, 1<j<
< m,) if the edge v in Y has a nonempty intersection with O; ()
and a nonempty intersection with O, (). In this way the cycle C
turns into a cycle C and the pseudoplanar net Y of C into a planar net

Y of C which can be embedded in a sphere in such a way that Y has r
regions. Then, by Lemma 4, there exists a region R of Y such that
the graph C’ induced by E(C) A E(R) is a cycle containing x, or
+% and having a planar net ¥’ embedded in this sphere with ¥’ having
r — 1 regions.

Now we go back from Y to Y by identifying all vertices u‘®,
u?, ..., u"™ to u for each singular vertex « € V (Y). Since all vertices
of C are nonsingular vertices and no two vertices in the boundary

of R can be identified (because R is a triangle or a quadrangle), no
two vertices of C’ can be identified and thus C’ turns into a cycle C’
in Y. Furthermore, the region R turns into a region R of Y in the
pseudosurface considered and C’ is induced by E (C) A E(R). Since
C' contains x, or x4, the cycle C’ contains x,. Furthermore, the
planar net Y’ of C’ turns into a pseudoplanar net Y’ of C’ embedded
in the pseudosurface considered with Y’ having » — 1 regions.

LEMMA 6. If a : P,, > X is a string loop in X at x4 and C (a) =
=a@a(l)...a@m (= a(0) a cycle having a pseudoplanar ner in
X, then a ~, v, where v is a constant string loop at X,.

Proof. We show the lemma by induction with respect to the
number of regions of the pseudoplanar net of C(a) generated by a
proper embedding in a pseudosurface. The assertion obviously is
true for all string loops a at x,, where C (a) has a pseudoplanar net
Y in X properly embeddable in a pseudosurface with one region. We
assume that the assertion is true for all string loops @ at x,, where
C (a) has a pseudoplanar net Y in X properly embeddable in a pse-
udosurface with fewer than r regions (r > 2). Now leta : P, > X bea
string loop at x4, where C (a) has a pseudoplanar net Y in X properly
embeddable in a pseudosurface with » regions. If C(a) also has a
pseudoplanar net in X properly embeddable in a pseudosurface with
fewer than r regions, we are through. Therefore we can assume that
C (a) has no such pseudoplanar net in X. Thus 7 > 5. Let Y be embed-
ded properly in a pseudosurface with r regions. By Lemma 5, there
exists a region R of Y such that the graph C’ (@) induced by E (C(a)) A
A E(R) is a cycle in X containing x, and having a pseudoplanar net
Y’ embedded properly in this pseudosurface with r — 1 regions.
We define a string loop a’ : P, - X in such a way that C'(a) =
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=a' (0)a (1)...a (A (=a(0) and ¢ and o' are both oriented
clockwise or counterclockwise. (An example is shown in Figure 8.)

al3)
O

e RN

O albl za'(3)

alllz ') O O afS) =arib]

«l0) = l6)=
=erl0} =elS) = xq

Fig. 8

Since R is a triangle or a quadrangle, it follows that a ~, a'. (This
is easy to show by inspecting all possible cases for this triangle or
quadrangle.) By the induction hypothesis o' ~,, v, where v is a
constant string loop at x,. Thus a ~, 7.

THEOREM 6. 4 graph X is string connected iff it is connected
and each cycle of X has a pseudoplanar net in X.

