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Abstract. It this paper, we study the existence of Diofantine quadru-
ples with property D(z) in the ring Z[

√
d], where d is such that the

Pellian equation x2 − dy2 = ±2 is solvable. This existence is character-
ized by the representability of z as a difference of two squares.

1. Introduction

Let R be a commutative ring and z ∈ R. A set {a1, a2, · · · , am} of dis-
tinct elements in R\{0} such that aiaj + z is a perfect square in R, for
1 ≤ i < j ≤ m, is called a Diophantine m-tuple with the property D(z) or a
D(z)-m-tuple. Let us give few examples of such sets in the ring of integers
Z. The set {1, 2, 5} is a D(−1)-triple, {1, 33, 68, 105} is a D(256)-quadruple
(famous one, because this set was found by Diophantus of Alexandria him-
self), {1, 3, 8, 120} is a D(1)-quadruple (found by Fermat, while Baker and
Davenport in [2] proved that it cannot be extended to a D(1)-quintuple),
{99, 315, 9920, 32768, 44460, 19534284} is a D(2985984)-sextuple (found by
Gibbs in [9]).

Here, we deal with Diophantine quadruples. A problem of the existence of
Diophantine quadruples with the property D(z) is almost completely solved
in the ring of integers Z and the ring of Gaussian integers Z[i]. Namely, in
[3] (and in [10] and in [13], also) it was shown that if n is an integer of
the form n ≡ 2(mod 4), then a D(n)-quadruple does not exist in Z. On the
other hand, if n 6≡ 2(mod 4) and if n 6∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}, then
there exist a D(n)-quadruple (see [4]). Let us note that an integer n can be
represented as a difference of two squares of integers if and only if n is not
of the form 4k+ 2 for k ∈ Z. Thus, we can conclude that a D(n)-quadruple
exists if and only if n can be represented as a difference of two squares of
integers, up to finitely many cases. (For the elements of the set S, it is still
not known if such a quadruple exists. Recently, Dujella, Filipin and Fuchs
[7] proved that there exist only finitely many D(−1)-quadruples and D(−4)-
quadruples.) In the ring of Gaussian integers Z[i], the analogous statement
can be proved (see [6]).

In this paper, the connection between the existence of a D(z)-quadruple
and the re presentability of z as a difference of two squares is investigated
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in the ring Z[
√
d] for d ∈ N such that d ≡ 3(mod 4) and that the equation

x2 − dy2 = ±2 is solvable. Precisely, we prove the following theorem

Theorem 1. Let d ∈ N such that d is not a perfect square and that the
equation x2 − dy2 = ±2 is solvable in odd integers. Let z be an element of
the ring Z[

√
d]. Then there exists infinitely many D(z)-quadruples in Z[

√
d]

if and only if z can be represented as a difference of two squares of elements
in Z[

√
d].

The first step in proving this theorem has already been made by giving the
characterization of the set of all elements in Z[

√
d] that can be represented as

a difference of two squares (see [8]). Concretely, z ∈ Z[
√
d] is represented as

a difference of two squares if and only if z has one of the form 2m+1+2n
√
d,

4m + 4n
√
d, 4m + (4n + 2)

√
d or 4m + 2 + 4n

√
d for m,n ∈ N. Thanks to

this characterization, the proof of one direction of Theorem 1 is based on
the effective construction of a D(z)-quadruples where z has one of given
forms above. In some constructions, polynomial formulas for Diophantine
quadruples derived in [5] are used. The fact that there are infinitely many
solutions of the equation x2−dy2 = ±2, under our assumption, is the reason
why there exists infinitely Diophantine quadruples. This part of the proof
can be found in Section 2.

The other direction of Theorem 1 is showed in Section 3. The main idea is
to verify that there is no D(z)-quadruple if z has the form 2m+ (2n+ 1)

√
d

or the form 4m+2+(4n+2)
√
d, i.e. for those elements in Z[

√
d] that cannot

be represented as a difference of two squares. We are, actually, able to prove
this for even a lager class of rings of the form Z[

√
d].

