
ON THE EXTENSIBILITY OF DIOPHANTINE TRIPLES

{k − 1, k + 1, 4k} FOR GAUSSIAN INTEGERS

ZRINKA FRANUŠIĆ

Abstract. In this paper, we prove that if {k − 1, k + 1, 4k, d}, for k ∈
Z[i]\{0,±1}, is a Diophantine quadruple in the ring of Gaussian integers,
then d = 16k3 − 4k.

1. Introduction

The set of non-zero elements {a1, a2, . . . , am} in a commutative ring R
with 1 is called Diophantine m-tuple if aiaj + 1 is a perfect square in R for
all 1 ≤ i < j ≤ m. Let us mention few most famous historical examples of
such sets: the first rational quadruple { 1

16 ,
33
16 ,

17
4 ,

105
16 } found by Diophantus

of Alexandria in third century AD, the first integer quadruple {1, 3, 8, 120}
found by Fermat in the seventeenth century, the first rational sextuple
{ 11
192 ,

35
192 ,

155
27 ,

512
27 ,

1235
48 , 18087316 } found by Gibbs ([11]). There exist families

of such sets, for instance quadruples {F2k, F2k+2, F2k+4, 4F2k+1F2k+2F2k+3}
(where Fk is k-th Fibonacci number) and {k−1, k+1, 4k, 16k3−4k} (which
, actually, represent a generalization of the Fermat’s quadruple).

In this paper, we deal with the extensibility of a particular family of
triples {k − 1, k + 1, 4k} in the ring of Gaussian integers Z[i]. Here are
some important results in the ring of integers. In 1969, Baker and Daven-
port in [2] showed that the Diophantine triple {1, 3, 8} extends uniquely to
the quadruple {1, 3, 8, 120}. Obviously, this result implies that {1, 3, 8} can-
not be extended to a Diophantine quintuple. In 1998, Dujella and Pethő
in [9] proved that the Diophantine pair {1, 3} can be extended to infinitely
many quadruples, but it cannot be extended to a quintuple. Arkin, Hoggatt
and Strauss showed that each Diophantine quadruple can be extended to
quadruple (see [1]). Moreover, the following conjecture is very plausible: If
{a, b, c} is a Diophantine triple, then there exists unique positive integer d
such that d > max{a, b, c} and {a, b, c, d} is a Diophantine quadruple. This
conjecture has already been proved for a large class of Diophantine triples
(see [7] and [8]). Furthermore, as a consequence it was obtained that there
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is no Diophantine sextuple in Z and that there is only finitely many Dio-
phantine quintuples ([8]). Concerning the family of triples {k− 1, k+1, 4k}
in Z, Dujella showed in [5] that for k ̸= 0,±1 this triple can be extended
uniquely to a quadruple {k − 1, k + 1, 4k, 16k3 − 4k}. Here, the analogous
statement in Z[i] will be showed, i.e. we prove the following theorem

Theorem 1. Let k ∈ Z[i]\{0,±1} and let {k−1, k+1, 4k, d} be a Diophan-
tine quadruple in Z[i]. Then d = 16k3 − 4k.

In Section 2 we show that the original problem of extending the triple
{k−1, k+1, 4k} is equivalent to the problem of solving the following system
of two Diophantine equations:

(1) (k + 1)x2 − (k − 1)y2 = 2, 4kx2 − (k − 1)z2 = 3k + 1.

Solutions of each equation in (1) form linear recurrence sequences. If (1)
is solvable then these sequences have the same initial term (x0 = 1 which
is related to a trivial solution of (1)), for all parameters k ∈ Z[i], |k| > 5.
This is showed in Section 3 using some congruence conditions modulo 2k−1
and 4k(k − 1). In Section 4 we apply an analog of Bennett’s theorem on
simultaneous rational approximations of square roots which are close to one
by rationals in the case of imaginary quadratic fields ([12]) and obtain that
all solutions of (1), for |k| ≥ 350, are x = ±1 and x = ±(4k2 − 2k − 1).
In Section 5, we solve our problem for 5 < |k| < 350 by transforming the
exponential equations into inequalities for linear forms in three logarithms
of algebraic numbers, then applying Baker’s theory on linear forms ([3]) and,
finally, we reduce the upper bound for the solution of (1) by using a version
of Baker-Davenport’s reduction method ([2]) in Section 6.

All other cases (1 ≤ |k| ≤ 5) are solved separately in the last two sections.
In the case k = i, instead of (1) we solve the following system of Pellian
equations

(2) y2 + ix2 = i+ 1, z2 − (2− 2i)x2 = −1 + 2i.

The set of solutions of (2) is described using [10] and then the same procedure
as in Section 5 is applied. For some parameters 1 < |k| ≤ 5, we obtain,
perhaps surprisingly, some extra solutions.

All computations are performed in Mathematica 5.2.

2. Solving a system of Diophantine equations

Let k ∈ Z[i]\{0,±1}. Our aim is to determine all Diophantine quadruples
of the form {k − 1, k + 1, 4k, d} in Z[i]. Thus, we have to solve the system

(3) (k − 1)d+ 1 = x2, (k + 1)d+ 1 = y2, 4kd+ 1 = z2,

in d, x, y, z ∈ Z[i]. By eliminating d in (3), we obtain the following system
of Diophantine equations

(k + 1)x2 − (k − 1)y2 = 2,(4)

4kx2 − (k − 1)z2 = 3k + 1.(5)
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It can be seen that the system of equations (4) and (5) is equivalent to the
system (3). Indeed, if x, y, z ∈ Z[i] are the solutions of (4) and (5), than it
follows that

(k + 1)(x2 − 1) = (k − 1)(y2 − 1), 4k(x2 − 1) = (k − 1)(z2 − 1).

So, d is well defined by

d =
x2 − 1

k − 1
=

y2 − 1

k + 1
=

z2 − 1

4k
.

We have to show that d ∈ Z[i]. According to (4), we obtain that (k+1)x2 ≡
0(mod (k − 1)), i.e. 2x2 ≡ 0(mod (k − 1)). Thus, we have that 2d ∈ Z[i].
Besides that, 2d can be represented as a difference of two squares of Gaussian
integers, i.e. 2d = y2 − x2. Hence, 2d must be of the form 2m + 2ni or of
the form 2d = 2m + 1 + 2ni, where m,n ∈ Z (see ([14, p. 449])). Suppose
that 2d = 2m + 1 + 2ni. We can obtain a contradiction by showing that
at least one of the numbers (k − 1)d + 1, (k + 1)d + 1 and 4kd + 1 is not
a perfect square in Z[i]. Let us note that k is of the form 2l + 1, l ∈ Z[i],
because (k − 1)d is a Gaussian integer. If we assume that 2d ≡ 1(mod 4)
and l ≡ 0(mod 4), i.e. k ≡ 1(mod 8), then

y2 = (k + 1)d+ 1 ≡ 2(mod 4),

and this is contradiction since y2 mod 4 ∈ {0, 1, 3, 2i}. Similarly, we
verify all the others possibilities (2d mod 4 ∈ {3, 1 + 2i, 3 + 2i} and
l mod 4 ∈ {1, 2, 3}). Hence, we conclude that 2d must be of the form
2m+ 2ni, i.e that d is a Gaussian integer.

Our further step is to solve the system of equations (4) and (5) in Z[i].
The following lemma describes the set of all solutions of the equation (4) in
Z[i].

