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Abstract. We characterize the existence of infinitely many Diophan-
tine quadruples with the property D(z) in the ring Z[(1+

√
d)/2], where

d is a positive integer such that the Pellian equation x2 − dy2 = 4 is
solvable, in the terms of the representability of z as a difference of two
squares.

1. Introduction

A Diophantine quadruple in a commutative ring R with the unit 1 is the
set of four distinct non-zero elements with the property that the product of
each two distinct elements increased by 1 is a perfect square in R. These
sets owe its name to Diophantus of Alexandria, the first one (as we be-
live) who found such a set among rational numbers, { 1

16 , 33
16 , 17

4 , 105
16 }. Many

centuries later, Fermat found another interesting set, {1, 3, 8, 120}, the first
Diophantine quadruple consisting of integers.

In this paper, we deal with generalized Diophantine quadruples called
Diophantine quadruples with the property D(r), where r ∈ R, i.e. with the
sets of four distinct non-zero elements in R such that the product of each
two distinct elements increased by r is a perfect square in R. Often, we use
the shorter term D(r)-quadruples. The natural problem that arises here is to
describe the set of all r ∈ R such that D(r)-quadruple exists. This problem
has been solved in certain rings. In the ring of integers Z, Brown in [3],
Gupta, Singh in [10] and Mohanty, Ramasamy in [14] proved independently
that if an integer n is congruent to 2 modulo 4, then the D(n)-quadruple
in Z does not exist. On the contrary, Dujella showed in [4] that if n is not
congruent to 2 modulo 4 and n 6∈ {−4,−3,−1, 3, 5, 8, 12, 20} = S, then
a D(n)-quadruple exists. It is interesting that we can state these results as
follows: a D(n)-quadruple exists in Z if and only if n can be represented as a
difference of two squares of integers, up to finitely many possible exceptions.
Let us mention that it was conjectured that for n ∈ S, a D(n)-quadruple
does not exist and some partial results were obtained in [3], [7], [8]. In the
ring of Gaussian integers Z[i], the analogous statement has been shown by
Dujella in [6]. In Z[

√
d] such that d ≡ 3(mod 4) and that one of the equations

x2 − dy2 = ±2 is solvable, a stronger result is valid. Precisely, it was proved
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by the author in [12] that there exist infinitely many D(z)-quadruples if and
only if z can be represented as a difference of two squares in Z[

√
d]. This

assertion was also proved in the ring Z[
√

2] ([11]) and only partially proved
in [1].

Our intention here is to show the equivalence between the existence of
infinitely many D(z)-quadruples and the representability of z as a difference
of two squares in some rings of the form Z[(1+

√
d)/2]. We assume that the

equation x2 − dy2 = 4 is solvable in odd numbers. This assumption allow
us to have a nice characterization of elements in Z[(1 +

√
d)/2] that are

representable as a difference of two squares of elements in Z[(1 +
√

d)/2].
Specifically, according to [9], we have the following result: z ∈ Z[(1+

√
d)/2]

can be represented as a difference of two squares in Z[(1+
√

d)/2] if and only
if z is one of the following forms 2m+1+2n

√
d, 2m+(2n+1)

√
d, 4m+4n

√
d,

4m + 2 + (4n + 2)
√

d,
2m + 1

2
+

2n + 1
2

√
d, where m, n ∈ Z. The proof of

the existence of D(z)-quadruples is based on an effective construction (see
Section 2). On the other hand, if z is not of the above form then we show that
the assumption of the existence of a D(z)-quadruple leads to a contradiction
(see Section 3).

Let us recall several facts concerning our assumption on solvability of the
Pellian equation x2 − dy2 = 4, where d ≡ 1(mod 4) and gcd(x, y) = 1.
The problem of giving necessary and sufficient conditions for the solvability
of this equation is called Eisenstein’s problem in the literature and many
authors have worked on this problem (see [13], [15], [16] for instance). For
an impression, we list all d ∈ N less than 200 such that our assumption is
fulfilled: 5±, 13±, 21+, 29±, 45+, 53±, 61±, 69+, 77+, 85±, 93+, 109±, 117+,
125±, 133+, 149±, 157+, 165+, 173±, 181±, where the superscript + denotes
that the equation x2 − dy2 = 4 is solvable, while the superscript ± denotes
that both of the equations x2 − dy2 = ±4 are solvable. (If x2 − dy2 = −4 is
solvable in odd numbers, then x2−dy2 = 4 is also solvable in odd numbers.)