Theorem 1 generalizes the corresponding result for Diophantine quadru-
ples in the ring of Gaussian integers to the arbitrary ring Z[

√
d], under given

assumptions on d. Let us mention that this result is also proved by the au-
thor for the ring Z[

√
2] in [11] and for the ring Z[(1 +

√
d)/2], where d ∈ N

is such that the Pellian equation x2 − dy2 = ±4 is solvable in odd x and y,
in [12].

2. The existence of Diophantine quadruples

In this section, the necessity part of Theorem 1 will be proved. We assume
that d is an integer which is not a perfect square and that the equation

(1) x2 − dy2 = ±2

is solvable in odd integers. We can, also, assume that d is positive, because
the only negative d for which the equation (1) has solutions is −1 and this
case has already been solved in [6]. It is easy to see that d ≡ 3(mod 4). We
denote

Z[
√
d] = {m+ n

√
d : m,n ∈ Z}.
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This ring represents the set of all integers in the quadratic field Q(
√
d) and,

accordingly, the term ’integer’ is sometimes used for an element of the ring
Z[
√
d].

The following lemma describes the set of all elements that can be repre-
sented as a difference of two squares in Z[

√
d] under the above assumptions.

Lemma 1. [8, Theorem 1] An element z ∈ Z[
√
d] can be represented as a

difference of two squares in Z[
√
d] if and only if z has one of the following

forms

2m+ 1 + 2n
√
d, 4m+ 4n

√
d, 4m+ (4n+ 2)

√
d, 4m+ 2 + 4n

√
d,

where m,n ∈ Z.

We will construct a Diophantine quadruple for each integer z that can be
represented as a difference of two squares, i.e. for an integer of the forms
2m+1+2n

√
d, 4m+4n

√
d, 4m+(4n+2)

√
d, 4m+2+4n

√
d. The following

facts will be used in these constructions.

Lemma 2. ([5, Theorem 1]) The sets

{m, (3k + 1)2m+ 2k, (3k + 2)2m+ 2k + 2, 9(2k + 1)2m+ 8k + 4},

{m,mk2 − 2k − 2,m(k + 1)2 − 2k,m(2k + 1)2 − 8k − 4}
have the property D(2m(2k + 1) + 1).

The term set with the property D(z) is used for a set which is a good
candidate for a D(z)-quadruple, but it might have two equal elements or an
element equals to zero or its elements are not integers.

Lemma 3. ( [4]) The set

{1, 9k2 − 8k, 9k2 − 2k + 1, 36k2 − 20k + 1}

has the property D(8k), and the set

{4, 9k2 − 5k, 9k2 + 7k + 2, 36k2 + 4k}

has the property D(8k + 1).

Lemma 4. Let {z1, z2, z3, z4} ⊂ Z[
√
d] be a set with the property D(z) and

w ∈ Z[
√
d]. Then {z1w, z2w, z3w, z4w} is a set with the property D(zw2).

Proof. It is obvious from the definition of the set with the property D(z). �

Instead of the assumption of solvability the equation x2 − dy2 = ±2, we
will often use the following consequence:

Lemma 5. Let d ∈ N such that d is not a perfect square. If the equation
x2−dy2 = ±2 has a solution in odd numbers x and y, then the Pell equation
x2 − dy2 = 1 has infinitely many solutions in even x and odd y.
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Proof. Let α and β be the odd solutions of the equation x2 − dy2 = ±2.
Then x = α2 ∓ 1 and y = αβ are solutions of x2 − dy2 = 1 and the parity
conditions hold as well. Also, it is clear that there exist infinitely many of
such solutions. �

Proposition 1. Let z ∈ Z[
√
d] be of the form

2m+ 1 + 2n
√
d,

for m,n ∈ Z. Then there exist infinitely many D(z)-quadruples in Z[
√
d].

Proof. The proof splits into four parts.
1) Let k ∈ Z[

√
d]. We will prove the existence of a D(4k + 3)-quadruple.