Lemma 1. Let k ∈ Z[i]\{0,±1,±i}. Then there exist i0 ∈ N and x
(i)
0 , y

(i)
0 ∈

Z[i], i = 1, . . . , i0, such that

(i): (x
(i)
0 , y

(i)
0 ) is a solution of (4) for all i = 1, . . . , i0,

(ii): the estimates

|x(i)0 |2 ≤ 2|k − 1|
|k| − 1

,(6)

|y(i)0 |2 ≤ 2

|k − 1|
+

2|k + 1|
|k| − 1

,(7)

hold for all i = 1, . . . , i0,
(iii): for each solution (x, y) of (4) there exist i ∈ {1, . . . , i0} and m ∈

Z such that

(8) x
√
k + 1 + y

√
k − 1 = (x

(i)
0

√
k + 1 + y

(i)
0

√
k − 1)(k +

√
k2 − 1)m.
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Proof. If (x, y) is a solution of (4), than (xm, ym) obtained by

(9) xm
√
k + 1 + ym

√
k − 1 = (x

√
k + 1 + y

√
k − 1)(k +

√
k2 − 1)m

is also a solution of (4) for all m ∈ Z.
Let (x∗, y∗) be an element of the sequence (xm, ym)m∈Z (defined by (9))

such the absolute value |x∗| is minimal. We put

x′
√
k + 1 + y′

√
k − 1 = (x∗

√
k + 1 + y∗

√
k − 1)(k +

√
k2 − 1),

x′′
√
k + 1 + y′′

√
k − 1 = (x∗

√
k + 1 + y∗

√
k − 1)(k +

√
k2 − 1)−1

= (x∗
√
k + 1 + y∗

√
k − 1)(k −

√
k2 − 1).

Due to minimality of |x∗|, we have that

|x∗| ≤ |x′| = |x∗k + y∗(k − 1)|,
|x∗| ≤ |x′′| = |x∗k − y∗(k − 1)|.

At least one of the expressions |x∗k+y∗(k−1)| and |x∗k−y∗(k−1)| must be
greater or equal to |x∗||k|, since |x∗k+y∗(k−1)|+|x∗k−y∗(k−1)| ≥ 2|x∗||k|.
Let us assume that |x∗k + y∗(k − 1)| ≥ |x∗||k|. Hence,

|(x∗k)2 − (y∗(k − 1))2| ≥ |x∗|2|k|,
and

|(x∗)2 + 2(k − 1)| ≥ |x∗|2|k|.
Immediately, we obtain the estimate for |x∗|,

|x∗|2 ≤ 2|k − 1|
|k| − 1

.

This implies the estimate for |y∗|,

|(k − 1)(y∗)2| = |(k + 1)(x∗)2 − 2| ≤ |k + 1|2|k − 1|
|k| − 1

+ 2.

It is obvious that there exists only finitely many x∗ an y∗ such that above
estimates are fulfilled. Finally, according to the definition of x∗, there exist
m0 ∈ Z such that

x∗
√
k + 1 + y∗

√
k − 1 = (x

√
k + 1 + y

√
k − 1)(k +

√
k2 − 1)m0 .

Therefrom, we obtain that

x
√
k + 1 + y

√
k − 1 = (x∗

√
k + 1 + y∗

√
k − 1)(k +

√
k2 − 1)−m0 .

�
The solutions (x

(i)
0 , y

(i)
0 ), i = 1, . . . , i0, defined in Lemma 1, will be called

fundamental solutions of the equation (4).
Analogously, all solutions of (5) are given by the following lemma.

Lemma 2. Let k ∈ Z[i]\{0, 1}. Then there exist j0 ∈ N and x
(j)
1 , z

(j)
1 ∈ Z[i],

j = 1, . . . , j0, such that

(i): (x
(j)
1 , z

(j)
1 ) is a solution of (5) for all j = 1, . . . , j0,
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(ii): the estimates

|x(j)1 |2 ≤ |k − 1||3k + 1|
|2k − 1| − 1

,(10)

|z(j)1 |2 ≤ 4|k||3k + 1|
|2k − 1| − 1

+
|3k + 1|
|k − 1|

,(11)

hold for all j = 1, . . . , j0,
(iii): for each solution (x, z) of (5) there exist j ∈ {1, . . . , j0} and

n ∈ Z such that

(12) x
√
4k + z

√
k − 1 = (x

(j)
1

√
4k + z

(j)
1

√
k − 1)(2k − 1 +

√
4k(k − 1))n.

Now, we create the sequences

v
(i)
0 = x

(i)
0 , v

(i)
1 = kx

(i)
0 + (k − 1)y

(i)
0 , v

(i)
m+2 = 2kv

(i)
m+1 − v(i)m ,(13)

v′
(i)
0 = x

(i)
0 , v′

(i)
1 = kx

(i)
0 − (k − 1)y

(i)
0 , v′

(i)
m+2 = 2kv′

(i)
m+1 − v′

(i)
m ,(14)

for all m ∈ N0 and i = 1, . . . , i0. If x is a solution of (4), then there exist

a nonnegative integer m and i ∈ {1, . . . , i0} such that x = v
(i)
m or x = v′(i)m .

Similarly, if x is a solution of (5), then there exist n ≥ 0 and j ∈ {1, . . . , j0}
such that x = w

(j)
n or x = w′(j)

n , where
(15)

w
(j)
0 = x

(j)
1 , w

(j)
1 = (2k− 1)x

(j)
1 + (k− 1)z

(j)
1 , w

(j)
n+2 = 2(2k− 1)w

(j)
n+1 −w(j)

n ,

(16)

w′(j)
0 = x

(j)
1 , w′(j)

1 = (2k−1)x
(j)
1 −(k−1)z

(j)
1 , w′(j)

n+2 = 2(2k−1)w′(j)
n+1−w′(j)

n .

Lemma 3. Let k ∈ Z[i] and |k| > 3. Then x0 = ±1 and y0 = ±1 are the
only fundamental solutions of (4) and all solutions are represented by the
sequences (vm) and (−vm) defined by

(17) v0 = 1, v1 = 2k − 1, vm+2 = 2kvm+1 − vm, m ∈ N0.

Proof. Suppose that x0 is a fundamental solution of (4). Then the estimate
(6) implies that

|x0|2 ≤ 2(1 +
2

|k| − 1
) < 4.

Hence, |x0|2 = 1 or |x0|2 = 2. Obviously, x0 = ±1, y0 = ±1 are the solutions
of (4), for all k. Also, the following cases may appear:

• x0 = 0, y0 = ±(1 + i), k = 1 + i,
• x0 = 0, y0 = ±(1− i), k = 1− i,
• x0 = ±(1 + i), y0 = 0, k = −1− i,
• x0 = ±(1− i), y0 = 0, k = −1 + i,
• x0 = 0, y0 = ±i, k = 3,
• x0 = ±i, y0 = 0, k = −3

Evidently, these cases are not satisfying the condition |k| > 3. The rest of
the assertion follows immediately from (13) and (14). �
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Before proceeding further, let us recapitulate our results: For |k| > 3, the
problem of solving (4) and (5) is reduced to looking for the intersections of
recursive sequences, i.e. to solving the equations

(18) vm = ±wn, vm = ±w′
n, m, n ≥ 0

where we omitted the upper index (j).

3. Congruence method

In this section, we will determine all fundamental solutions of the equation
(5) under the assumption that one of the equations in (18) is solvable. We
will apply the congruence method which was first introduced by Dujella and
Pethő in [5].

Lemma 4. If (x1, z1) is a fundamental solutions of (5), then

x1 mod (2k − 1) ∈ {0, 1,−1} or z1(k − 1) mod (2k − 1) ∈ {0, 1,−1}.

Proof. We have

(vm mod (2k − 1))m≥0 = (1, 0,−1,−1, 0, 1, 1, 0,−1,−1, . . .),

(wn mod (2k − 1))n≥0 = (x1, z1(k − 1),−x1,−z1(k − 1), x1, z1(k − 1), . . .),

(w′
n mod (2k − 1))n≥0 = (x1,−z1(k − 1),−x1, z1(k − 1), x1,−z1(k − 1), . . .).