2. The existence of Diophantine quadruples

The assumptions in this section are that d ∈ N is not a perfect square
and that the Pellian equation x2 − dy2 = 4 is solvable in odd integers x and
y. Consequently, we have that d ≡ 5(mod 8).

For each element z ∈ Z[(1 +
√

d)/2] such that z = a2 − b2, where
a, b ∈ Z[(1+

√
d)/2], Diophantine quadruple with the property D(z) will be

constructed. These elements are described precisely in the following lemma.

Lemma 1. [9, Theorem 1] An element z ∈ Z[(1+
√

d)/2] can be represented
as a difference of two squares in Z[(1 +

√
d)/2] if and only if z has one of
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the following forms

2m + 1 + 2n
√

d, 2m + (2n + 1)
√

d, 4m + 4n
√

d,

4m + 2 + (4n + 2)
√

d,
2m + 1

2
+

2n + 1
2

√
d,

where m, n ∈ Z.

Constructions of some quadruples arise from polynomial formulas for Dio-
phantine quadruples derived in [4] and [5]. The results we need are collected
in the following lemmas.

Lemma 2. [5, Theorem 1] The sets

{m, (3k + 1)2m + 2k, (3k + 2)2m + 2k + 2, 9(2k + 1)2m + 8k + 4},

{m, mk2 − 2k − 2, m(k + 1)2 − 2k, m(2k + 1)2 − 8k − 4}
have the property D(2m(2k + 1) + 1).

Lemma 3. [4] The set

{1, 9k2 − 8k, 9k2 − 2k + 1, 36k2 − 20k + 1}

has the property D(8k) and the set

{4, 9k2 − 5k, 9k2 + 7k + 2, 36k2 + 4k},

has the property D(8k + 1).

Let us mention that by the expression a set with the property D(z) we
mean that the product of each two distinct elements of this set increased by
z is a perfect square, but we allow that some of the elements could be equal
or equal to zero (unlike in the case of Diophantine quadruples).

Often, we use the following simple property.

Lemma 4. Let {z1, z2, z3, z4} be the set with the property D(z). Then the
set {z1w, z2w, z3w, z4w} has the property D(zw2).

The following technical lemma allows us to apply Lemma 2.

Lemma 5. For each M, N ∈ Z, there exist k ∈ Z[(1 +
√

d)/2] and m =
α + β

√
d ∈ Z[

√
d] such that

a: 2M + 1 + 2N
√

d = 2m(k + 1) + 1, k ∈ Z[
√

d] and α2 − dβ2 = 1,
b: 4M+3+(4N+2)

√
d = 2m(2k+1)+1, α, β are odd and α2−dβ2 = 4,

c: 2M + (2N + 1)
√

d = m(2k + 1) + 1, α, β are odd and α2 − dβ2 = 4,
d: 2M + 1 + (2N + 1)

√
d = m(2k + 1) + 1, α2 − dβ2 = ±1,

e: 2M+1
2 + 2N+1

2

√
d = m

2 (2k + 1) + 1, α, β are odd and α2 − dβ2 = 4.

Proof. The proofs of all statements are similar. Thus we provide the proof
only for the statement c.
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Let (α, β) be a solution of the equation x2 −dy2 = 4 in odd integers. The
equation 2M +1+(2N +1)

√
d = m(2k+1)+1 is equivalent to the following

linear system
2αγ + 2βdδ = 2M − α − 1,
2βγ + 2αδ = 2N + 1 − β,

where k = γ + δ
√

d. We solve this system in unknowns γ, δ and obtain that

γ = ±((2M − α − 1)α − (2N + 1 − β)βd)/8,

δ = ±((2N + 1 − β)α − (2M − α − 1)β)/8.

