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Abstract. We show that the Diophantine pair {1, 3} can not be extended to a Dio-
phantine quintuple in the ring Z[

√
−2]. This result completes the work of the first

author and establishes nonextensibility of the Diophantine pair {1, 3} in Z[
√
−d] for all

d ∈ N.

1. Introduction and results

Let R be a commutative ring with unity 1. The set {a1, a2, . . . , am} in R such that
ai ̸= 0, i = 1, . . . ,m, ai ̸= aj , aiaj + 1 is a square in R for all 1 ≤ i < j ≤ m is called a
Diophantine m-tuple in the ring R. The problem of constructing such sets was first stud-
ied by Diophantus of Alexandria who found a set of four rationals { 1

16 ,
33
16 ,

17
4 ,

105
16 } with

given property. Fermat found the first Diophantine quadruple in Z - the set {1, 3, 8, 120}.
A Diophantine pair {a, b} in the ring R, satisfying ab + 1 = r2, can be extended to a
Diophantine quadruple in R by adding elements a+ b+2r and 4r(r+ a)(r+ b) provided
that all elements are non-zero and different. Hence, in most of the rings Diophantine
quadruples exist, but can we obtain Diophantine m-tuples of size greater that 4? The
answer depends on the ring.

In the ring Z the folklore conjecture is that there are no Diophantine quintuples. In
1969, Baker and Davenport ([1]) showed that the set {1, 3, 8} can not be extended to
a Diophantine quintuple, which was the first result supporting the conjecture. This
theorem was generalized first by Dujella ([4]) who showed that the set {k − 1, k+ 1, 4k}
for k ≥ 2 can not be extended to a Diophantine quintuple in Z, and later by Dujella and
Pethő in [8] who showed that not even the Diophantine pair {1, 3} can be extended to
a Diophantine quintuple in Z. Greatest step towards proving the conjecture did Dujella
([6]) in 2004 who showed that there are no Diophantine sextuples and that there are
only finitely many Diophantine quintuples. Also, in [7] it was proved that there are
no Diophantine quintuples in the ring of polynomials with integers coefficients under
assumption that not all elements are constant polynomials.

The size of Diophantine m-tuples can be greater than 4 in some rings. For instance,
the set { 11

192 ,
35
192 ,

155
27 ,

512
27 ,

1235
48 , 18087316 } is a Diophantine sextuple in Q, found by Gibbs

([11]). Furthermore, we can construct Diophantine quintuples in the ring Z[
√
d] for some

values of d; for instance {1, 3, 8, 120, 1678} is a Diophantine quintuple in Z[
√
201361]. It

is natural to start investigating the upper bound for the size of Diophantine m-tuples in
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Z[
√
d] by focusing on a problem of extensibility of Diophantine triples {k − 1, k + 1, 4k}

with k /∈ {0,±1} and Diophantine pair {1, 3} to a Diophantine quintuple in Z[
√
d], since

the problem in the ring Z was approached similarly, ([8]) and ([4]).
In [9] Franušić proved that the Diophantine pair {1, 3} can not be extended to a

Diophantine quintuple in Z[
√
−d] if d is a positive integer and d ̸= 2. The case d = 2

was also considered and it was shown that if {1, 3, c} is a Diophantine triple in Z[
√
−2]

then c ∈ {ck, dl}, where the sequences (ck) and (dl) are given by:

(1) ck =
1

6

(
(2 +

√
3)(7 + 4

√
3)k + (2−

√
3)(7− 4

√
3)k − 4

)
, k ≥ 1,

(2) dl = −1

6

(
(7 + 4

√
3)l + (7− 4

√
3)l + 4

)
, l ≥ 0.

Sequences (ck) and (dl) can be given recurrently in the following way:

c0 = 8, c1 = 120, ck+2 = 14ck+1 − ck + 6, k ≥ 1.

d0 = −1, d1 = −3, dl+2 = 14dl+1 − dl + 8, l ≥ 0.

It is known that {1, 3, ck, ck+1}, k ≥ 1, is a Diophantine quadruple in Z ([8]) and hence
also in Z[

√
−2]. The set {1, 3, dl, dl+1} is a Diophantine quadruple in Z[

√
−2] since

(3) dldl+1 + 1 = (cl + 2)2

for every l ≥ 0. The equation (3) easily follows from explicit formulas (1) and (2). The
set {1, 3, ck, dl} is not a Diophantine quadruple for k ≥ 1 and l ≥ 0 since 1 + ckdl is a
negative odd number and hence can not be a square in Z[

√
−2]. Therefore if there is an

extension of the Diophantine pair {1, 3} to a Diophantine quadruple in Z[
√
−2], then it

is of the form {1, 3, ck, cl}, l > k ≥ 1 or {1, 3, dk, dl}, l > k ≥ 0. In the former case, the
set can not be extended to a Diophantine quintuple in Z by [8], and consequently it can
not be extended to a Diophantine quintuple in Z[

√
−2]. It remains to examine the latter

case. We formulate the following theorem.