These congruence relations are obtained by induction from (17), (15) and
(16), respectively. The rest follows immediately from (18). �

In what follows, we will discuss all the possibilities given in Lemma (4).

• x1 ≡ 0(mod (2k − 1))
In this case, we have that x1 = u(2k − 1), for some u ∈ Z[i]. Hence,

|x1| ≥ |2k − 1| or x1 = 0. If x1 ̸= 0, then (10) implies that

(19) |2k − 1|2 ≤ |x1|2 ≤
|k − 1||3k + 1|
|2k − 1| − 1

.

Therefrom, we obtain that

2(2|k|−1)2(|k|−1) ≤ |2k−1|2(|2k−1|−1) ≤ |k−1||3k+1| ≤ (|k|+1)(3|k|+1).

Obviously, 2(2|k| − 1)2(|k| − 1)− (|k|+1)(3|k|+1) > 0, for |k| > 3 and this
is in contrary with (19). So, for |k| > 3 there is no non-zero fundamental
solution x1 such that x1 ≡ 0(mod (2k − 1)).

The equation (5) has the solution x1 = 0 if and only if k ∈ {0,−1, 1±i, 5}.

• x1 ≡ ±1(mod (2k − 1))
Let us assume that x1 = u(2k−1)±1 for some u ∈ Z[i]. If x1 ̸= ±1, than

|x1| ≥ |2k − 1| − 1. According to (10), we obtain

(20) (|2k − 1| − 1)2 ≤ |k − 1||3k + 1|
|2k − 1| − 1

.
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Further, if |k| > 3, then (|2k − 1| − 1)3 − |k − 1||3k + 1| ≥
8(|k| − 1)3 − (|k| + 1)(3|k| + 1) > 0, but this contradicts (20). Hence,
under the assumptions |k| > 3 and x1 ≡ ±1(mod (2k− 1)), all fundamental
solutions of (5) are x1 = ±1.

• z1(k − 1) ≡ 0(mod (2k − 1))
Here, z1 = 0 is a solution of (5) if and only if k = 1. If we assume that

z1 ̸= 0, then z1 = u(2k− 1) for some u ∈ Z[i]\{0} (because k− 1 and 2k− 1
are relatively prime). So, |z1| ≥ |2k− 1|. As in the previous cases, according
to (11), we obtain that there is no non-zero fundamental solution of (5) such
that z1(k − 1) ≡ 0(mod (2k − 1)) and |k| > 4

• z1(k − 1) ≡ ±1(mod (2k − 1))
We have that z1 ≡ ∓2(mod (2k − 1)). The solution of (5) is z1 = ±2 if

and only if k = 1. If z1 ̸= ±2, then z1 = u(2k−1)±2 for some u ∈ Z[i]\{0}.
According to (11), we get that there is no fundamental solution of (5) such
that z1(k − 1) ≡ ±1(mod (2k − 1)) and |k| > 5.

The above results can be resumed in the following lemma.

Lemma 5. Let k ∈ Z[i] and |k| > 5. If at least one of the equations in (18)
is solvable, then all fundamental solutions of the equation (5) are x1 = ±1,
z1 = ±1 and related sequences (wn) and (w′

n) are given by

w0 = 1, w1 = 3k − 2, wn+2 = 2(2k − 1)wn+1 − wn,(21)

w′
0 = 1, w′

1 = k, w′
n+2 = 2(2k − 1)w′

n+1 − w′
n,(22)

for n ∈ N0.

Lemma 6. The sequences (vm), (wn) and (w′
n) defined by (17), (21) and

(22), respectively, satisfy the following congruences

(vm mod 4k(k − 1))m≥0 = (1, 2k − 1, 2k − 1, 1, 1, 2k − 1, 2k − 1 . . .),

(wn mod 4k(k − 1))n≥0 = (1, 3k − 2,−2k + 3, 5k − 4,−4k + 5, 7k − 6,−6k + 7, . . .),

(w′
n mod 4k(k − 1))n≥0 = (1, k, 2k − 1, 2− k, 4k − 3,−3k + 4, 6k − 5,−5k + 6, . . .).

Proof. This can be verified by induction method. �
Lemma 7. Let k ∈ Z[i], |k| > 5 and let x ∈ Z[i]\{±1} be a solution of
the system of equations (4) and (5). Then there exist m,n ∈ N, n ≡ 0 or
±2(mod 4k), such that

x = vm = wn or x = −vm = −wn or x = vm = w′
n or x = −vm = −w′

n,

where (vm), (wn) and (w′
n) are given by (17), (21) and (22), respectively.

Proof. If vm = ±w2n+1 or vm = ±w′
2n+1, then Lemma 4 implies that z1(k−

1)(mod (2k − 1)) ∈ {0, 1,−1}. But, there is no solution z1 of (5) which
satisfies these conditions.

Let vm = w2n. Then, according to Lemma 6, two cases may arise: −2nk+
2n+ 1 ≡ 1(mod 4k(k − 1)) or −2nk + 2n+ 1 ≡ 2k − 1(mod 4k(k − 1)). Let
us analyze each of them.
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• If−2nk+2n+1 ≡ 1(mod 4k(k−1)), then−2n(k−1) ≡ 0(mod 4k(k−
1)), i.e. 2n ≡ 0(mod 4k).

• If −2nk+2n+1 ≡ 2k−1(mod 4k(k−1)), then −2n(k−1)−2(k−1) ≡
0(mod 4k(k − 1)). Hence, 2n ≡ −2(mod 4k).

If we assume that vm = −w2n, then the following possibilities occur:

• If 2nk− 2n− 1 ≡ 1(mod 4k(k− 1)), i.e. if 2nk− 2n− 2 = 4k(k− 1)z
for some z ∈ Z[i], then (k − 1)(n − 2kz) = 1. But, this equation is
not solvable in Z[i] for |k| > 5.

• If 2nk−2n−1 ≡ 2k−1(mod 4k(k−1)), then 2nk−2n = 2k+4k(k−
1)z for some z ∈ Z[i]. Therefrom, we obtain that (k−1)(n−2kz−1) =
1 and this equation has no solution in Z[i] for |k| > 5.

Similarly, we show that the assumption vm = w′
2n implies that 2n ≡

0(mod 4k) or 2n ≡ 2(mod 4k). Also, the assumption vm = −w′
2n leads

to a contradiction.
�

Now, observe that v0 = w0 = w′
0 = 1 and v2 = w′

2 = −1 − 2k + 4k2. So,
x = ±1 and x = ±(4k2−2k−1) are solutions of the system of equations (4),
(5). The solution x = ±1 is not interesting for us, because it corresponds to
d = 0 which presents a trivial extension of the triple {k−1, k+1, 4k}. On the
other hand, the solution x = ±(4k2 − 2k− 1) corresponds to d = 16k3 − 4k.
Since we intend to prove that this is the unique nontrivial extension of
the triple {k − 1, k + 1, 4k}, we have to show that the system of equations
(4), (5) has no other solutions, but those given above. Our next step is to
determine an upper bound for all solutions of (4), (5) that are different from
the previous ones.

Lemma 8. Let k ∈ Z[i] and |k| > 5. If x ∈ Z[i]\{±1,±(4k2 − 2k − 1)}
satisfies the system of Diophantine equations (4), (5), then

|x| ≥ (4|k| − 3)4|k|−3.

Proof. According to Lemma 7, there exists n > 2, n ≡ 0(mod 4k) or
n ≡ ±2(mod 4k), such that x = ±wn or x = ±w′

n. The sequence (|wn|)
is increasing. Let us show this by induction. Obviously, |w0| ≤ |w1|. Now,
assume that |wn| ≤ |wn+1|. From (21), we have that

|wn+2| ≥ |2(2k − 1)wn+1| − |wn| ≥ (|2(2k − 1)| − 1)|wn+1| ≥ |wn+1|.

