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Computing relative power integral bases in a family of quartic
extensions of imaginary quadratic fields

By Zrinka Franušić and Borka Jadrijević

Abstract. Let M = Q(
√
−D) be an imaginary quadratic field with ring of integers

ZM and let ξ be a root of the polynomial f(x) = x4 − 2cx3 + 2x2 + 2cx + 1, where

c ∈ ZM \ {0,±2} and c 6= ±1 if D = 1 or 3. We consider an infinite family of octic

fields Kc = M (ξ) with the ring of integers ZKc . Our goal is to determine all generators

of relative power integral basis of O =ZM [ξ] over ZM . We show that our problem

reduces to solving the system of relative Pellian equations cV 2 − (c+ 2)U2 = −2µ,

cZ2 − (c− 2)U2 = 2µ, where µ is an unit in ZM . We solve the system completely and

find that all non-equivalent generators of power integral bases of O over ZM are given

by α = ξ, 2ξ − 2cξ2 + ξ3 for |c| ≥ 159108 and |c| ≤ 1000, c /∈ Sc (where Sc is a set

of exceptional cases, |Sc| = 28). Also, we find that, in all above cases, O admits no

absolute power integral basis if −D ≡ 2, 3(mod 4).

1. Introduction

Let K be an algebraic number field of degree n, ZK its ring of integers and

{1, ω2, . . . , ωn} an integral basis of K. It is a classical problem in algebraic number

theory to decide if there exists an element α = x1 +x2ω2 + · · ·+xnωn ∈ ZK such

that powers of α constitute a power integral basis, ie. an integral basis of the form{
1, α, α2, . . . , αn−1

}
. It has been shown that if such an α exists, then

I(x2, . . . , xn) = ±1, (1)
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where I (X2, . . . , Xn) is a homogenous polynomial of degree n(n−1)
2 with rational

integer coefficients called index form. Hence, solving (1) in rational integers yields

all generators of the power integral basis and the diophantine equation (1) is called

index form equation.

The index form equations are mostly very complicated diophantine equations.

In some particular types of fields, by studying the structure of index form, it a

correspondence between the index form equation and simpler types of equations

has been found (for a survey see [4]). In [6, 7], I. Gaál, A. Pethő and M. Pohst

showed that a resolution of index form equations in any quartic field can be

reduced to the resolution of cubic and several corresponding Thue equations. In

[5], I. Gaál, and M. Pohst extended some basic ideas and developed a method

of determining generators of a power integral basis to relative quartic extension

fields K over base fields M .

Algorithms for solving index form equations have been applied to several

infinite parametric families of certain fields. In particular, I. Gaál and T. Szabó

in [8] applied the method described in [5] to three infinite parametric families of

octic fields that are quartic extensions of imaginary quadratic fields. By using

results on infinite parametric families of relative Thue equations given in [11] and

[10], they found all non-equivalent generators of relative power integral basis for

infinite values of parameter.

In this paper, we consider an infinite family of octic fields Kc = M(ξ) with

ring of integers ZKc , where M is an imaginary quadratic field with the ring of

integers ZM and ξ is a root of polynomial

f(t) = t4 − 2ct3 + 2t2 + 2ct+ 1, (2)

where c ∈ ZM \ {0,±2} and c 6= ±1 if D = 1 or 3. Since integral basis of Kc

is not known in a parametric form, our goal is to determine all generators of

relative power integral basis of O =ZM [ξ] over ZM (instead of ZKc
over ZM ).

The elements of O that differ by an unit factor or translation by an element of

ZM have the same relative indices, and are called equivalent. Therefore, it is

enough to find all non-equivalent generators of relative power integral basis, and

it has been shown that there are only finitely many such generators.