Theorem 1.1. Let k be a non-negative integer and d an integer. If {1, 3, dk, d} is a
Diophantine quadruple in Z[

√
−2], where dk is given by (2), then d = dk−1 or d = dk+1.

From Theorem 1.1 we immediately obtain the following corollary.

Corollary 1.2. The Diophantine pair {1, 3} can not be extended to a Diophantine quin-
tuple in Z[

√
−2].

The organization of the paper is as follows. In Section 2, assuming k to be minimal
integer for which Theorem 1.1 does not hold, we translate the assumption in Theorem 1.1

into system of Pellian equations from which recurrent sequnces ν
(i)
m and ω

(j)
n are deduced,

intersections of which induce solutions to the system. In Section 3 we use a congruence
method introduced by Dujella and Pethő ([8]) to determine the fundamental solutions of
Pellian equations. In Section 4 we give a lower bound form and n for which the sequences

ν
(i)
m and ω

(j)
n intersect. In Section 5 we use a theorem of Bennett ([3]) to establish an

upper bound for k. Remainings cases are checked separately in Section 6 using linear
forms in logarithms, Baker-Wüstholz theorem ([2]) and the Baker-Davenport method of
reduction ([1]).
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2. The system of Pellian equations

Let {1, 3, dk, d} be a Diophantine quadruple in Z[
√
−2] where k is the minimal integer,

for which the statement of Theorem 1.1 does not hold and assume k ≥ 6. Clearly d = dl
for some l ≥ 0. There exist x, y, z ∈ Z such that

(4) d+ 1 = −2x2, 3d+ 1 = −2y2, dkd+ 1 = z2,

since d+ 1 and 3d+ 1 are negative integers and dkd+ 1 is a positive integer.
The system (4) is equivalent to the following system of Pellian equations

z2 + 2dkx
2 = 1− dk,(5)

3z2 + 2dky
2 = 3− dk,(6)

where

(7) dk + 1 = −2s2k, 3dk + 1 = −2t2k,

for some sk, tk ∈ Z. We may assume sk, tk ∈ N. Conditions (7) follow from the fact that
{1, 3, dk} is a Diophantine triple in Z[

√
−2] and the fact that dk + 1 and 3dk + 1 are

negative integers.
The following propositions describe the set of positive integer solutions of the equations

(5) and (6).

Proposition 2.1. There exists i0 ∈ N and z
(i)
0 , x

(i)
0 ∈ Z, i = 1, 2, . . . , i0 such that

(z
(i)
0 , x

(i)
0 ), i = 1, 2, . . . , i0 are solutions of the equation (5) satisfying

1 ≤ z
(i)
0 ≤

√
−dk(1− dk), 1 ≤ |x(i)0 | ≤

√
1− d2k
2dk

.

For every solution (z, x) ∈ N × N of the equation (5), there exists i ∈ {1, 2, . . . , i0} and
integer m ≥ 0 such that

z + x
√

−2dk =
(
z
(i)
0 + x

(i)
0

√
−2dk

)(
− 2dk − 1 + 2sk

√
−2dk

)m
.

Proof. The fundamental solution of the related Pell’s equation z2 +2dkx
2 = 1 is −2dk −

1 + 2sk
√
−2dk since (−2dk − 1)2 + 2dk · (2sk)2 = 4d2k + 4dk + 1 − 4dk(1 + dk) = 1

and −2dk − 1 > 2s2k − 1 = −dk − 2 is satisfied ([12, Theorem 105]). Further following
arguments by Nagell ([12, Theorem108]) we obtain that there are finitely many integer

solutions (z
(i)
0 , x

(i)
0 ), i = 1, 2, . . . , i0 of the equation (5) for which the following inequalities

hold

1 ≤ |z(i)0 | ≤
√

−dk(1− dk), 0 ≤ |x(i)0 | ≤

√
1− d2k
2dk

,

and if z + x
√
−2dk is a solution in integers z, x of the equation (5), then

z + x
√

−2dk =
(
z
(i)
0 + x

(i)
0

√
−2dk

)(
− 2dk − 1 + 2sk

√
−2dk

)m
for some m ∈ Z and i ∈ {1, 2, . . . , i0}. Hence

z
(i)
0 + x

(i)
0

√
−2dk =

(
z + x

√
−2dk

)(
− 2dk − 1 + 2sk

√
−2dk

)−m
,
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wherefrom it can be easily deduced that if z + x
√
−2dk is a solution in positive inte-

gers z, x of the equation (5), then z
(i)
0 > 0. Hence 1 ≤ z

(i)
0 ≤

√
−dk(1− dk) for all

i ∈ {1, 2, . . . , i0}. Also, if x
(i)
0 = 0 then (z

(i)
0 )2 = 1 − dk, which contradicts z

(i)
0 ≤√

−dk(1− dk) for k > 0. Since k ≥ 6 is assumed, the inequalities in Proposition 2.1
hold. To complete the proof it remains to show that m ≥ 0. Assume to the contrary
that m < 0. Then (