Analogously, we obtain that (|w′
n|) is an increasing sequence.

Now, let us show that |wn| ≥ (4|k| − 3)n−1, for all n ∈ N. It can be easily
verified that it is true for n = 1. Let us assume that the above inequality is
true for some n ∈ N. According to (21), we obtain that

|wn+1| ≥ (4|k| − 2)|wn| − |wn−1| = (4|k| − 3)|wn|+ |wn| − |wn−1|.

So, using the fact that (|wn|) is an increasing sequence, we get

|wn+1| ≥ (4|k| − 3)(4|k| − 3)n−1 ≥ (4|k| − 3)n.
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Further, we have that |n| ≥ 4|k| − 2, because n ≡ 0(mod 4k) or n ≡
−2(mod 4k) and n ̸= 0, 2. Hence, |wn| ≥ (4|k| − 3)4|k|−3.

The same can be proved for the sequence (w′
n).

�

4. An application of the theorem on simultaneous
approximations

In this section, we prove that if the parameter |k| is large enough, then
x = ±1 and x = ±(4k2−2k−1) give all solutions of the system of equations
(4), (5). For that reason, we apply the following generalization of Bennett’s
theorem [4] on simultaneous rational approximations of square roots which
are close to one.

Theorem 2. ([12]) Let θi =
√

1 + ai
T , i = 1, 2, with a1 and a2 pairwise

distinct quadratic integers in the imaginary quadratic field K and let T be
an algebraic integer of K. Further, let M = max{|a1|, |a2|}, |T | > M and

l =
27

64

|T |
|T | −M

,

L =
27

16|a1|2|a2|2|a1 − a2|2
(|T | −M)2 > 1,

p =

√
2|T |+ 3M

2|T | − 2M
,

P = 16
|a1|2|a2|2|a1 − a2|2

min{|a1|, |a2|, |a1 − a2|}3
(2|T |+ 3M).

Then

max

(∣∣∣∣θ1 − p1
q

∣∣∣∣ , ∣∣∣∣θ2 − p2
q

∣∣∣∣) > c|q|−λ,

for all algebraic integers p1, p2, q ∈ K, where

λ = 1 +
logP

logL
,

c−1 = 4pP (max{1, 2l})λ−1.

First, let us show the following technical lemma.

Lemma 9. Let k ∈ Z[i], |k| > 5 and let (x, y, z) ∈ Z[i]3 be a solution of the
system of equations (4), (5). Furthermore, let

θ
(1)
1 = ±

√
k + 1

k − 1
, θ

(2)
1 = −θ

(1)
1 ,

θ
(1)
2 = ±

√
k

k − 1
, θ

(2)
2 = −θ

(1)
2 ,

where the signs are chosen such that∣∣∣θ(1)1 − y

x

∣∣∣ ≤ ∣∣∣θ(2)1 − y

x

∣∣∣ , ∣∣∣θ(1)2 − z

2x

∣∣∣ ≤ ∣∣∣θ(2)2 − z

2x

∣∣∣ .
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Then, we obtain ∣∣∣θ(1)1 − y

x

∣∣∣ ≤ 2√
|k2 − 1|

· 1

|x|2
,∣∣∣θ(1)2 − z

2x

∣∣∣ ≤ 1

4

|3k + 1|√
|k2 − k|

· 1

|x|2
.

Proof. We have∣∣∣θ(1)1 − y

x

∣∣∣ =

∣∣∣∣(θ(1)1 )2 − y2

x2

∣∣∣∣ · ∣∣∣θ(1)1 +
y

x

∣∣∣−1
=

2

|k − 1||x|2
∣∣∣θ(2)1 − y

x

∣∣∣−1
.

Because of the assumptions on θ
(1)
1 and θ

(2)
1 , we get∣∣∣θ(2)1 − y

x

∣∣∣ ≥ 1

2

(∣∣∣θ(1)1 − y

x

∣∣∣+ ∣∣∣θ(2)1 − y

x

∣∣∣) ≥ 1

2

∣∣∣θ(1)1 − θ
(2)
1

∣∣∣ = ∣∣∣∣∣
√

k + 1

k − 1

∣∣∣∣∣ .
Hence, ∣∣∣θ(1)1 − y

x

∣∣∣ ≤ 2

|k − 1||x|2

∣∣∣∣∣
√

k − 1

k + 1

∣∣∣∣∣ .
Similarly, according to∣∣∣θ(1)2 − z

2x

∣∣∣ ≤ 1

|k − 1||2x|2
|4kx2 − (k − 1)z2|

∣∣∣θ(2)2 − z

2x

∣∣∣−1

=
|3k + 1|

4|k − 1||x|2
∣∣∣θ(2)2 − z

2x

∣∣∣−1
,

∣∣∣θ(2)2 − z

2x

∣∣∣ ≥

∣∣∣∣∣
√

k

k − 1

∣∣∣∣∣ ,
the other estimate is obtained. �

Now, we will apply Theorem 3 on θ
(1)
1 and θ

(1)
2 . In our case, we have

a1 = 2, a2 = 1, T = k − 1, M = 2 and

l =
27

64

|k − 1|
|k − 1| − 2

, L =
27

64
(|k−1|−2)2, p =

√
|k − 1|+ 3

|k − 1| − 2
, P = 128(|k−1|+3).

The condition L > 1 of Theorem 3 is satisfied, because L > 0.43(|k| − 3)2

and |k| > 5. So, we conclude that

(23) max

{∣∣∣∣θ(1)1 − 2y

2x

∣∣∣∣ , ∣∣∣θ(1)2 − z

2x

∣∣∣} > c|2x|−λ,

where

λ = 1 +
logP

logL
, c−1 = 4pP (max{1, 2l})λ−1.

If we assume that |k| > 14, then max{1, 2l} = 1 and c−1 = 4pP .
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Further, according to Lemma 9, we have

max
{∣∣∣θ(1)1 − y

x

∣∣∣ , ∣∣∣θ(1)2 − z

2x

∣∣∣} ≤ 1

4

|3k + 1|√
|k2 − k|

· 1

|x|2
,

and (23) implies

1

4

√
|k − 1| − 2

|k − 1|+ 3
· 1

128(|k − 1|+ 3)
|2x|−λ <

|3k + 1|√
|k2 − k|

· 1

|2x|2
.

Hence,

(24) |2x|2−λ ≤ 29
|3k + 1|√
|k2 − k|

√
(|k − 1|+ 3)3

|k − 1| − 2
.

Now, we use the estimate for x, |x| ≥ (4|k| − 3)4|k|−3 (from Lemma 8), and
after taking a logarithm of (24), we obtain
(25)

(2−λ)(log 2+(4|k|−3) log(4|k|−3)) ≤ log

(
29

|3k + 1|√
|k2 − k|

√
(|k − 1|+ 3)3

|k − 1| − 2

)
,

where log denotes the natural logarithm. This gives us an inequality for k,
since

λ = 1 +
7 log 2 + log(|k − 1|+ 3)

log 27
64 + 2 log(|k − 1| − 2)

.

Finally, let us assume that |k| ≥ 350. Then 2 − λ > 0.01. The right side of
(25) satisfies the following inequality

log

(
29

|3k + 1|√
|k2 − k|

√
(|k − 1|+ 3)3

|k − 1| − 2

)
≤ log(3|k|) + 7.

On the other hand, we obtain that the left side of (25) satisfies

0.01(log 2 + (4|k| − 3) log(4|k| − 3)) > log(3|k|) + 7,

and that is a contradiction.
We just proved the following statement.