The paper is organized as follows. In Section 2 we briefly describe the method

of I. Gaál, and M. Pohst given in [5]. In Section 3 we apply that method to

the problem described above. We show that our problem reduces to solving

a system of relative Pellian equations over M and apply some results given in

[10]. In Section 4, by combining the congruence method with an extension of

Bennett’s theorem given in [10], we solve the system completely and find all non-

equivalent generators of power integral basis of O over ZM if the absolute value



Computing relative power integral bases 3

of the parameter c is large enough (|c| ≥ 159108). In Section 5 we assume that

|c| < 159108 and apply a theorem of Baker and Wüstholz and a version of the

reduction procedure due to Baker and Davenport. Without proving that the

corresponding linear form Λ 6= 0, we cannot apply Baker’s theory. The proof of it

given in 5.1 is long and rather complicated. We were not able to perform reduction

procedure for all values of |c| < 159108 because we estimated that it would last

more than 1010 sec. (in Mathematica on a simple PC). So, we have performed

reduction procedure for |c| ≤ 1000. Section 6 is devoted to the exceptional cases

c ∈ Sc. In the last section we examine whether the order O =ZM [ξ] admits an

absolute power integral basis. Our main result is the following theorem.

Theorem 1. Assume that D is a square free positive integer, M = Q(
√
−D)

is an imaginary quadratic field with ring of integers ZM and ξ is a root of the

polynomial (2), where c ∈ ZM \ {0,±2} and c 6= ±1 if D = 1 or 3. Then

Kc = M(ξ) is an octic field and all non-equivalent generators of power integral

basis of O = ZM [ξ] over ZM are given by

α = ξ, 2ξ − 2cξ2 + ξ3 (3)

in each of the following cases:

i) for all D and |c| ≥ 159108,
ii) for all D, c /∈ Sc and |c| ≤ 1000 or Re(c) = 0, where

Sc = {±1,±
√
−1,±1±

√
−1,±2±

√
−1,±1±

√
−2,±1±

√
−3,
±1±

√
−3

2
,
±3±

√
−3

2
},

(4)

with mixed signs.

Proof of Theorem 1. Immediate from Corollary 5, propositions 15, 21

and Corollary 20. �

The current work supports the following conjecture.

Conjecture 2. All non-equivalent generators of power integral basis of

O =ZM [ξ] over ZM are given by (3) for all D and c /∈ Sc ∪ {0,±2}.

Also, we prove the following theorem.

Theorem 3. If D ≡ 2, 3 (mod 4), then O admits no absolute power integral

basis. In particular, in the cases given in Theorem 1, O admits no absolute power

integral basis.
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2. Preliminaries

Since we are going to apply the method of I. Gaál and M. Pohst given in

[5], we begin with a brief description of it. Let M be a field of degree m and

K = M(ξ) its quartic extension generated by an algebraic integer ξ with relative

minimal polynomial

f(t) = t4 + a1t
3 + a2t

2 + a3t+ a4 ∈ ZM [t].

Let ZK and ZM denote the ring of integers of K and M, respectively. Also,

assume that d is the smallest natural number with the property dZK ⊆ ZM [ξ]

and i0 =
[
Z+
K : ZM [ξ]

+
]
. Then each α ∈ ZK can be represented in the form

α =
1

d

(
a+ xξ + yξ2 + zξ3

)
, a, x, y, z ∈ ZM . (5)

The (absolute) index of α can be factorized in the form I(α) = [Z+
K : ZM [α]+]·

[ZM [α]+ : Z[α]+]. An element α generates a relative power integral basis of K

over M if and only if the relative index IK/M (α) =
[
Z+
K : ZM [α]

+
]

of α is equal

to 1. Let

F (u, v) = u3 − a2u
2v + (a1a3 − 4a4)uv2 + (4a2a4 − a2

3 − a2
1a4)v3 (6)

be a binary cubic form over ZM , and

Q1(x, y, z) = x2−xya1+y2a2+xz(a2
1−2a2)+yz(a3−a1a2)+z2(a2

2+a4−a1a3), (7)

Q2(x, y, z) = y2−xz−yza1 +a2z
2 (8)

be ternary quadratic forms over ZM . If α ∈ ZK given by (5) generates a relative

power integral basis of ZK over ZM , then there is a solution (u, v) ∈ Z2
M of

F (u, v) = δε, (9)

where

u = Q1(x, y, z), v = Q2(x, y, z), (10)

δ is an integer in M of the norm ±d6m/i0 and ε is an unit in M . Hence in (9), the

full set of nonassociated elements δ of the norm ±d6m/i0 has to be considered.