− 2dk − 1 + 2sk
√

−2dk
)m

= α− β
√

−2dk

with α, β ∈ N and α2 + 2dkβ
2 = 1. Since

z + x
√
−2dk =

(
z
(i)
0 + x

(i)
0

√
−2dk

)(
α− β

√
−2dk

)
,

we have x = −z
(i)
0 β+x

(i)
0 α. By squaring x

(i)
0 α = x+z

(i)
0 β and substituting α2 = 1−2dkβ

2

we get

(x
(i)
0 )2 = β2(1− dk) + x2 + 2xz

(i)
0 β > β2(1− dk) ≥ 1− dk >

1− d2k
2dk

,

since x, z
(i)
0 , β and k are positive integers, but this contradicts the upper bound for

x
(i)
0 . �

Using similar arguments we prove a similar proposition for the equation (6).

Proposition 2.2. There exists j0 ∈ N and z
(j)
1 , y

(j)
1 ∈ Z, j = 1, 2, . . . , j0 such that

(z
(j)
1 , y

(j)
1 ), j = 1, 2, . . . , j0 are solutions of the equation (6) satisfying

1 ≤ z
(j)
1 ≤

√
−dk(3− dk) 1 ≤ |y(j)1 | ≤

√
(3− dk)(1 + 3dk)

2dk
.

For every solution (z, y) ∈ N × N of the equation (3), there exists j ∈ {1, 2, . . . , j0} and
integer n ≥ 0 such that

z
√
3 + y

√
−2dk =

(
z
(j)
1

√
3 + y

(j)
1

√
−2dk

)(
− 6dk − 1 + 2tk

√
−6dk

)n
.

Finitely many solutions that satisfy the bounds given in Proposition 2.1 and Proposi-
tion 2.2 will be called fundamental solutions.

From Proposition 2.1 and Proposition 2.2 it follows that if (z, x) is a solution in positive

integers of the equation (5), then z = ν
(i)
m for some m ≥ 0 and i ∈ {1, 2, . . . , i0} where

(8) ν
(i)
0 = z

(i)
0 , ν

(i)
1 = (−2dk−1)z

(i)
0 −4skdkx

(i)
0 , ν

(i)
m+2 = (−4dk−2)ν

(i)
m+1−ν(i)m , m ≥ 0,

and if (z, y) is a solution in positive integers of the equation (6), then z = ω
(j)
n for some

n ≥ 0 and j ∈ {1, 2, . . . , j0} where

(9) ω
(j)
0 = z

(j)
1 , ω

(j)
1 = (−6dk−1)z

(j)
1 −4tkdky

(j)
1 , ω

(j)
n+2 = (−12dk−2)ω

(j)
n+1−ω(j)

n , n ≥ 0.

Therefore we are looking for the intersection of sequences ν
(i)
m and ω

(j)
n .
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3. Congruences

Using the congruence method introduced by Dujella and Pethő ([8]) we determine the
fundamental solutions of the equations (5) and (6).

Lemma 3.1.

ν
(i)
2m ≡ z

(i)
0 (mod − 2dk), ν

(i)
2m+1 ≡ −z

(i)
0 (mod − 2dk),

ω
(j)
2n ≡ z

(j)
1 (mod − 2dk), ω

(j)
2n+1 ≡ −z

(j)
1 (mod − 2dk),

for all m,n ≥ 0, i ∈ {1, 2, . . . , i0}, j ∈ {1, 2, . . . , j0}.

Proof. Easily follows by induction. �

Lemma 3.2. If the equation ν
(i)
m = ω

(j)
n has a solution for some m,n ≥ 0, i ∈ {1, 2, . . . , i0},

j ∈ {1, 2, . . . , j0}, then
z
(i)
0 = z

(j)
1 or z

(i)
0 + z

(j)
1 = −2dk.

Proof. Lemma 3.1 implies z
(i)
0 ≡ z

(j)
1 (mod − 2dk) or z

(i)
0 ≡ −z

(j)
1 (mod − 2dk). If

z
(i)
0 ≡ −z

(j)
1 (mod − 2dk) then z

(i)
0 + z

(j)
1 ≡ 0 (mod − 2dk). From propositions 2.1 and

2.2 we get 0 < z
(i)
0 +z

(j)
1 ≤

√
−dk(1− dk)+

√
−dk(3− dk) < −dk+1−dk+2 = −2dk+3,

which implies z
(i)
0 + z

(j)
1 = −2dk.