Theorem 3. Let k ∈ Z[i] and |k| ≥ 350. Then all solutions of the system
of equations (4), (5) are given by x = ±1, y = ±1, z = ±1 and x =
±(4k2 − 2k − 1), y = ±(4k2 + 2k − 1), z = ±(8k2 − 1) .

5. Linear forms in three logarithms

In this section, we study the case where k ∈ Z[i] and 5 < |k| < 350. We
will apply a method similar to those used in [2].
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Let x = vm = wm for some m,n ∈ N. By solving the recurrences (17) and
(21) for (vm) and (wn), we obtain

x =

√
k − 1 +

√
k + 1

2
√
k + 1

(k +
√

k2 − 1)m −
√
k − 1−

√
k + 1

2
√
k + 1

(k −
√

k2 − 1)m,

x =

√
k − 1 + 2

√
k

4
√
k

(2k − 1 + 2
√

k2 − k)n −
√
k − 1− 2

√
k

4
√
k

(2k − 1− 2
√

k2 − k)n.

From now on, let us assume that Re(k) > 0. Besides that, we will discus the
case where Re(k) = 0 and Im(k) > 0. The other two cases (Re(k) < 0 and
Re(k) = 0, Im(k) < 0) can be avoided by taking a quadruple {−k+1,−k−
1,−4k,−d} instead of a quadruple {k − 1, k + 1, 4k, d}.

Let

P =

√
k − 1 +

√
k + 1√

k + 1
(k +

√
k2 − 1)m,(26)

Q =

√
k − 1 + 2

√
k

2
√
k

(2k − 1 + 2
√

k2 − k)n.(27)

The equation vm = wn implies that

(28) P +
2

k + 1
P−1 = Q+

3k + 1

4k
Q−1.

Now, we estimate the values |P | and |Q| and obtain that |P | > 5 and |Q| > 9.
Further, according to (28) we have

||P | − |Q|| = |P −Q| ≤
∣∣∣∣3k + 1

4k

∣∣∣∣ |Q|−1 +

∣∣∣∣ 2

k + 1

∣∣∣∣ |P |−1 < 0.2.

Hence, |P | ≤ |Q|+ 0.2 ≤ 1.03|Q|, i.e. |Q|−1 ≤ 1.03|P |−1 and∣∣∣∣P −Q

P

∣∣∣∣ ≤ ∣∣∣∣3k + 1

4k

∣∣∣∣ |Q|−1|P |−1 +

∣∣∣∣ 2

k + 1

∣∣∣∣ |P |−2 < 1.33|P |−2 < 0.06.

Finally, we obtain that∣∣∣∣log |P |
|Q|

∣∣∣∣ =

∣∣∣∣log(1− |P | − |Q|
|Q|

)∣∣∣∣ < 1.33|P |−2 + (1.33|P |−2)2 < 1.5|P |−2 < 16−m.

The above expression can be written as a linear form in three logarithms:∣∣∣m log |k +
√

k2 − 1| − n log |2k − 1 + 2
√

k2 − k| +

(29) log

∣∣∣∣∣ 2
√
k(
√
k − 1 +

√
k + 1

√
k + 1(

√
k − 1 + 2

√
k)

∣∣∣∣∣
∣∣∣∣∣ < 16−m

and it is valid for all k ∈ Z[i] such that Re(k) > 0 and |k| > 5.

We use the following theorem of Baker and Wüstholz ([3], p.20) to obtain
a upper bound for m.
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Theorem 4. Let Λ be a nonzero linear form in logarithms of l algebraic
numbers α1, . . . , αl with rational integer coefficients b1, . . . , bl. Then

log Λ ≥ −18(l + 1)! ll+1(32d)l+2h′(α1) · · ·h′(αl) log(2ld) logB,

where B = max(|b1|, . . . , |bl|) and where d is the degree of the number field
generated by α1, . . . , αl over the rationals.

Here

h′(α) = max(h(α),
1

d
| logα|, 1

d
),

where h(α) denotes the standard logarithmic Weil height of α ([3], p.22).
In our case, we have

log |m logα1−n logα2+logα3| ≥ −18·4! 34(32d)5h′(α1) · · ·h′(αl) log(6d) logB,

where

α1 = |k +
√

k2 − 1|,

α2 = |2k − 1 + 2
√

k2 − k|,

α3 =

∣∣∣∣∣ 2
√
k(
√
k − 1 +

√
k + 1

√
k + 1(

√
k − 1 + 2

√
k)

∣∣∣∣∣ .
First, let us verify that the condition Λ ̸= 0 in Theorem 4 is satisfied.

Equivalently, we will show that |P | ̸= |Q|. This condition is not trivially
satisfied and it will be proved in the following lemma.

Lemma 10. If vm = wn, then |P | ≠ |Q| for all k ∈ Z[i]\{0,±1}.

Proof. Assume that |P | = |Q|. If P = Q, then (28) imply that 3k2−4k+1 =
0. The only integer solution of this equation is k = 1 (which is not of our
interest), so we conclude that P ̸= Q.

Let us denote

α =

√
k + 1

k − 1
, β =

√
k − 1

k
.

According to (26) and (27), we have

P = a+ bα, Q = c+ dβ,

where a, b, c, d ∈ Q[i]. Moreover, the assumption vn = wm implies that a = c,
because vm = (a+bα+a−bα)/2, i.e. vm = a and, similarly, wn = b. Further,
we have

|P |2 = p+ uα+ uα+ q|α|2,(30)

|Q|2 = r + vβ + vβ + s|β|2,(31)

where p, q, r, s ∈ Q and u, v ∈ Q[i].
At the moment, let us point out several facts that are crucial for our

proof:
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A: The complex numbers α, β are algebraic numbers of degree 2, for
k ∈ Z \ {0,±1}.

B: The basis for Q[i](α, α) (considered as a vector space over Q[i])
is Bα = {1, α, α, |α|2} and, analogously, the basis for Q[i](β, β) is
Bβ = {1, β, β, |β|2}.

C: The set B = {1, α, α, |α|2, β, β, |β|2} is linearly independent.

Obviously, |P |2 is an element of the algebraic extension field Q[i](α, α)
(because |α|2 = αα) and is uniquely represented in (30). Analogously, |Q|2 ∈
Q[i](β, β) is uniquely represented in (31). Finally, the assumption |P |2 =
|Q|2 implies that u = q = v = s = 0, because B is a linearly independent
set. Hence, we have that P = a and Q = c. So, P = Q (because a = c), but
we have already shown that this is not possible.

In what follows, we will prove the statements A,B and C.
Proof of A: Let us assume conversely that α ∈ Q[i]. Then (k+1)/(k−1)

is a perfect squares in Q[i]. So, there exist ρ,A,B ∈ Z[i] such that

(32) k + 1 = ρA2, k − 1 = ρB2.

Therefrom follows that 2 = ρ(A2−B2). Using the fact that Z[i] is a ring with
unique factorization, we that only finitely many cases may occur: (ρ,A2 −
B2) ∈ {(±2,±1), (±2i,∓i), (±1,±2), (±i,∓2i), (±(1 + i),±(1 − i)), (±(1 −
i),±(1+i))}. This implies that k ∈ {±1, 0}. In the same way, the assumption
that β ∈ Q[i], i.e. that (k − 1)/k is a perfect square in Q[i] implies that
k ∈ {0, 1}.

Proof of B: If γ ∈ Q[i](α, α), then γ =
∑

qijα
iαj , where qij ∈ QQ[i].

But, α2, α2 ∈ Q[i] and αα = |α|2 imply that γ = q0 + q1α+ q2α+ q3|α|2 for
some q0, q1, q2, q3 ∈ Q[i]. Hence, the set Bα spans Q[i](α, α). Next we have
to show that Bα is linearly independent. Suppose that the set {1, α, α} is
linearly dependent. Hence, there exist A,B ∈ Q[i] such that

α = A+Bα.