The set

(2) {1, 9k2 + 8k + 1, 9k2 + 14k + 6, 36k2 + 44k + 13}, k ∈ Z[
√
d]

has the property D(4k + 3), according to Lemma 2 (for m = 1). If the
elements of the set (2) are nonzero distinct integers, then this set repre-
sents the D(4k + 3)-quadruple. It is easy to see that this holds for all k ∈
Z[
√
d]\{0, 1,−1, 2, 3}. So, we show the existence of the D(4m+ 3 + 4n

√
d)-

quadruple, for m,n ∈ Z and m 6= 0, 1,−1, 2, 3, i.e. for 4m + 3 + 4n
√
d ∈

Z[
√
d]\{3, 7,−1, 11, 15}

In the cases where z = 7, 11, 15, we are able to find a Diophantine quadru-
ples in Z and these are {1, 18, 29, 93}, {1, 53, 70, 245}, {1, 106, 129, 469}, re-
spectively.

Now, let us show the existence of a D(−1)-quadruple. Suppose that s, t ∈
Z are solutions of the equation x2 − dx2 = 1, where s is even and t is odd
(according to Lemma 5). We define

w = −(s+ t
√
d)4 = −(s4 + 4ds2t2 + d2t4)− 4st(s2 + dt2)

√
d.

It can be immediately seen that w has the form 4m + 3 + 4n
√
d and that

w 6= −1, 3 (unless d = −1). Hence, there exists a Diophantine quadruple
{c1, c2, c3, c4} with the property D(w). Lemma 4 implies that the set {c1(s−
t
√
d)2, c2(s − t

√
d)2, c3(s − t

√
d)2, c4(s − t

√
d)2} is the D(−1)-quadruple,

because −1 = −(s2 − dt2)4 = −(s+ t
√
d)4(s− t

√
d)4 = w(s− t

√
d)4.

Analogously, the existence of D(3)-quadruple can be proved. We start

with the number w = 3(s + t
√
d)4 and the rest of the proof is the same as

in the previous case z = −1.
Finally, let us explain the existence of infinitely many D(4m+3+4n

√
d)-

quadruples. Let z be an integer of the form 4m+ 3 + 4n
√
d. If w = s+ t

√
d

is a solution of the Pell equation x2 − dy2 = 1 in even s and in odd t,
then zw4 is, also, of the form 4m + 3 + 4n

√
d. Indeed, w4 ≡ 1(mod 4).

Suppose that sets {c1, c2, c3, c4} and {d1, d2, d3, d4} represent Diophantine
quadruples with properties D(z) and D(zw4), respectively, which are
obtained by the described construction. According to Lemma 4, the set
{d1(s− t

√
d)2, d2(s− t

√
d)2, d3(s− t

√
d)2, d4(s− t

√
d)2} is a D(z)-quadruple



DIOPHANTINE QUADRUPLES IN Z[
√

4k + 3] 5

and it is, obviously, different from the quadruple {c1, c2, c3, c4}. Further-
more, we see that there exist infinitely many Diophantine quadruples,
because w is chosen as a solution of the Pell equation.

2) In this part we prove the existence of a Diophantine quadruple with

the property D(4m + 1 + 4n
√
d), m,n ∈ Z. We will show that there exist

integers p, q, s, t ∈ Z such that the following equality

(3) (4p+ 3 + 4q
√
d)(s+ t

√
d)2 = 4m+ 1 + 4n

√
d

holds. Indeed, the equality (3) is equivalent to the linear system in unknowns
4p+ 3 and 4q:

(4)
(s2 + dt2)(4p+ 3) + (2std)4q = 4m+ 1

(2st)(4p+ 3) + (s2 + dt2)4q = 4n.

According to Lemma 5, we can choose s, t ∈ Z such that s2− dt2 = 1 where
s is even and t is odd. Hence, the determinant of (4) is (s2 − dt2)2 and the
solutions of (4) are

4p+ 3 = (4m+ 1)(s2 + dt2)− 8stdn,(5)

4q = 4n(s2 + dt2)− 2std(4m+ 1).(6)

Integers p and q, given by (5) and (6), are well defined, because the right
sides of formulas (5) and (6) are congruent to 3 modulo 4, and 0 modulo 4,
respectively.