If z
(i)
0 ≡ z

(j)
1 (mod − 2dk), then z

(i)
0 = z

(j)
1 . Indeed, if z

(i)
0 > z

(j)
1 then 0 < z

(i)
0 − z

(j)
1 <

z
(i)
0 ≤

√
−dk(1− dk) < −2dk, which is in contradiction with z

(i)
0 −z

(j)
1 ≡ 0 (mod −2dk).

On the other hand, if z
(j)
1 > z

(i)
0 then 0 < z

(j)
1 − z

(i)
0 < z

(j)
1 ≤

√
−dk(3− dk) < −2dk,

hence a contradiction is analogously obtained. �
Lemma 3.3.

ν(i)m ≡ (−1)m(z
(i)
0 + 2dkm

2z
(i)
0 + 4dkskmx

(i)
0 ) (mod 8d2k)

ω(j)
n ≡ (−1)n(z

(j)
1 + 6dkn

2z
(j)
1 + 4dktkny

(j)
1 ) (mod 8d2k)

for all m,n ≥ 0, i ∈ {1, 2, . . . , i0}, j ∈ {1, 2, . . . , j0}.

Proof. Easily follows by induction.
�

Lemma 3.4. If ν
(i)
m = ω

(j)
n for some m,n ≥ 0, i ∈ {1, 2, . . . , i0}, j ∈ {1, 2, . . . , j0}, then

m ≡ n (mod 2).

Proof. If m ≡ 0 (mod 2) and n ≡ 1 (mod 2), then Lemma 3.1 and Lemma 3.2 imply

z
(i)
0 ≡ −z

(j)
1 (mod −2dk) and z

(i)
0 + z

(j)
1 = −2dk. On the other hand, Lemma 3.3 implies

z
(i)
0 + 2dkm

2z
(i)
0 + 4dkskmx

(i)
0 ≡ −z

(j)
1 − 6dkn

2z
(j)
1 − 4dktkny

(j)
1 (mod 8d2k),

wherefrom, by substituting z
(i)
0 + z

(j)
1 = −2dk and dividing by 2dk, we obtain

−1 +m2z
(i)
0 + 2skmx

(i)
0 ≡ −3n2z

(j)
1 − 2tkny

(j)
1 (mod − 4dk).

Since dk is always odd, from (5) and (6) we see that z
(i)
0 and z

(j)
1 are even, hence the last

congruence can not hold. Indeed, on the left side of the congruence is an odd number
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and on the right side is even, a contradiction. If m is odd and n even, a contradiction is
obtained analogously. �

Therefore, the equations ν
(i)
2m = ω

(j)
2n+1 and ν

(i)
2m+1 = ω

(j)
2n have no solutions in integers

m,n ≥ 0, i ∈ {1, 2, . . . , i0}, j ∈ {1, 2, . . . , j0}. It remains to examine the cases when m

and n are both even or both odd. In each of those cases we have z
(i)
0 = z

(j)
1 . Since

(z
(i)
0 )2 − 1 = dk(−2(x

(i)
0 )2 − 1),

it follows that

δ :=
(z

(i)
0 )2 − 1

dk

is an integer. Furthermore,

δ + 1 = −2(x
(i)
0 )2, 3δ + 1 = −2(y

(j)
1 )2, δdk + 1 = (z

(i)
0 )2.

Thus δ satisfies system (4) and clearly δ = dl for some l ≥ 0. Moreover, {1, 3, dk, dl} is a

Diophantine quadruple in Z[
√
−2] since dl ̸= dk. Indeed, if dl = dk then d2k +1 = (z

(i)
0 )2,

and since d2k ≡ 1 (mod 4) it follows that (z
(i)
0 )2 ≡ 2 (mod 4), a contradiction. In the

following we show that l = k−1. Let us remind that k is a minimal integer such that the
Theorem 1.1 does not hold. Assume δ > dk−1, that is l < k−1. Then the triple {1, 3, dl}
can be extended to a Diophantine quadruple in Z[

√
−2] by dk which differs from dl−1 and

dl+1 since l− 1 < l+1 < k by assumption, which contradicts minimality of k. Therefore

l ≥ k − 1. On the other hand, as δdk + 1 = (z
(i)
0 )2 ≤ −dk(−dk + 1) by Proposition 2.1,

it follows that δ = dl > dk − 1 and hence l ≤ k. Since dl ̸= dk we have dl = dk−1. Hence

(z
(i)
0 )2 = dkdk−1 + 1 and using (3) we obtain z

(i)
0 = z0 = ck−1 + 2. Furthermore, from

(5), (6) and (7) we have |x(i)0 | = sk−1 and |y(j)1 | = tk−1. Moreover, since

sk =
1

2
√
3
((2 +

√
3)k − (2−

√
3)k), tk =

1

2
((2 +

√
3)k + (2−

√
3)k),

we have

(10) 2sksk−1 = ck−1, 2tktk−1 = 3ck−1 + 4,

which brings us to an important conclusion. If the system of Pellian equations (5) and
(6), with k being the smallest integer for which Theorem 1.1 does not hold and under
assumption k ≥ 6, has a solution in positive integers, then the fundamental solutions of
Pellian equations (5) and (6) are (z0, x