We can choose α, β such that 2M−α−1 ≡ 2N +1−β ≡ 0(mod 4). Then the
numerators in the above expressions for γ, δ are either both congruent to 0
or both congruent to 4 modulo 8 and we showed that k ∈ Z[(1+

√
d)/2]. �

Lemma 6. Let M, N ∈ Z. There exist p, q ∈ Z of different parity and

w =
α

2
+

β

2

√
d such that α, β are solutions of the equation x2 − dy2 = 4 in

odd numbers and that

(1)
2M + 1

2
+

2N + 1
2

√
d = (p + q

√
d)w2.

Proof. The equation (1) can be understood as the system in unknowns p
and q, which solutions are given by

p = ((2M + 1)
α2 + dβ2

2
− (2N + 1)αβd)/4,(2)

q = ((2N + 1)
α2 + dβ2

2
− (2M + 1)αβ)/4.(3)

We choose α, β such that αβ ≡ 3 (mod 4) if M ≡ N (mod 2), and αβ ≡ 1
(mod 4) if M 6≡ N (mod 2). Then it is clear that p, q are integers. Moreover,
p and q are of different parity since the difference of the numerators in (2)
and (3) is

(4) 2(M − N)(
α2 + dβ2

2
+ αβ) + (2N + 1)αβ(1− d) ≡ 0 + 4(mod 8).

�

Theorem 1. If z ∈ Z[(1 +
√

d)/2] can be represented as a difference of
two squares in Z[(1 +

√
d)/2], then there exist infinitely many Diophantine

quadruples with the property D(z) in Z[(1 +
√

d)/2].

Proof. The proof splits into five parts. Each part corresponds to one of the
forms of z given in Lemma 1.

1) Let z = 2M + 1 + 2N
√

d, M, N ∈ Z. According to Lemmas 2 and 5a,
there exist k = γ+δ

√
d and m = α+β

√
d ∈ Z[

√
d] such that z = 2m(k+1)+1

and that the set

(5) D = {m, (
k

2
)2m − k − 2, (

k

2
+ 1)2m − k, (k + 1)2m − 4k − 4}
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has the property D(z). The elements of the set D are not necessarily in
Z[(1 +

√
d)/2]. This condition will be fulfilled if and only if γ, δ are of the

same parity, i.e. if and only if M, N are of the different parity. Hence, if z is
of the form 4M + 3 + 4N

√
d or 4M + 1 + (4N + 2)

√
d, then there exists a

set in Z[(1 +
√

d)/2] with the property D(z). Let us note that if z is of the
form 4M + 3 + 4N

√
d, then D ⊂ Z[

√
d] (because related γ, δ are even).

If the set D consists of non-zero, distinct elements of Z[(1+
√

d)/2], then
D is the D(z)-quadruple. In what follows, we consider the case when at
least two elements of D are equal or the case when an element of D is zero.
Suppose that these cases occur for some z0 of the form 4M + 3 + 4N

√
d (or

4M+1+(4N+2)
√

d). We know that z0 = 2(2k0+1)m0+1, for some k0, m0 ∈
Z[
√

d] (from Lemma 5a). Let S be the set of all numbers 2(2k + 1)m0 + 1,
k ∈ Z[

√
d], of the form 4M + 3 + 4N

√
d such that the related set (5) does

not represent a Diophantine quadruple, precisely such that this set has at
least two elements equal or at least one element equal to zero. Further, let
w = s+ t

√
d ∈ Z[

√
d] be a solution of the Pell’s equation x2−dy2 = 1. Then

z0w
2 is of the same form as z0, i.e. of the form 4M + 3 + 4N

√
d. Also, we

can assume that z0w
2 6∈ S, because S is finite. Hence, related set given by

(5) represents the D(z0w
2)-quadruple. Multiplying each element of this set

by s − t
√

d, we obtain the D(z0)-quadruple, according to Lemma 4.
Since m from set (5) is an arbitrary solution of the Pell’s equation

x2 − dy2 = 1, there exists infinitely many D(z)-quadruples for z of the
above forms.

From now on, we will show only the existence of a set with the property
D(z) in Z[(1+

√
d)/2] (for certain z), since then the same argument as above

will give the existence of infinitely many D(z)-quadruples.
Lemmas 5b and 2 imply that the set

(6) {m, (3k + 1)2m + 2k, (3k + 2)2m + 2k + 2, 9(2k + 1)2m + 8k + 4}

has the property D(4M + 3 + (4N + 2)
√

d).