By squaring the previous equation, we obtain

α2 −A2 −B2α2 = 2ABα

and, therefrom, we get that α ∈ Q[i], a contradiction. So, {1, α, α} is linearly
independent.

Further, if we assume that the set {1, α, α, |α|2} is linearly dependent,
then

(33) |α|2 = A+Bα+ Cα

for some A,B,C ∈ Q[i]. Multiplication by α gives us

(34) C|α|2 = −Bα2 −Aα+ α2α.

We can see that C ̸= 0. Suppose the contrary. Then |α|2 = A+Bα and by
squaring we get that 2ABα ∈ Q[i]. According to (33) and (34), it follows
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that

A+Bα+ Cα = −B

C
α2 − A

C
α+

1

C
α2α.

and because {1, α, α} is linearly independent, we have

A = −B

C
α2, B =

A

C
, C =

1

C
α2.

Therefore, C2 = α2, but it is a contradiction, because α2 is not a perfect
square in Q[i].

Proof of C: It suffices to prove that β, β and |β|2 are not elements of
L[{1, α, α, |α|2}], i.e. of Q[i](α, α). Suppose that β can be represented as

β = A+Bα+ Cα+D|α|2,

for some A,B,C,D ∈ Q[i]. By squaring, we get

β2 = A2 +B2α2 + C2α2 +D2|α|4

+2ABα+ 2ACα+ 2AD|α|2 + 2BC|α|+ 2BDα2α+ 2CDα2α,

But, β2 ∈ Q[i] implies that the coefficients of the algebraic numbers α, α i
|α|2 are equal zero, i.e.

AB + CDα2 = 0,(35)

AC +BDα2 = 0,(36)

AD +BC = 0.(37)

Now, (35) and (37) imply that A2 = C2α2, then (36) and (37) imply that
A2 = B2α2 and (35) and (36) imply that A2 = D2|α|4. Hence, β2 = 4A2, a
contradiction. Similarly, we can obtain that β and |β|2 are not in Q[i](α, α).

�

Lemma 11. Let k ∈ Z[i] such that |k| > 5 and Re(k) > 0. If vm = wn, then
n ≤ m.

Proof. We showed that |Q| ≤ |P |+ 0.2 and, therefrom, |Q| < 1.04|P |, i.e.∣∣∣∣1 + √
k − 1

2
√
k

∣∣∣∣αn
2 < 1.04

∣∣∣∣1 + √
k − 1√
k + 1

∣∣∣∣αm
1 .

After logarithming the above inequality, we get

(38) n < log

1.04
∣∣∣1 + √

k−1√
k+1

∣∣∣∣∣∣1 + √
k−1

2
√
k

∣∣∣
 1

logα2
+m

logα1

logα2
.

We use the following useful inequalities:∣∣∣∣1 + √
k − 1

2
√
k

∣∣∣∣ > 1, 1.04

∣∣∣∣1 + √
k − 1√
k + 1

∣∣∣∣ ≤ 2.4, logα2 > 2.
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We see that

logα1

logα2
< 1.

Indeed,

α1

|k|
=

∣∣∣∣∣1 +
√

1− 1

k2

∣∣∣∣∣ < 2.02,
α2

|k|
≥

(
2

∣∣∣∣∣1 +
√

1− 1

k

∣∣∣∣∣− 1

|k|

)
> 3.5.

Applying the above inequalities to (38), we obtain

n <
1

2
+m.

�

Our next aim is to determine standard logarithmic Weil height of αi,
i = 1, 2, 3. For that purpose we need minimal polynomials of these algebraic
numbers. The minimal polynomials of the algebraic numbers β1 = k2 −
√
k2 − 1, β2 = 2k − 1 + 2

√
k2 − k and β3 =

2
√
k(
√
k − 1 +

√
k + 1)

√
k + 1(

√
k − 1 + 2

√
k)

were

given in [5],

q1(x) = x2 − 2kx+ 1,

q2(x) = x2 − 2(2k − 1)x+ 1,

q3(x) = (9k4 + 24k3 + 22k2 + 8k + 1)x4 − 16k(3k3 + 7k2 + 5k + 1)x3

+48k2(k2 + 4k + 3)x2 − 128k2(k + 1)x+ 64k2.

According to the proof of Theorem 9.11 in [13], we can determine the mini-
mal polynomials of the algebraic numbers βiβi = |αi|, i = 1, 2, 3 (and clearly
of αi, too).

The minimal polynomials of α1, α2 are, respectively,

(39) p1(x) = x8 − 4(µ2 + ν2)x6 + (8µ2 − 8ν2 − 2)x4 − 4(µ2 + ν2)x2 + 1,

(40)
p2(x) = x8−4(4(µ2+ν2−µ)+1)x6+(32(µ2−ν2−µ−2)+6)x4−4(4(µ2+ν2−µ)+1)2x2+1,

where k = µ+ iν. The minimal polynomial of α3 is of degree 32,

(41) p3(x) =

16∑
i=0

aix
2i

and it was derived by the help of the program package Mathematica. We
list only few of its coefficients ai (because its coefficients are huge rational
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functions in µ, ν).

a0 = − 248(µ2 + ν2)8

((1 + µ)2 + ν2)8((1 + 3µ)2 + 3ν2)8
,

a1 =
250(µ2 + ν2)8

((1 + µ)2 + ν2)7((1 + 3µ)2 + 3ν2)8
,

a2 = − 3 · 245(µ2 + ν2)8

((1 + µ)2 + ν2)7((1 + 3µ)2 + 3ν2)8
(21 + 46µ+ 13(µ2 + ν2)),

a3 =
244(µ2 + ν2)7

((1 + µ)2 + ν2)6((1 + 3µ)2 + 3ν2)8
(3− 26µ+ 247µ2 + 300µ3 + 36µ4 + 191ν2 + 300µν2

+72µ2ν2 + 36ν4),

a4 = − 238(µ2 + ν2)6

((1 + µ)2 + ν2)6((1 + 3µ)2 + 3ν2)8
(−1 + 52µ+ 14µ2 − 3196µ3 + 20299µ4 + 48864µ5

+40476µ6 + 9648µ7 + 324µ8 + 170ν2 − 2780µν2 + 32854µ2ν2 + 86112µ3ν2 + 91452µ4ν2

+28944µ5ν2 + 1296µ6ν2 + 13867ν4 + 37248µν4 + 61476µ2ν4 + 28944µ3ν4 + 1944µ4ν4

+10500ν6 + 9648µν6 + 1296µ2ν6 + 324ν8),

...

...

a14 = − 1536(µ2 + ν2)2

((1 + µ)2 + ν2)((1 + 3µ)2 + 3ν2)2
(21 + 46µ+ 13µ2 + 13ν2),

a15 =
256(µ2 + ν2)

((1 + µ)2 + ν2)
,

a16 = −1.

Further, for the purpose of determining the heights h(αi), we have to find
all roots of the minimal polynomials pi or, if it is not possible, we have to
bound them. With some algebraic manipulation, we can get all roots of p1
and p2. The roots of p1 are

x1, x2 = ±|k +
√

k2 − 1| = ±α1,

x3, x4 = ±|k −
√

k2 − 1|,

x5, x6 = ±
√

|k|2 − |k2 − 1| −
√

(|k|2 − |k2 − 1|)2 − 1,

x7, x8 = ±
√

|k|2 − |k2 − 1|+
√

(|k|2 − |k2 − 1|)2 − 1.