±
0 ) and (z1, y

±
1 ) respectively, where

(11) z0 = z1 = 2(sksk−1 + 1),

(12) x±0 = ±sk−1, y±1 = ±tk−1.
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4. The lower bound for m and n

By setting (11) and (12) into (8) and (9) and expanding we have

ν±m =
1

2
(2(sksk−1 + 1)± sk−1

√
−2dk) · (−2dk − 1 + 2sk

√
−2dk)

m+

+
1

2
(2(sksk−1 + 1)∓ sk−1

√
−2dk) · (−2dk − 1− 2sk

√
−2dk)

m, m ≥ 0,

and

ω±
n =

1

2
√
3
(2(sksk−1 + 1)

√
3± tk−1

√
−2dk) · (−6dk − 1 + 2tk

√
−6dk)

n+

+
1

2
√
3
(2(sksk−1 + 1)

√
3∓ tk−1

√
−2dk) · (−6dk − 1− 2tk

√
−6dk)

n, n ≥ 0.

One intersection of these sequences is clearly ν±0 = ω±
0 = 2(sksk−1+1), and hence further

on we may assume m,n ≥ 1. This intersection is related to the solution d = dk−1 of
(4) and implies that the triple {1, 3, dk} can be extended to a Diophantine quadruple in
Z[
√
−2] by dk−1. Another intersection is ν−1 = ω−

1 . Indeed, (10) implies

(13) sksk−1 + 1 =
1

3
(tktk−1 + 1)

and hence

ω−
1 = −2− 12dk − 2sksk−1 − 12dksksk−1 + 4dktktk−1 = −2− 4dk − 2sksk−1 = ν−1 .

This intersection implies that the triple {1, 3, dk} can be extended to a Diophantine
quadruple in Z[

√
−2] by dk+1. Using (13) we write ω±

n in the form

ω±
n =

1

6
(2(tktk−1 + 1)± tk−1

√
−6dk) · (−6dk − 1 + 2tk

√
−6dk)

n+

+
1

6
(2(tktk−1 + 1)∓ tk−1

√
−6dk) · (−6dk − 1− 2tk

√
−6dk)

n.

Since

2(sksk−1 + 1)− sk−1

√
−2dk = 2−

√
−2dk−1 − 2

√
−2dk − 2 +

√
−2dk

> 2−
√
−2dk − 2√

−2dk − 2 +
√
−2dk

> 1,

it follows that

ν+m ≥ ν−m >
1

2
(−2dk − 1 + 2sk

√
−2dk)

m.

Furthermore,

ω−
n ≤ ω+

n <
1

2
(−6dk − 1 + 2tk

√
−6dk)

n+1,

since

(2(tktk−1 + 1)− tk−1

√
−6dk) · (−6dk − 1− 2tk

√
−6dk)

n < (−6dk − 1 + 2tk
√

−6dk)
n,

and
1

3
(2(tktk−1 + 1) + tk−1

√
−6dk + 1) < −6dk − 1 + 2tk

√
−6dk,
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which can be verified by simple transformations and calculations using (7). Therefore, if
one of the equations ν±m = ω±

n has solutions, then

1

2
(−2dk − 1 + 2sk

√
−2dk)

m <
1

2
(−6dk − 1 + 2tk

√
−6dk)

n+1,

wherefrom
m

n+ 1
<

log(−6dk − 1 + 2tk
√
−6dk)

log(−2dk − 1 + 2sk
√
−2dk)

.

The expression on the right side of the inequality decreases when k increases. Since k ≥ 6,
it follows that m

n+1 < 1.072. We may assume n ≥ 2. Indeed for n = 1 it follows that
m ≤ 2 and as m and n are both even or both odd it follows that the only possibility is
m = 1. We have already established the intersection ν−1 = ω−

1 and it can be easily verified

that ν+1 ̸= ω±
1 and ν−1 ̸= ω+

1 . Now, it can be easily deduced that m < n
√
3. Hence, if the

sequences (ν±m) and (ω±
n ) have any intersections besides two already established, then

n ≥ 2, m and n are of the same parity and m < n
√
3.

Proposition 4.1. Let n ≥ 2. If one of the equations ν±m = ω±
n has solutions then

m ≥ n ≥ 2

3
· 4
√

−dk.