Finally, the equality (3), Lemma 4 and previous case 1), imply the

existence of infinitely many D(4m+ 1 + 4n
√
d)-quadruples.

3) Let z = 4m + 1 + (4n + 2)
√
d, where m,n ∈ Z. We will prove that z

can be represented as

(7) z = 2l(2k + 1) + 1,

for some l, k ∈ Z[
√
d]. In fact, (7) can be written as

(8)
2αγ + 2dβδ = 2m− α,
2βγ + 2αδ = 2n+ 1− β.

where l = α+ β
√
d and k = γ + δ

√
d, α, β, γ, δ ∈ Z. We choose α and β ∈ Z

such that α2 − dβ2 = 1 and α is even and β is odd (according to Lemma
5). Let solve the system (8) in unknowns γ and δ. The determinant of the
system (8) is 4α2 − 4dβ2 = 4 and the solutions are

γ = ((2m− α)2α− (2n+ 1− β)2β)/4,(9)

δ = ((2n+ 1− β)2α− (2m− α)2β)/4.(10)

It can be easily seen that the numerators in (9) and (10) are divisible by 4.
Hence, γ and δ are integers.

Lemma 2 implies that the set

(11) {l, (3k + 1)2l + 2l, (3k + 2)2l + 2k + 2, 9(2k + 1)2l + 8k + 4}
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has the property D(4m+ 1 + (4n+ 2)
√
d). It is clear that we can construct

infinitely many such sets, because the number l is one of infinitely many
solutions of Pell equation x2 − dy2 = 1.

Let us note that the set (11) does not represent a D(4m+1+(4n+2)
√
d)-

quadruple if some of it’s elements is zero or if there exist two equal elements.
This situation can be avoid by using a similar procedure as in the case 1).

4) Let z = 4m + 3 + (4n + 2)
√
d, m,n ∈ Z. If there exist numbers

s+ t
√
d ∈ Z[

√
d] and p, q ∈ Z such that

(12) (4p+ 1 + (4q + 2)
√
d)(s+ t

√
d)2 = 4m+ 3 + (4n+ 2)

√
d,

then the D(z)-quadruple exists according to Lemma 4 and previous case 3).
Therefore, let us solve the equation (12) or equivalently the system

(13)
(s2 + dt2)(4p+ 1) + (2std)(4q + 2) = 4m+ 3

(2st)(4p+ 1) + (s2 + dt2)(4q + 2) = 4n+ 2.

Let s and t be integer solutions of s2 − dt2 = 1 such that s is even and t is
odd (according to Lemma 5). Then the solutions of (13) are given by

4p+ 1 = (4m+ 3)(s2 + dt2)− (4n+ 2)2std,

4q + 2 = (4n+ 2)(s2 + dt2)− (4m+ 3)2std.

Obviously, p and q, as defined above, are integers. �

Proposition 2. Let z ∈ Z[
√
d] be of the form

z = 4m+ (4n+ 2)
√
d,

m, n ∈ Z. Then there exist infinitely many D(z)-quadruples in Z[
√
d].

Proof. We will show that for given m,n ∈ Z there exist a, b ∈ Z and w ∈
Z[
√
d] such that

(14) (2a+ 1 + 2b
√
d)w2 = 4m+ (4n+ 2)

√
d.

If w = s+ t
√
d, where s, t ∈ Z, then (14) implies

(15)
(s2 + dt2)(2a+ 1) + (2std)(2b) = 4m,

(2st)(2a+ 1) + (s2 + dt2)(2b) = 4n+ 2.

Let s and t be integer solutions of the equation x2 − dy2 = ±2. We solve
the system (15) in unknowns 2a+ 1 and 2b. The determinant of the system
(15) is equal to 4 and the solutions are given by the formulas

(16)
2a+ 1 = (4m(s2 + dt2)− 2std(4n+ 2))/4,

2b = ((4n+ 2)(s2 + dt2)− 8stm)/4.