It remain to prove the existence of a set with the property D(4M + 1 +
4N)

√
d). According to Lemma 2, the set

{2, 2(3k + 1)2 + 2k, 2(3k + 2)2 + 2k + 2, 18(2k + 1)2 + 8k + 4}

has the property D(8M + 5 + 8N
√

d) for k = M + N
√

d and the property

D(8M + 1 + (8N + 4)
√

d) for k =
2M − 1

2
+

2N + 1
2

√
d and according to

Lemma 3, the set

{4, 9k2 − 5k, 9k2 + 7k + 2, 36k2 + 4k}
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has the property D(8M + 1 + 8N
√

d) for k = M + N
√

d, and the property

D(8M + 5 + (8N + 4)
√

d) for k =
2M + 1

2
+

2N + 1
2

√
d.

For all other cases we give only a sketch of the proof.

2) The existence of D(2M + (2N + 1)
√

d)-quadruple is a direct conse-
quence of Lemmas 2 and 5c.

3) The existence of D(4m+4n
√

d)-quadruples can be shown in four steps.
Lemma 3 implies that the set

{1, 9k2 − 8k, 9k2 − 2k + 1, 36k2 − 20k + 1}

has the property D(8M + 8N
√

d), where k = M + N
√

d.
Multiplying the elements of a D(2M + (2N + 1)

√
d)-quadruple by 2, we

obtain the D(8M + (8N + 4)
√

d)-quadruple.
Lemmas 2 and 5d give us the set

{m

2
, k2m

2
− k − 2, (k + 1)2

m

2
− k, (2k + 1)2

m

2
− 4k − 4}

with the property D(2M + 1 + (2N + 1)
√

d). Multiplying the elements of
this set by 2, we get a set with the property D(8M + 4 + (8N + 4)

√
d) in

Z[(1 +
√

d)/2].
The D(8M + 4 + 8N

√
d)-quadruple can be obtained by multiplying the

elements of the D(2M + 1 + 2N
√

d)-quadruple by 2.

4) According to Lemmas 2 and 5e, we obtain that the set

{m

2
, k2m

2
− k − 2, (k + 1)2

m

2
− k, (2k + 1)2

m

2
− 4k − 4}

has the property D(
2M + 1

2
+

2N + 1
2

√
d). It is easy to see that we get a

set with the property D(4M +2+(4N +2)
√

d) by multiplying the elements
of the above set by 2.

5) This case follows from Lemma 6, and already proved cases 1 and 2.
�

3. The nonexistence of a Diophantine quadruple

Suppose that z cannot be represented as a difference of two squares in
Z[(1+

√
d)/2]. Then, according to Lemma 1, z must be of the form 4m+2+

4n
√

d, 4m+(4n+2)
√

d or 2m+1+(2n+1)
√

d, m, n ∈ Z. For the elements
of these forms we will show that D(z)-quadruple does not exist. The only
assumption required here is that d ≡ 5(mod 8)
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Theorem 2. Let z ∈ Z[(1 +
√

d)/2] be of the form 4m + 2 + 4n
√

d, 4m +
(4n+2)

√
d or 2m+1+(2n+1)

√
d, where m, n ∈ Z. Then a D(z)-quadruple

in z ∈ Z[(1 +
√

d)/2] does not exist.

Proof. Suppose that z is of the form 4m+2+4n
√

d and that the D(4m+2+
4n

√
d)-quadruple exists. According to its definition, there exist ui + vi

√
d ∈

Z[(1 +
√

d)/2], i = 1, 2, 3, 4, such that

(ui + vi

√
d)(uj + vj

√
d) + 4m + 2 + 4n

√
d = (γij + δij

√
d)2,

for 1 ≤ i < j ≤ 4 and for some γij + δij

√
d ∈ Z[(1 +

√
d)/2]. Thus, we have

uiuj + vivjd + 4m + 2 = γ2
ij + dδ2

ij ,

uivj + ujvi + 4n = 2γijδij .