Proof. If m < n, then m ≤ n− 2 since m and n are of the same parity. From (8) and (9)
using (10) one easily finds ν+0 < ω−

2 . Moreover, it can be easily shown by induction that
ν+m < ω−

m+2 for m ≥ 0. Indeed, sequences (ν±m) and (ω±
n ) are strictly increasing positive

sequences, which can be easily checked by induction setting (11) and (12) into (8) and
(9). Hence ν+m+1 < (−4dk − 2)ν+m and ω−

m+3 > (−12dk − 3)ω−
m+2, wherefrom it is clear

that ν+m < ω−
m+2 implies ν+m+1 < ω−

m+3, which completes the proof by induction. Since

ν−m ≤ ν+m < ω−
m+2 ≤ ω+

m+2 it follows that if one of the equations ν±m = ω±
n has solutions,

then m+ 2 > n, a contradiction. Hence m ≥ n.
For the other part of the statement assume to the contrary that n < 2

3
4
√
−dk. Let us

show how a contradiction can be obtained in the case ν+m = ω+
n . Other three case can

be similarly resolved. Since m and n are of the same parity Lemma 3.3 implies that if
ν+m = ω+

n , then

(14) (ck−1 + 2)(m2 − 3n2 +m− 3n) ≡ 2(m− n) (mod − 4dk),

and since (3) implies (ck−1 + 2)2 ≡ 1 (mod − dk), we obtain

(m2 − 3n2 +m− 3n)2 ≡ 4(m− n)2 (mod − dk).

Moreover

(15) (m2 − 3n2 +m− 3n)2 ≡ 4(m− n)2 (mod − 4dk)

since (4, dk) = 1 and both sides of the congruence relation are divisible by 4 due to same
parity of m and n. Under assumption n < 2

3
4
√
−dk one easily sees that the expressions

on both sides of the congruence relation (15) are strictly smaller than −4dk. Indeed,
0 ≤ 2(m−n) ≤ 2n(

√
3−1) < 2(

√
3−1)23

4
√
−dk <

√
−4dk and 0 < −m2+3n2−m+3n ≤
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2n2 +2n ≤ 3n2 < 12
9

√
−dk <

√
−4dk. Therefore −m2 +3n2 −m+3n = 2(m− n) which

implies that m ̸= n, hence m > n. Combining it with (14) we obtain

−(ck−1 + 2)2(m− n) ≡ 2(m− n) (mod − 4dk),

wherefrom
−2sksk−1(m− n) ≡ 3(m− n) (mod − 2dk).

Since (7) implies −2s2k ≡ 1 (mod − dk), by multiplying both sides by sk we obtain

sk−1(m− n) ≡ 3sk(m− n) (mod − dk),

and as m− n ≡ 0 (mod 2) and (dk, 2) = 1, it follows that

(16) (m− n)(3sk − sk−1) ≡ 0 (mod − 2dk).

On the other hand,

0 < m− n < n(
√
3− 1) < (

√
3− 1)

2

3
4
√

−dk < 0.49 · 4
√

−dk

and

0 < 3sk − sk−1 ≤ 3sk = 3

√
−dk − 1

2
< 3 ·

√
−dk
2

imply that

0 < (m− n)(3sk − sk−1) < 1.04 4

√
−d3k < −2dk.

Therefore we have a contradiction with (16). Completely analogously a contradiction is
obtained in other three cases (ν+m = ω−

n , ν
−
m = ω+

n , ν
−
m = ω−

n ). �

5. Application of a result of Bennett

Lemma 5.1. Let

θ1 =

√
1 +

3

3dk
, θ2 =

√
1 +

1

3dk
and let (x, y, z) be a solution in positive integers of the system of Pellian equations (5)
and (6). Then

max{
∣∣∣θ1 − 6skx

3z

∣∣∣, ∣∣∣θ2 − 2tky

3z

∣∣∣} < (1− dk)z
−2.

Proof. Clearly θ1 =
2sk√
−2dk

and θ2 =
2tk√
−6dk

. Hence,∣∣∣θ1 − 6skx

3z

∣∣∣ = ∣∣∣ 2sk√
−2dk

− 2skx

z

∣∣∣ = 2sk

∣∣∣z − x
√
−2dk

z
√
−2dk

∣∣∣
=

2sk

z
√
−2dk

· 1− dk

z + x
√
−2dk

<
2sk(1− dk)√

−2dk
· z−2 < (1− dk) · z−2.

and ∣∣∣θ2 − 2tky

3z

∣∣∣ = ∣∣∣ 2tk√
−6dk

− 2tky

3z

∣∣∣ = 2tk√
3

∣∣∣z√3− y
√
−2dk

z
√
−2dk

√
3

∣∣∣
=

2tk

3z
√
−2dk

· 3− dk

z
√
3 + y

√
−2dk

<
2tk(3− dk)

3
√
−6dk

· z−2 <
3− dk

3
· z−2 < (1− dk) · z−2.