These formulas define integers a and b. Indeed, for numerators in (16) we
have

4m(s2 + dt2)− 2std(4n+ 2) ≡ −4std ≡ 4(mod 8),

(4n+ 2)(s2 + dt2)− 8stm ≡ 0(mod 8),
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because s and t are odd and s2 + dt2 ≡ 0(mod 4).
According to Proposition 1 there exist infinitely many Diophantine

quadruples with the property D(2a + 1 + 2b
√
d). Finally, it follows from

(14) and Lemma 4 that there exist infinitely many Diophantine quadruples

with the property D(4m+ (4n+ 2)
√
d). �

Proposition 3. Let z be an integer in Z[
√
d] of the form

4m+ 4n
√
d,

m, n ∈ Z. Then there exist infinitely many D(z)-quadruples in Z[
√
d].

Proof. The proof splits into four parts. The existence of Diophantine quadru-
ple will be shown for numbers of the following forms: 8m + 4 + 8n

√
d,

8m+ 8n
√
d, 8m+ (8n+ 4)

√
d and 8m+ 4 + (8n+ 4)

√
d.

1) Let m,n ∈ Z and s, t ∈ Z such that s2 − dt2 = ±2. Then there exist
a, b ∈ Z such that

(17) (4a+ (4b+ 2)
√
d)(s+ t

√
d)2 = 8m+ 4 + 8n

√
d.

Indeed, (17) holds if and only if the following system

(s2 + dt2)4a + 2std(4b+ 2) = 8m+ 4,
(2st)4a + (s2 + dt2)(4b+ 2) = 8n,

has integral solutions. Those solutions are given by formulas

(18)
4a = ((8m+ 4)(s2 + dt2)− 16nstd)/4,

4b+ 2 = (8n(s2 + dt2)− (8m+ 4)2st)/4.

It is easy to see that numbers a and b are integers. Finally, Proposition 2,
Lemma 4 and (17) imply the existence of infinitely many D(8m+4+8n

√
d)-

quadruples.

2) Let z = 8m+ 8n
√
d, where m,n ∈ Z. According to Lemma 3, the set

{1, 9k2 − 8k, 9k2 − 2k + 1, 36k2 − 20k + 1}
has the property D(8m + 8n

√
d), where k = m + n

√
d. This set represents

a D(z)-quadruple if its elements are nonzero and mutually distinct. We
handle these possible undesirable cases as it was described in the proof of
Proposition 1. Further, analogously as in Proposition 1, we conclude that
there exist infinitely many D(z)-quadruples.

3) Let z = l(2k + 1) + 1, where k, l ∈ Z[
√
d]. Lemma 3 implies that the

set

(19) {1

2
l,

1

2
lk2 − 2k − 2,

1

2
l(k + 1)2 − 2k,

1

2
l(2k + 1)2 − 8k − 4}

has the property D(l(2k+ 1) + 1). If we assume that l = α+ β
√
d, where α

and β are odd and k = γ + δ
√
d, then

(20) z = 2αγ + 2βδd+ α+ 1 + (2αδ + 2βγ + β)
√
d
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and z has the form 2ξ+(2η+1)
√
d, ξ, η ∈ Z. Vice versa, if z = 2ξ+(2η+1)

√
d,

then there exist α, β, γ, δ ∈ Z such that (20) holds. The numbers α, β are
chosen as integral solution of the equation x2 − dy2 = ±2 and γ, δ are
solutions of the system

(21)
2αγ + 2βdδ = 2ξ − α− 1,
2βγ + 2αδ = 2η + 1− β.

It remains us to show that γ, δ are integers. We have

γ = ((2ξ − α− 1)2α− (2η + 1− β)2βd)/8,(22)

δ = ((2η + 1− β)2α− (2ξ − 1− α)2β)/8.(23)

and

(2ξ − α− 1)2α− (2η + 1− β)2βd ≡ 0(mod 4),

(2η + 1− β)2α− (2ξ − 1− α)2β ≡ 0(mod 4),

because α, β are odd. Let µ, ν ∈ Z be such that 2ξ − α − 1 = 2µ and
2η+ 1−β = 2ν. The numerator in (22), 4(µα−νβd), is divisible by 8 if and
only if µ and ν are of the same parity. The same conclusion holds for (23). So,
we conclude that γ, δ are integers if and only if 2ξ−α−1 ≡ 2η+1−β ≡ 0 or
2(mod 4). These conditions can be always fulfilled. For instance, if we have
that 2ξ − α − 1 ≡ 0(mod 4) and 2η + 1 − β ≡ 2(mod 4), then we take −α
instead of α.