Proof. (1) Let X be string connected. Then X is connected.
Thus we only have to show that each cycle of X has a pseudoplanar
net in X. If X is a tree, this is true. Therefore we can assume that X
is not a tree. Let C = x4 x; ... x, (= x,) be an arbitrary cycle of X.
We define a string loop ¢ : P, > X by a (f) = x; for 0 < ¢ < r. Since
X is string connected, a ~, %, where ¥ is a constant string loop at
xo. Thus there exists a net homotopy H : V (P,) X N, - V (X) from
an extension «f : P,, > X of a to an extension ¥*: P, - X of v. To
simplify the situation, we can assume that there is no index 7, 1 <
<i<k—1, with ¢ —1)=a*(G+1) and a®*@ Fa*@@—1)
because each extension of a is net homotopic to such an extension.
Now we change the graph X and the net homotopy H in the following
way. If u € V (X) and there are s pairs (7, ¢) with H (1, t) = u, arranged
in any order, then we delete all edges incident with # and replace u
by a complete graph K, (u) with vertices #*), u®, .., u®. We join
each u with every vertex v'® if v € E (X). In this way the graph X
turns into a graph X. Furthermore, we replace the net homotopy H :
: V(Pﬂ) X N, = V()_() by a net homotopy H : V (P, X N, —>
- V (X), defined by H (i, t) = u"? for the j-th pair (¢, ¢) with H (7, z) =
=u. Thereby tkle cycle Cin X turnsintoacycle C = H (0, 0) H (1, 0)...
... H(m, 0) (= H(0, 0)) in X, the string loop ¢°: P,—~X in X into a
string loop @®: P, - X in X with a°(}) = H(3,0) for 0<i<m
and the constant string loop ¢ : P,, -~ X in X into a string loop %, :
:P, > X in X with 9, () = H(@,n) for 0 <i<m. The homotopy
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H has the property that H(,t) + H (', ") for (5, ¢) + (7', '). (The
situation is depicted in Figure 9.) Now we define a graph Y (shown
in Figure 9) by

——

Fig. 9

V((Y)={H@G1|0<i<m—1,0<t<n} and

EY)={HG),HG+1,)]|0<i<m—1,0<t<n}y
V{HGD,HGt+1D)]0<i<m—1,0<t<n—1} U
U{[HO,n), HGn]|2<i<m—2}.

The graph Y is a planar net of C in X. If we now go back from X
to X by identifying the vertices u‘V, u‘®, ..., u® of each K, (), the
cycle C turns back into the cycle C and the planar net ¥ of Cin X

into a pseudoplanar net Y of C in X. Thus C has a pseudoplanar
net in X.

(2) Conversely let each cycle of X have a pscudoplanar net in
X. To show that X is string connected it suffices to show that for all
%o € V (X) and all string loops a at x, it follows that @ ~, v, where
v is a constant string loop at x,. If @ : P, — X is a string loop in X
we define the length of a by { {a¢) = k. We now procede by induction
with respect to I (a).

The assertion obviously is true for all x, € V(X) and all string
foops a at x, with I (a) = 0 (because in this case a is itself a constant
string loop at x;). We assume that the assertion is true for all x, €
€ V(X) and all string loops a at x, with /() <m. Let x5 € V (X)
and a : P,, - X be a string loop at x, with /(a) = m. Let a™ be the
minimal reduction of a. We distinguish two cases:

Case 1. a™ = a. Then I(a™) < Il(a). Thus by the induction
hypothesis a™ ~, », where » is a constant string loop at x,. Since
a ~,, a™ it follows that a ~, ».



20 G. Malle

Case 2. a™ = a. In this case a(0)a(l)...a(m) (= a(0) is a
circuit in X. If this circuit is a cycle in X, then by hypothesis this
cycle has a pseudoplanar net in X and by Lemma 6 it follows that
a ~, v, where v is a constant string loop at x,. Thus we can assume
that this circuit is not a cycle. Then there exists an index j, with 0 <
<j<m—2,suchthat c()=a(J+g), 2<g<m—7j We define
a string loop B : P,y -~ X at ¥y, = a(j) by

B@)=a(j+1) for 0<i<yg
and a string loop y : P,, -~ X at x, by

af) for i<j or i>j+g,

a2 ‘yo for j<i<j+eg

Since 1(B) < I(a), it follows by the induction hypothesis that § ~
~,, 1> Where u is a constant string loop at y,. From this it is easy to
conclude that ¢ ~, y. Let y™ be the minimal reduction of y. Since
w(N=vG+D=..=v({+g),it follows that I(y™) < I(y) =(a).
Thus by the induction hypothesis y™ ~_ », where » is a constant
string loop at xo. From a ~, y ~, y™ ~, », it follows that a=~, 7.

6. Net deformation retraction and net homotopy equivalence

Let Y be a subgraph of a graph X. A ner deformation vetraction
of X onto Y is a net homotopy H : V(X) x N, > V(X) such that

(1) H(x,0) = x and H(x,n) e V(Y) for all x e V(X),
@) H(y,t)=y for all ye V(Y) and all t € N,.