�
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In order to establish the lower bound for the same expression we use the following result
by Bennett ([3]) on simultaneous rational approximations of square roots of rationals
which are very close to 1.

Lemma 5.2 ([3], Theorem 3.2). If ai, pi, q and N are integers for 0 ≤ i ≤ 2 with
a0 < a1 < a2, aj = 0 for some 0 ≤ j ≤ 2, q nonzero and N > M9 where

M = max{|ai| : 0 ≤ i ≤ 2},

then we have

max
0≤i≤2

{
∣∣∣√1 +

ai
N

− pi
q

∣∣∣} > (130Nγ)−1q−λ

where

λ = 1 +
log(33Nγ)

log(1.7N2
∏

0≤i<j≤2(ai − aj)−2)

and

γ =

{
(a2−a0)2(a2−a1)2

2a2−a0−a1
, a2 − a1 ≥ a1 − a0

(a2−a0)2(a1−a0)2

a1+a2−2a0
, a2 − a1 < a1 − a0.

By setting

N = −3dk, a0 = −3, a1 = −1, a2 = 0
M = 3, q = 3z, p1 = 6skx, p2 = 2tky

we can apply the theorem above as N = −3dk > 39 for k ≥ 6. Therefore,

max{|θ1 −
6skx

3z
|, |θ2 −

2tky

3z
|} > (130 · (−3dk)γ)

−1 · (3z)−λ,

where

γ =
36

5
, λ = 1 +

log(−99dk · 36
5 )

log(1.7 · 9d2k ·
1
36)

.

Combining this result with Lemma 5.1 we have

z−λ+2 < (1− dk)(130 · (−3dk) ·
36

5
) · 3λ.

Since λ < 2 and −dk(1− dk) < 1.000000821d2k for k ≥ 6, it follows that

z−λ+2 < 25272.03d2k,

and hence

(−λ+ 2) log z < log(25272.03d2k).

Since
1

2− λ
=

1

1− log(−99dk· 365 )

log(1.7·9d2k·
1
36

)

≤
log(0.425d2k)

log(−0.00059dk)

we have

(17) log z <
log(25272.03d2k) log(0.425d

2
k)

log(−0.00059dk)
.



11

Furthermore, as z = ν±m for some m ≥ 0, it follows that

z >
1

2
(−2dk − 1 + 2sk

√
−2dk)

m.

Since 2sk
√
−2dk > −2dk − 2 for k ≥ 0 it follows that

z >
1

2
(−4dk − 3)m,

and since (−4dk − 3)−1 < 1
2 for k ≥ 1 we have

z > (−4dk − 3)m−1.

Therefore,
log z > (m− 1) log(−4dk − 3),

and since m ≥ n ≥ 2
3 · 4

√
−dk, it follows that m− 1 > 0.5 · 4

√
−dk and hence

log z > 0.5 · 4
√

−dk · log(−4dk − 3).

Combining this result with (17) it follows that

4
√
−dk <

log(25272.03d2k) log(0.425d
2
k)

0.5 · log(−0.00059dk) log(−4dk − 3)
.

The expression on the right side of the inequality decreases when k increases, and hence
by substituting k = 6 it follows that

4
√

−dk < 20.477

and
−dk < 175 817

wherefrom k ≤ 5, which contradicts the assumption k ≥ 6. Therefore, a minimal integer
k for which Theorem 1.1 does not hold, if such exists, is less or equal 5.

6. Remaining cases

To complete the proof, it remains to show that Theorem 1.1 holds also for 0 ≤ k ≤ 5.
In each case we have to solve a system of Pellian equations where one of the equations
is always the Pell’s equation y2 − 3x2 = 1 and the second one is

• z2 − 2x2 = 2 if k = 0,
• z2 − 6x2 = 4 if k = 1,
• z2 − 22y2 = 12 if k = 2,
• z2 − 902x2 = 452 if k = 3,
• z2 − 4182y2 = 2092 if k = 4,
• z2 − 58242y2 = 29122 if k = 5.

All the solutions in positive integers of y2 − 3x2 = 1 are given by (x, y) = (x′m, y′m),
where

x′m =
1

2
√
3
(2 +

√
3)m − 1

2
√
3
(2−

√
3)m, y′m =

1

2
(2 +

√
3)m +

1

2
(2−

√
3)m,m ≥ 0.