It can be showed that |x3| = |x4| ≤ 1 and that |xi| = 1 for i = 5, 6, 7, 8.
So,
(42)

h(α1) =
1

8
log(|x1| · |x2|) =

1

4
log |k +

√
k2 − 1| ≤ 1

4
log(2|k|+ 1) ≤ 1.64 .
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The roots of p2 are

x1, x2 = ±α2,

x3, x4 = ±|2k − 1− 2
√

k2 − k|,

x5, x6 = ±
√

|2k − 1|2 − 4|k2 − k|+
√

(|2k − 1|2 − 4|k2 − k|)2 − 1,

x7, x8 = ±
√

|2k − 1|2 − 4|k2 − k| −
√

(|2k − 1|2 − 4|k2 − k|)2 − 1.

As in the previous case, we obtain that

(43) h(α2) =
1

8
log(|2k − 1 + 2

√
k2 − k|2) ≤ 1

4
log(4|k|+ 3) ≤ 1.82.

The estimate for h(α3) will be less accurate than those h(α1) and h(α2),
because most roots of p3 cannot be found analytically. By calculation, we
obtain following 8 roots:

x1, x2 = ±α3,

x3, x4 = ±

∣∣∣∣∣2
√
k(
√
k − 1 +

√
k + 1)

√
k + 1(

√
k − 1− 2

√
k)

∣∣∣∣∣ ,
x5, x6 = ±

∣∣∣∣∣∣2k(
√
k + 1−

√
k − 1) +

√
2k(k − 1)(

√
k2 − 1− k)

√
k + 1(3k + 1)

∣∣∣∣∣∣ ,
x7, x8 = ±

∣∣∣∣∣∣2k(
√
k + 1−

√
k − 1)−

√
2k(k − 1)(

√
k2 − 1− k)

√
k + 1(3k + 1)

∣∣∣∣∣∣ .
We estimate the remaining roots on the following way:

|xi| ≤ 32 ·max{|aj |, 0 ≤ j ≤ 16}, i = 9, 10, . . . , 32,

where ai represents a coefficient of normed polynomial for α3. We give as
an example the estimate for |a4|,

|a4| =
238(µ2 + ν2)6

((1 + µ)2 + ν2)6(1 + 3µ)2 + 3ν2)8
|p(µ, ν)|

≤ 238(µ2 + ν2)6

(µ2 + ν2)6(9(µ2 + ν2))8

∑
|bij |(µ2 + ν2)4 ≤ 5.5 · 106,

where p(µ, ν) =
∑

0≤i+j≤8

bijµ
iνj = −1 + 52µ+ 14µ2 + · · ·+ 1296µ2ν6 + 324ν8.

All coefficients are bounded by:

max{|aj |, 0 ≤ j ≤ 16} ≤ |a8| < 1.65 · 108.

It can be seen that |xi| < 1 for i = 5, 6, 7, 8. So, we have that

(44) h(α3) ≤
1

32
log(a′nα

2
3|x3||x4|(32 · 1.65 · 108)24),
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where a′n = ((1 + µ)2 + ν2)8((1 + 3µ)2 + (3ν)2)8 represents the leading
coefficient of the minimal polynomial of α3 with integer coefficients. By
using the estimates

α2
3x3x4 = 16 ·

∣∣∣∣ k

k + 1

∣∣∣∣2 ·
∣∣∣∣∣2k + 2

√
k2 − 1

3k + 1

∣∣∣∣∣
2

≤ 16

(
1 +

1

|k| − 1

)2

4

(
2|k|+ 1

3|k| − 1

)2

< 62,

a′n ≤ (1 + 2|k|+ |k|2)8(1 + 6|k|+ 9|k|2)8 < 6.5 · 1052,
we get

h(α3) <
1

32
log(6.5 · 1052 · 62 · (32 · 1.65 · 108)24) < 20.72.

Finally, we have everything for the application of Baker-Wüstholz theo-
rem:

−m log 16 ≥ log |Λ| ≥ −18 · 4! · 34(32 · 2048)5 · 1.64 · 1.82 · 18.69 · log(6 · 2048) logm
> −2.5 · 1031 logm.

(We used that the degree d ≤ [Q(α1, α2, α3) : Q(α1, α2)][Q(α1, α2) :
Q(α1)][Q(α1) : Q] ≤ 32 · 8 · 8.)

Therefore, we obtain

(45)
m

logm
≤ 2.5 · 1031.

The inequality (45) is not valid for m ≥ 2 · 1033, so, we have that

(46) |mθ − n+ β| < α · 16−m, m < 2 · 1033,
for θ = logα1/ logα2, β = logα3/ logα2, α = 1/ logα2.

In the case of k = iν, 5 < ν < 350, the same conclusion, i.e. (46), can be
obtained. The only difference is that we take

Q =

√
k − 1− 2

√
k

2
√
k

(2k − 1− 2
√

k2 − k)n

in (27).

6. The reduction method

Our next step is reducing the upper bound of the solution of (46). We will
use the reduction method similar to one described in [6, Lemma 4a)] (and
originally introduced in [2]).

Lemma 12. ([6]) Let M be a positive integer and let p/q be a convergent
of the continued fraction expansion of θ such that q > 6M . Furthermore,
let ε = ∥βq∥ − M · ∥θq∥, where ∥ · ∥ denotes the distance from the nearest
integer. If ε > 0, then the inequality

(47) |mθ − n+ β| < αa−m,
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has no integer solutions m and n such that

log(αq/ε)/ log a ≤ m ≤ M.

We apply Lemma 12 to (46) for each k ∈ Z[i], 5 < |k| < 350 such that
Re(k) > 0 or Re(k) = 0, Im(k) > 0. The reduction give us a new bound
M0 = 33, in all cases. The another application of the reduction in all cases
give us that m ≤ 6. By checking all the possibilities 0 < n ≤ m ≤ 6,
we conclude that the equation vm = wn has only trivial solution v0 = w0 = 1.

Finally, we have to carry out the procedure described in sections 4 and
5 for the case x = vm = w′

n. By solving the recurrence (22) for (w′
m), we

obtain

x =
2
√
k −

√
k − 1

4
√
k

(2k−1+2
√
k2 − k)n+

2
√
k +

√
k − 1

4
√
k

(2k−1−2
√

k2 − k)n.

If Re(k) > 0, then instead of (27) we take

Q =
2
√
k −

√
k − 1

2
√
k

(2k − 1 + 2
√

k2 − k)n,

and related algebraic numbers are α1, α2, α
′
3. If Re(k) = 0 and Im(k) > 0,

then we put

Q =
2
√
k +

√
k − 1

2
√
k

(2k − 1− 2
√

k2 − k)n,

and we deal with α1, α
′
2, α3. All estimates remain valid and we obtain that

v2 = w′
2 = 4k2 − 2k − 1 and v0 = w′

0 = 1 are the only solutions of the
equation vm = w′

n.

7. The case 1 < |k| ≤ 5

This case is interesting, because there are some extra fundamental solu-
tions of (4) and (5) for certain parameters k. Precisely, these fundamental
solutions of (4) also appear (besides x = ±1):

• x0 = 0, y0 = ±(1 + i) for k = 1 + i,
• x0 = 0, y0 = ±(1− i) for k = 1− i,
• x0 = 0, y0 = ±i for k = 3,

and for (5), we obtain

• x0 = 0, y0 = ±(1 + 2i) for k = 1 + i,
• x0 = 0, y0 = ±(1− 2i) for k = 1− i,
• x0 = ±(1 + i), y0 = ±(2 + 3i) for k = 3,
• x0 = 0, y0 = ±2i for k = 5,
• x0 = ±i, y0 = ±3i for k = 5,
• x0 = ±2, y0 = ±4 for k = 5.
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Each of the above cases will be treated separately.
• k = 1+ i
In Section 2,we showed that all solutions of (4) are given by recurrence se-

quences (13) and (14). Precisely, according to (13) the fundamental solution
x = 0, y = 1 + i generates this recurrence sequence

u0 = 0, u1 = −1 + i, um+2 = 2(1 + i)u−m+ 1− um, m ∈ N0,

and according to (14) we obtain the sequence (−um). The fundamental so-
lution x = 1, y = 1 generates the sequence

v0 = 1, v1 = 1 + 2i, vm+2 = 2(1 + i)vm+1 − vm, m ∈ N0.