When some net deformation retraction of X onto Y exists, Y is called
a net deformation rerract of X,

Example. The subgraph Y shown in Figure 10b of the graph X
shown in Figure 10a is a net deformation retract of X. A net defor-
mation retraction H: V(X)X N; >V (X) of X onto Y is given by
H(x,0)=x(1<i<6), H(y, 0= (1<7<5), H(x;; )=y, (1<
<i<5), H(xs;1) =y,and H(y, ) =y, (1 <7< 5).

A
5 Y5

B4

Fig. 10a Fig. 10b



A homotopy theory for graphs 21

A ner contraction of a graph X to a vertex x, € V(X) is just a
net deformation retraction of X onto the trivial graph Y with V (Y) =
= {xo} and E(Y) = 0. Each net deformation retract of X is a net
retract of X. One gets a net retraction f from a net deformation re-
traction H by putting f(x) = H (x, n). Conversely, a net retract of
X need not be a net deformation retract of X. E. g. the subgraph Y
shown in Figure 11b of the graph X shown in Figure 1la is a net
retract of X. A net retraction of X onto Y is given by f(x;) =y, (1 <
<i<5), f(x¢) =y; and f(y;) =9; (1 <i<5). But Y is not a net
deformation retract of X.

Fig. 11a Fig. 11b

THEOREM 7. If Y is a net deformation retract of the connected
graph X, then S(X) and S (Y) are isomorphic.

The proof is left to the reader (compare the analogon in algebraic
topology, e. g. [2], p. 79).

In the next definition note that the composition of two homo-
morphisms is again a homomorphism.

Two graphs X and Y are said to be net homoropy equivalent pro-
vided there exist homomorphisms f: X -~ Y and g:Y - X such
that gf ~ 15 and fg ~ 1y, where 1, and 1y are the identity homo-
morphisms on X, Y respectively. The homomorphism f is called
a net homotopy equivalence from X to Y and g a net homoropy inverse
for f.

PROPOSITION 3. Ner homotopy equivalence is an equivalence
relation for graphs.

The proof is left to the reader. (Compare the analogon in alge-
braic topology, e. g. [2], p. 118.)

THEOREM 8. If Y is a net deformation retract of X, then Y
and X are net homotopy equivalent.

The proof is left to the reader. (Compare the analogon in alge-
braic topology, e. g. [2], p. 119.)

We consider a homomorphism f: X —> Y. If e is a string loop
in X at x, € V(X), then f a is a string loop in Y at y, = f(x,). Let
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f:X - Y be a homomorphism with f(x,) = ¥o. Then the homo-
morphism f, : S (X, x0) > S(Y,y,) defined by

fo ([a]) = [fa] for [a] € S(X, x,)

is called the homomorphism induced by f.

The homomorphism f, is well defined, i. e, if a ~, B, then
fa _,ofﬁ, for if H:V(P,) X N, - V(X) is a net homotopy from
an extension «f of a to an extension #¢ of § with H(0,1) = H (m, 1) =
=x, for all teN,, then K:V(P,) X N,» V(YY) defined by
K, t)=f(H(@, 1) is a net homotopy from an extension (fa)® of fa
to an extension (fB)¢ of f8 with K(0,t) = K(m, t) = y, for all z € N,
The proof that f, is actually a homomorphism is left to the reader.
The proof of the following Lemma is also left to the reader.

IEMMA 1. If f: X -+ Y and g:Y - Z are homomorphisms,
then (gf)* = g*f*‘

LEMMA 8. Let X be a graph and x, € V (X). 9/3\9
Let H: V(X)) X N,»V(X) be a net homoropy with
H (x4, 0) =y, and H(xo, n)=29y, Let 6 :P,>X be 7 < Hixo 0l
a string defined by o () = H (xo, i) for all i e N,. o
If a:P,—> X 1s a string loop at yo and f : P > X
the string at vy, defined by B (1) = H (a (t),n) for all
i €N,, then a ~, o=*f 7. (See Figure 12).