So, the systems above can be reduced to finding the intersections of (x′m) or (y′m) and
the following sequences:
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• xn = 1+
√
2

2 (3 + 2
√
2)n + 1−

√
2

2 (3− 2
√
2)n, n ≥ 0, if k = 0,

• xn = 1√
6
(5 + 2

√
6)n − 1√

6
(5− 2

√
6)n, n ≥ 0, if k = 1,

• y±n = ±5+
√
22√

22
(197± 42

√
22)n ∓ 5−

√
22√

22
(197∓ 42

√
22)n, n ≥ 0, if k = 2,

• x±n = ±61+2
√
902√

902
(901± 30

√
902)n ∓ 61−2

√
902√

902
(901∓ 30

√
902)n, n ≥ 0, if k = 3,

• y±n = ±841+13
√
4182√

4182
(37637± 582

√
4182)n∓ 841−13

√
4182√

4182
(37637∓ 582

√
4182)n, n ≥

0, if k = 4,

• y±n = ±23419+97
√
58242

2
√
58242

(524177± 2172
√
58242)n∓

∓23419−97
√
58242

2
√
58242

(524177∓ 2172
√
58242)n, n ≥ 0, if k = 5.

In what follows, we will briefly resolve the case k = 1 just to demonstrate a method
based on Baker’s theory of linear forms in logarithms. Obviously, x′0 = x0 = 0, x′2 =
x1 = 4 and we have to show that there are no other intersections of the sequences (x′m)
and (xn). Let us assume that m,n ≥ 3 and x′m = xn. By putting

P =
1

2
√
3
(2 +

√
3)m, Q =

1√
6
(5 + 2

√
6)n,

we have

P − 1

12
P−1 = Q− 1

6
Q−1.

Since

Q− P =
1

6
Q−1 − 1

12
P−1 >

1

6
(Q−1 − P−1) =

1

6
P−1Q−1(P −Q),

we have Q > P . Furthermore, from

Q− P

Q
=

1

6
Q−1P−1 − 1

12
P−2 <

1

6
Q−1P−1 +

1

12
P−2 < 0.25P−2

we obtain

0 < log
Q

P
= − log

(
1− Q− P

Q

)
<

Q− P

Q
+

(
Q− P

Q

)2

<
1

4
P−2 +

1

16
P−4

< 0.32P−2 < e−m.

The expression log Q
P can be written as a linear form of three logarithms in algebraic

integers α1 = 2 +
√
3, α2 = 5 + 2

√
6 and α3 =

√
2, i.e.

Λ = −m logα1 + n logα2 + logα3 < e−m.

Now, we can apply the famous theorem of Baker and Wüstholz from [2]:

Lemma 6.1. If Λ = b1α1 + · · · + blαl ̸= 0, where α1, . . . , αl are algebraic integers and
b1, . . . , bl are rational integers, then

log |Λ| ≥ −18(l + 1)!ll+1(32d)l+2h′(α1) · · ·h′(αl) log(2ld) logB,

where B = max{|α1|, . . . , |αl|}, d is the degree of the number field generated by α1, . . . , αl

over the rationals Q,

h′(α) =
1

d
max{h(α), | logα|, 1},

and h(α) denotes the logarithmic Weil height of α .
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In our case l = 3, d = 4, B = m, h′(α1) ≤ 0.33, h′(α2) ≤ 0.58, h′(α3) ≤ 0.25 and

m ≤ 2 · 1014 logm.

Since the previous inequality does not hold for m ≥ M = 1016, we conclude that if there
is a solution of x′m = xn then n ≤ m < M = 1016. The upper bound for the solutions
can be reduced by using the following lemma (originally introduced in [1]) :

Lemma 6.2 ([5], Lemma 4a)). Let θ, β,α, a be a positive real numbers and let M be a
positive integer. Let p/q be a convergent of the continued fraction expansion of θ such
that q > 6M . If ε = ∥βq∥ − M · ∥θq∥ > 0, where ∥ · ∥ denotes the distance from the
nearest integer, then the inequality

|mθ − n+ β| < αa−m,

has no integer solutions m and n such that log(αq/ε)/ log a ≤ m ≤ M .

After we apply Lemma 6.2 on θ = logα1/ logα2, β = logα3/ logα2, α = 1/ logα2,
M = 1016 and a = e, we obtain a new upper bound M = 38 and by another application
we obtain M = 7. By examining all the possibilities, we prove that the only solutions
are x = 0 and x = 4.

All the other cases can be treated similarly. We get these explicit results which can
be interpreted in terms of Theorem 1.1:

k = 0: x0 = x′1 = 1 ⇒ d = d1 = −3,
k = 1: x0 = x′0 = 0, x1 = x′2 = 4 ⇒ d ∈ {d0 = −1, d2 = −33},
k = 2: y+0 = y′1 = 2, y−1 = y′3 = 26 ⇒ d ∈ {d1 = −3, d3 = −451},
k = 3: x+0 = x′2 = 4, x−1 = x′4 = 56 ⇒ d ∈ {d2 = −33, d4 = −6273},
k = 4: y+0 = y′3 = 26, y−1 = y′5 = 362 ⇒ d ∈ {d3 = −451, d5 = −87363},
k = 5: y+0 = y′4 = 97, y−1 = y′6 = 1351 ⇒ d ∈ {d4 = −6273, d6 = −1216801}.
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