So, we proved that for each z = 2ξ + (2η + 1)
√
d ∈ Z[

√
d] there exist

l, k ∈ Z[
√
d] such that z = l(2k + 1) + 1. The elements of the set (19)

multiplied by 2 are integers and this set has the property D(4z), i.e.

property D(8ξ + (8η + 4)
√
d), according to Lemma 4. Obviously, infinitely

many of such sets can be constructed, because α and β are solutions of a
Pellian equation.

4) In this step we show the existence of the D(8m + 4 + (8n + 4)
√
d)-

quadruple by using similar idea as in the previous case 3). If we prove that

for arbitrary m,n ∈ Z there exist l, k ∈ Z[
√
d] such that

(24) 2m+ 1 + (2n+ 1)
√
d = l(2k + 1) + 1,

than the set (19) multiplied by 2 represents the D(8m + 4 + (8n + 4)
√
d)-

quadruple. The equation (24) is equivalent to the linear system

(25)
2αγ + 2βdδ = 2m− α,
2βγ + 2αδ = 2n+ 1− β,

where m = α + β
√
d and l = γ + δ

√
d. Now, we take even α and odd β as

a solution of the Pell equation x2 − dy2 = 1 and solve (25) in unknowns γ
and δ,

γ = ((2m− α)2α− (2n+ 1− β)2βd)/4,

δ = ((2n+ 1− β)2α− (2m− 1− α)2β)/4.
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It can be easily verified that γ and δ are integers.
�

Proposition 4. Let z ∈ Z[
√
d] be of the form

4m+ 2 + 4n
√
d,

m, n ∈ Z. There exist infinitely many D(z)-quadruples in Z[
√
d].

Proof. First, let us prove that for each integer 4m + 2 + 4n
√
d there exist

l, k, w ∈ Z[
√
d] such that

(26) 4m+ 2 + 4n
√
d = (l(2k + 1) + 1)w2.

In the case 3) of Proposition 3, it was shown that for given ξ, η ∈ Z there exist

l = α+β
√
d and k = γ+δ

√
d in Z[

√
d] such that 2ξ+(2η+1)

√
d = l(2k+1)+1

and α, β are the solutions of x2 − dy2 = ±2. Hence, instead of proving (26),

we will prove that there exist ξ, η ∈ Z and w ∈ Z[
√
d] such that

(27) 4m+ 2 + 4n
√
d = (2ξ + (2η + 1)

√
d)w2.

The equation (27) is equivalent to the system

(28)
(s2 + dt2)2ξ + (2std)(2η + 1) = 4m+ 2,

(2st)2ξ + (s2 + dt2)(2η + 1) = 4n,

where w = s+ t
√
d. We solve this system in unknowns 2ξ and 2η+ 1. If s, t

are chosen to be solutions of the equation x2− dy2 = ±2, then the solutions
of (28) are given by the formulas

2ξ = ((4m+ 2)(s2 + dt2)− (4n)2std)/4,

2η + 1 = (4n(s2 + dt2)− (4m+ 2)2st)/4.

It can be easily verified that ξ and η are integers, because s, t are odd and
s2 + dt2 ≡ 0(mod 4).

Now, the equation (26), Lemma 2 and Lemma 4 imply that the set

(29) {1

2
lw, (

1

2
lk2 − 2k− 2)w, (

1

2
l(k+ 1)2 − 2k)w, (

1

2
l(2k+ 1)2 − 8k− 4)w}

has the propertyD(4m+2+4n
√
d). Even more, (29) is theD(4m+2+4n

√
d)-

quadruple, because the elements of (29) are in Z[
√
d]. Indeed, the element

1

2
lw =

1

2
(α+ β

√
d)(s+ t

√
d) =

1

2
(αs+ βtd+ (αt+ βs)

√
d)

is obviously in Z[
√
d], because α, β, s, t are odd. The same can be checked

for other elements of (29). Also, it is clear that there are infinitely many
such sets because s and t (and so are α and β) are solutions of the equation
x2 − dy2 = ±2.