Hixg.n-1)

Hixg, 2}
. Hix )
Proof. We define an extension a®: Pypypm =+ X

of « by S =HIx, 01

Yo if 0<i<mn, o a
e(;)—{a(i——n} if n<i<m+n, é\w/5
Yo if m+n<i<22n+m Fig. 12.

Then we define a map K:V (Ppym X N, >V (X) by

o (max {0,z + i — n}) if 0<i<m,
K(i:l)—{H(ae(i):l) if n<i<n-t+m,
o(max{0,m+n+¢t—i}) if n+m<i<2n+m.

The reader may check that K is a net homotopy from a® to o x § + G,
especially that K (7, 0) = a®(i) and K (i, n) = o+ + 7 (f). Further-
more K(0,5)=K(2n +m,t) =0(0) =y, for all teN, Thus
a >, 0% ﬂ * 0.

THEOREM 9. If f: X > Y s a net homotopy equivalence with
f(x0) = 30, then S(X, xo) and S(Y, y,) are isomorphic.
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Proof. Let g: Y - X be a net homotopy inverse to f and let
H:V(X)x N, >V (X) be a net homotopy from gf to 1. Let
g (¥o) = x5, f(x;) = y; and define a string ¢ : P, > X in X by

o) = H(xe, 1) for all e N,.

Thus 0(0) = H (%0, 0) =(gf)(x0) =g(¥0) = x and o (n) = H (xo, 1) = X,.
If a is any string loop at x,, then it follows by Lemma 8 that
gfa ~,, 6% ax7. From this, it follows by Lemma 7 that

(8. £,) ([a]) = (&f)y ([a]) = [gfa] = [0+ a + 0] =: G ([a)).

It is easy to show (as for & in the proof of Theorem 4) that ¢ is an
isomorphism from § (X, xy) to S (X, x;). Therefore g, f, 1s also an
isomorphism from S (X, x,) to S(X, x,).

By completely analogous arguments one can show that f, g, is
an isomorphism from S(V,y,) to S(Y,y;). From this it follows
that f, and g, are themselves isomorphisms between S (X, x,) and
S (Y, y0)-

7. Net contractible graphs

THEOREM 10. Every net contractible graph is string connected.

Proof. Let X be a net contractible graph. Then X is connected.
Furthermore there is a vertex x, € V' (X) and a net homotopy H :
:V(X) X N, >V (X) such that

H(x,0) = x and H (x,%n) = x,

for all x € V (X).

Let « : P, = X be an arbitrary string loop at x,. We must show
that @ ~, », where v is a constant string loop at xo. We define a
string loop ¢ at x, by

o (@) = H (xq,1) for all i € N,

By Lemma 8 (with y, =y, =x, and g = ») it follows that ¢ ~, o v+
*»0 ~, v. Hence a ~, ». Therefore S(X,x,) is trivial and X is
string connected.

The following theorem can easily be shown in analogy to the
corresponding theorem in algebraic topology (see e. g. [2], p. 119).

THEOREM 11. 4 graph X is net contractible iff it is net homo-
topy equivalent to a trivial graph.

Theorem 11 is an answer to the »gangster problem¢ formulated
in the beginning of this paper. The answer consists of a characteri-
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zation of net contractible graphs; but it is not a good answer since it
is not easy to decide whether a given graph is net homotopy equiva-
lent to a trivial graph or not.

Open Problem. Find a better characterization of net contractible
graphs (e, g., similar to that of string connected graphs in Theorem 6)!
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TEORIJA HOMOTOPIJE ZA GRAFOVE
G. Malle, Celovec, Austrija

Sadrzaj

Rad je podijeljen u dva dijela. U prvom dijelu se uvode neki os-
novni pojmovi kao $to su mreZzna homotopija, nitna homotopija, mreZ-
na kontrakcija, mreZna retrakcija itd. i istraZuje mreZna fundamentalna
grupa grafa. U drugom dijelu se razvija kombinatori¢ki analogon poj-
ma jednostavno povezanog topoloSkog prostora. Takvi grafovi se na-
zivaju nitno povezani grafovi koji su ujedno karakterizirani. Nadalje
su razvijeni kombinatori¢ki analogoni pojmova deformacione retrakcije,
homotopske ekvivalencije itd. i u vezi s njima dokazani neki teoremi.