We change the variables as follows: xi = 2ui and yi = 2vi for i = 1, 2, 3, 4,
ξij = 2γij and ηij = 2δij for 1 ≤ i < j ≤ 4. So, we obtain that

(7)
xixj + yiyjd + 16m + 8 = ξ2

ij + dη2
ij ,

xiyj + xjyi + 16n = 2ξijηij ,

where xi, yi, ξij, ηij ∈ Z and xi ≡ yi(mod 2), ξij ≡ ηij(mod 2). Now, let us
assume that d ≡ 5(mod 16). It can be shown that in this case

(ξ2
ij + dη2

ij , 2ξijηij) mod 16 ∈ S,

where S = {(0, 0), (4, 0), (6, 2), (6, 14), (8, 8), (14, 6), (14, 10)}. Thus, if (xi +
yi

√
d)/2 and (xj + yj

√
d)/2 are the elements of the quadruple, then it has

to hold that

(8) (xixj + 5yiyj + 8, xiyj + xjyi) mod 16 ∈ S.

Further, we show that there are no integers xi, yi, i = 1, 2, 3, 4, of the same
parity such that condition (8) is fulfilled. For instance, let x1 ≡ 1(mod 16)
and y1 ≡ 5(mod 16). Then, if we require that (x2 + y2

√
d)/2 is the next

element of the quadruple, then (8) implies that

(x2 + 25y2 + 8, y2 + 5x2) mod 16 ∈ S.

Therefrom, we get that

(x2, y2) mod 16 ∈ T,

where T = {(0, 6), (0, 14), (2, 6),(2, 14), (3, 1), (3, 3),(3, 11),(4, 2),(4, 10),
(6, 2),(6, 10), (7, 7),(7, 13),(7, 15),(8, 6),(8, 14),(10, 6),(10, 14),(11, 3),(11, 9),
(11, 11), (12, 2),(12, 10),(14, 2),(14, 10),(15, 5),(15, 7),(15, 15),(16, 6),(16, 14)}.
Next, let us assume that x2 ≡ 0(mod 16) and y2 ≡ 6(mod 16). If
(x3 + y3

√
d)/2 is the third element of the quadruple, then we check the

condition (8) for i = 1, 2 and j = 3. Thereby, we obtain that (x3, y3)
mod 16 ∈ T and that (14y3 + 8, 6x3) mod 16 ∈ S. These two conditions
imply that (x3, y3) mod 16 ∈ V , where V = {(3, 1), (7, 13),(11, 9), (15, 5)}.
Finally, let us assume that x3 ≡ 3(mod 16) and y3 ≡ 1(mod 16). Then
(x4+y4

√
d)/2, the forth element of the quadruple, must satisfy the following
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conditions: (x4, y4) mod 16 ∈ V and (3x4 + 5y4 + 8, 3y4 + x4) ∈ S. But
these conditions cannot both be satisfied, because (3x4 + 5y4 + 8, 3y4 + x4)
mod 16 ∈ {(6, 6), (14, 14)}∩ S = ∅, for all (x4, y4) mod 16 ∈ V .

So far, we showed that the set {(x1 + y1

√
d)/2, (x2 + y2

√
d)/2, (x3 +

y3

√
d)/2} such that x1 ≡ 1(mod 16), y1 ≡ 5(mod 16), x2 ≡ 0(mod 16),

y2 ≡ 6(mod 16) and x3 ≡ 3(mod 16), y3 ≡ 1(mod 16) cannot be extended
to a D(4m + 2 + 4n

√
d)-quadruple. All the other cases are checked similarly

by the assistance of computer.
The analogous result is also true for d ≡ 13(mod 16), and the only differ-

ence is that we take S ′ = {(0, 0), (4, 0), (6, 6), (6, 10), (8, 8), (14, 2), (14, 14)}
instead of S in (8).

Now, if z is of the form 4m + (4n + 2)
√

d, then a similar procedure as in
the previous case can be performed. Instead of condition (8), the following
condition is used

(xixj + 5yiyj , xiyj + xjyi + 8) mod 16 ∈ S,

under the assumption that d ≡ 5(mod 16).

Finally, if z is of the form 2m+1+(2n+1)
√

d, then, in the same manner,
we verify each of the four cases, 4m± 1+(4n± 1)

√
d. For each case, we use,

instead of (8), the following condition

(xixj + 5yiyj ± 4, xiyj + xjyi ± 4) mod 16 ∈ S.

�
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