�
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3. The nonexistence of Diophantine quadruple

In this part, we will show the sufficiency part of Theorem 1. In fact, we
will show even stronger claims, because we will do not use the assumption
of solvability of the equation x2 − dy2 = ±2 in this section.

Proposition 5. Let d ∈ Z such that d ≡ 3(mod 4). If

z = 4m+ 2 + (4n+ 2)
√
d,

m, n ∈ Z, then there does not exist a Diophantine quadruple with the property
D(z) in the ring Z[

√
d].

Proof. Let us assume that the set {z1, z2, z3, z4} represents the D(4m+ 2 +

(4n + 2)
√
d)-quadruple. Let zi = xi + yi

√
d, for i = 1, 2, 3, 4. From the

definition of a Diophantine quadruple, there exist ξij , ηij ∈ Z for 1 ≤ i <
j ≤ 4 such that

(30) (xi + yi
√
d)(xj + yj

√
d) + z = (ξij + ηij

√
d)2,

for all 1 ≤ i < j ≤ 4. The equation (30) can be written in the following form

(31)
xixj + yiyjd+ 4m+ 2 = ξij

2 + dηij
2,

xiyj + xjyi + 4n+ 2 = 2ξijηij .

By analyzing left sides of (31) in the set of remainders modulo 4, we obtain
that the following condition
(32)
(xixj + yiyj + 2, xiyj + xjyi + 2) mod 4 ∈ {(0, 0), (0, 2), (1, 0), (3, 0)} = S

has to be satisfied. Our intention is to show that there is no quadruple in
Z[
√
d] such that the condition (32) is satisfied.

Initially, let x1 ≡ 1(mod 4) and y1 ≡ 0(mod 4). We choose x2, y2 ∈ Z
such that (32) is fulfilled for i = 1 and j = 2, i.e. such that (x2 + 2, y2 + 2)
mod 4 ∈ S. This implies that

(x2, y2) mod 4 ∈ {(2, 2), (2, 0), (3, 2), (1, 2)}.

First, let us assume that x2 ≡ 2(mod 4) and y2 ≡ 2(mod 4). We add the

third element x3 + y3

√
d which has to satisfy (32) for i = 1, 2 and j = 3.

Obviously, we have (x3, y3) mod 4 ∈ {(2, 2), (2, 0), (3, 2), (1, 2)}. From (32)
for i = 2 and j = 3 we obtain that

(2x3 + 2y3 + 2, 2y3 + 2x3 + 2) mod 4 ∈ S.

Hence,

(x3, y3) mod 4 ∈ {(3, 2), (1, 2)} = T.

If x4 + y4

√
d is the last element of the quadruple, then (32) for i = 1, 2 and

j = 4 implies that (x4, y4) mod 4 ∈ T . The condition (32) for i = 3 and
j = 4, gives us that

(x3x4 + y3y4 + 2, x3y4 + x4y3 + 2) mod 4 ∈ S,
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and, on the other hand, we have that

(x3x4 + y3y4 + 2, x3y4 + x4y3 + 2) mod 4 ∈ T,
for (x3, y3) mod 4 ∈ T and (x4, y4) mod 4 ∈ T . This is a contradiction,
since S ∩ T = ∅.

So, we showed that the set {z1, z2} such that z1 ≡ 1(mod 4) and z2 ≡
2 + 2

√
d(mod 4) can not be extended to a Diophantine quadruple with the

property D(4m + 2 + (4n + 2)
√
d). All the other cases are checked on a

computer by using the algorithm described above. �

The statement in the following proposition is valid for an arbitrary ring
Z[
√
d] without any assumptions on d.

Proposition 6. Let z = a+ b
√
d ∈ Z[

√
d], where b is odd. Then there is no

Diophantine quadruple with the property D(z) in the ring Z[
√
d].

Proof. The proof of Proposition 1 in [1] for d = −2 can be immediately
generalized for an arbitrary d.

�
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