So, all solutions of (4) are x = ±um and x = ±vm. Further, (15) and (16)
imply that all solutions of (5) are

q0 = 0, q1 = −2 + i, qn+2 = 2(1 + 2i)qn+1 − qn, n ∈ N0,

which corresponds to the fundamental solution x = 0, y = 1 + 2i, and

w0 = 1, w1 = 1 + 3i, wn+2 = 2(1 + 2i)wn+1 − wn,

w′
0 = 1, w′

1 = 1 + i, w′
n+2 = 2(1 + 2i)w′

n+1 − w′
n, n ∈ N0

which correspond to the fundamental solution x = 1, y = 1 Hence, all
solutions of (5) are given by sequences (±qn), (±wn) and (±w′

n) and then
one of the following cases occur:

a): vm = wn or vm = w′
n,

b): vm = ±qn,
c): um = ±wn or um = ±w′

n,
d): um = ±qn.

Case a) can be solved similarly as in previous sections. In what follows, we
solve cases b), c), d).

b) Suppose that vm = ±qn for m,n ∈ N0. We apply the congruence
method from Section 3 on sequences (vm mod δ) and (qn mod δ), where
δ ∈ {−1 + 2i,−4− 4i}, and get that v3m+1 = ±qn, m,n ∈ N0, because

(vm mod (−1 + 2i)) = (−1 + i, 0, 2i, 2i, 0,−1 + i,−1 + i, 0, . . .),

(qn mod (−1 + 2i)) = (0, 0, 0, . . .).

The following sequences

(v3m+1 mod (−4− 4i)) = (−3− 2i,−7,−7,−3− 2i,−3− 2i,−7, . . .),

(qn mod (−4− 4i)) = (0,−2 + i,−4− 2i,−2− i,−4,−6 + i,−4 + 2i,−6− i, 0, . . .),

imply that vm ̸= ±qn, for all m,n ∈ N0.

c) Similarly, as in the case b), by applying the congruence method we
obtain that there is no solution in this case.
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d) By applying the congruence method as in the case b), we obtain that

u6m = ±q4n, m, n ∈ N0.

By repeating the procedures described in Sections 6 and 7, we conclude that
the above equation has only the trivial solution u0 = q0 = 0. The meaning
of this unexpected solution is that the Diophantine triple {i, 1 + i, 2 + i} is
extended by the element d = i, but such extension is not considered as a
proper extension since i is already an element of the starting triple.

• k = 1− i
By conjugating, this case becomes the same as the previous one.

• k = 3
The fundamental solutions of (4) are (x, y) = (0, i) and x, y = (1, 1). They

generate two recurrence sequences

u0 = 0, u1 = 2i, um+2 = 6um+1 − um,

v0 = 1, v1 = 5, vm+2 = 6vm+1 − vm.

The fundamental solutions of (5), (x, z) = (1, 1) and (x, z) = (1 + i, 2 + 3i),
generate following sequences

w0 = 1, w1 = 4, un+2 = 10wn+1 − wn,

w′
0 = 1, w1 = 3, un+2 = 10wn+1 − wn,

q0 = 1 + i, q1 = 9 + 11i, qn+2 = 6qn+1 − qn,

q′0 = 1 + i, q′1 = 1− i, q′n+2 = 6qn+1 − qn.

Note that q′n = qn−1. So, following cases should be analyzed:

a): vm = wn or vm = w′
n,

b): vm = ±qn or vm = ±qn,
c): um = ±wn or um = ±w′

n,
d): um = ±qn or um = ±qn.

By congruence method we obtain that the cases b), c) and d) have no
solution.

• k = 5
As in the previous case, the solutions can be obtained from vm = wn or

vm = w′
n.

Finally, we solve vm = wn and vm = w′
n for all k, 1 < |k| ≤ 5. We apply

methods given in Sections 6 and 7, and obtain that the only solution of
vm = wn is m = n = 0 and solutions of vm = w′

n are m = n = 0 and
m = n = 2.
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8. The case k = ±i

The main difference of this case (k = i) is that the original problem (3)
is equivalent with the following system of Pellian equations

y2 + ix2 = i+ 1,(48)

z2 − (2− 2i)x2 = −1 + 2i.(49)

The advantage of the above equations is that the solutions can be given
immediately by using [10]. So, all solutions of (48) are given by

(50) y(j)m + x(j)m

√
−i = ρj(i+ (1− i)

√
−i)m, m ∈ N0, j = 1, 2, 3, 4,

where ρ1 = 1+
√
−i, ρ2 = −1+

√
−i, ρ3 = −ρ1, ρ4 = −ρ2, and all solutions

of (49) are
(51)

z(k)n + x̃(k)n

√
2− 2i = σj(−1 + 2i+ (1− i)

√
2− 2i)n, n ∈ N0, k = 1, 2, 3, 4,

and σ1 = 1 +
√
2− 2i, σ2 = 1−

√
2− 2i, σ3 = −σ1, σ4 = −σ2.

Hence, our problem of solving the system of equation is reduced to

x(j)m = x̃(k)n , m, n ∈ N0,

where j, k ∈ {1, 2, 3, 4}. For m = n = 0, a trivial solution x = 1 is obtained
and it corresponds to unregular extension of the Diophantine triple {i −
1, i, 4i} by d = 0.

Further, it can be shown that x
(1)
m+1 = x

(2)
m = −x

(3)
m+1 = −x

(4)
m = xm and

that x̃
(3)
n = −x̃

(1)
n and x̃

(4)
n = −x̃

(2)
n . So, it remains us to observe these four

cases

(52) xm = ±x̃(j)n , m, n ∈ N (j ∈ {1, 2}).

Solutions xm and x̃
(k)
n (k = 1, 2) satisfy following recursions

x
(j)
m+1 = 2ix(j)m − x

(j)
m−1, m ≥ 1,

x̃
(k)
n+1 = 2(−1 + 2i)x̃(k)n − x̃

(k)
n−1, n ≥ 1.

By solving these recursions we obtain these formulas

xm = (
1

2
+

1 + i

2
√
2
)(i(1 +

√
2))m + (

1

2
− 1 + i

2
√
2
)(i(1−

√
2))m,

x̃(1)
n =

2−
√
1 + i

4
(−1 + 2i+ 2i

√
1 + i)n +

2 +
√
1 + i

4
(−1 + 2i− 2i

√
1 + i)n,

x̃(2)
n = −2 +

√
1 + i

4
(−1 + 2i+ 2i

√
1 + i)n − 2−

√
1 + i

4
(−1 + 2i− 2i

√
1 + i)n.

Each of equations in (52) should be treated separately. By applying the

methods given in Section 6. and 7., we obtain the solution x = x2 = x̃
(1)
2 =

−5− 2i (which corresponds to d = −20i, i.e. to 16k3 − 4k for k = i).
The case k = −i can be solved in the same manner.
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[3] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine
Angew. Math., 442(1993), 19–62.

[4] M. A. Bennet, On the number of solutions of simultaneous Pell equations J. Reine
Angew. Math., 498(1998), 173–199.

[5] A. Dujella, The problem of extension of parametric family of Diophantine triples,
Publ. Math. Debrecen, 51(1997), 311–322.

[6] A. Dujella, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc. 127
(1999), 1999-2005.

[7] A. Dujella, An absolute bound for the size of Diophantine m-tuples, J. Number
Theory, 89(2001), 126–150.

[8] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew.
Math. 566 (2004), 183–214.
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