In order to find all non-equivalent generators of relative power integral basis of

ZK , the first step consists of determining all (nonassociated) solutions (u, v) ∈ Z2
M
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of (9). In the next step, we have to find all (x, y, z) ∈ Z3
M corresponding to a

fixed solution (u, v). To this purpose we solve the equation

Q0(x, y, z) = uQ2(x, y, z)− vQ1(x, y, z) = 0. (11)

It is possible to decide if (11) has nontrivial solutions and if so, all solutions of (11)

can be given in a parametric form (with two parameters p and q). By substituting

these parametric representations of u and v into the original system (10), it can

be shown that at least one of the equations in (10) is a quartic Thue equation

over ZM . By solving that Thue equation, we are able to determine all parameters

(p, q) ∈ Z2
M up to unit factors in M . Hence, we can calculate all (x, y, z) ∈ Z3

M

up to an unit factor of M , as well. Then all generators of power integral basis of

ZK over ZM are of the form α = 1
d (a + η(xξ + yξ2 + zξ3)), where a ∈ ZM and

the unit η ∈ M are arbitrary. Consequently, all generators α of a power integral

basis of ZK over ZM are determined up to equivalence (i.e. up to multiplication

by units in M or translation by elements in ZM ), so it is enough to look for those

of the form α = 1
d (xξ + yξ2 + zξ3). Also, there are finitely many non-equivalent

generators of a power integral basis of ZK over ZM .
Our purpose is to describe the relative power integral bases of either O =ZK

over ZM (if the integer basis of K is known) or of O = ZM [ξ] over ZM . Note that

in the case O =ZM [ξ], ξ itself is a generator of a relative power integral basis but

we wonder if there exists any other non-equivalent generator of power integral

bases. Also, we have i0 = d = 1.

3. Simultaneous Pellian equations

Let D be a square free positive integer and let M = Q(
√
−D) be an imaginary

quadratic field with ring of integers ZM . Let ξ be a root of the polynomial (2),

where c ∈ ZM . The field Kc = M(ξ) is an octic field if and only if the polynomial

(2) is irreducible over ZM .

Lemma 4. The polynomial f(t) given in (2) is reducible over ZM if and

only if c = 0,±2 or c = ±1 and D = 1 or 3.

Proof. Let ξ be a root of polynomial f(t) given in (2), where c ∈ ZM .

Since f(t) is a monic polynomial with coefficients in ZM , ζ is an algebraic integer

over M. Hence, if f is reducible over ZM , then f can be factorized as a product

of at least two non-constant monic polynomials with coefficients in ZM . It is

enough to observe the following cases: f(t) =
(
t2 + at+ b

) (
t2 + dt+ h

)
and
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f(t) = (t+ b)
(
t3 + at2 + dt+ h

)
, where a, b, d, h ∈ ZM . The first case leads to

the system

a+ d = −2c, b+ h+ ad = 2, bd+ ah = 2c, bh = 1, (12)

and the second to the system

a+ b = −2c, d+ ab = 2, h+ bd = 2c, bh = 1. (13)

Since in both cases we have bh = 1, then b, h are units in ZM and (b, h) ,

(h, b) ∈ A ∩ Z2
M , where A =

{
(1, 1) , (−1,−1) , (i,−i) ,

(
ω, ω2

)
,
(
−ω,−ω2

)}
and

ω = −1+
√
−3

2 . By solving (12) and (13), we obtain that the polynomial f is re-

ducible only if one of the following holds:

(1) c = 0, f(t) =

{ (
t2 + 1

)2
, if D 6= 1

(t+ i)
2

(t− i)2
, if D = 1

,

(2) c = ±2, f(t) =
(
t2 ∓ 2t− 1

)2
,

(3) c = ±1, D = 1, 3,

f(t) =

{ (
t2 − (

√
−3± 1)t− 1

) (
t2 + (

√
−3∓ 1)t− 1

)
, if D = 3(

t2 + (∓1± i) t+ i
) (
t2 + (∓1∓ i) t− i

)
, if D = 1

.

�

Corollary 5. The field Kc = M(ξ) is an octic field if and only if c ∈
ZM\{0,±2} and c 6= ±1 if D = 1 or 3.

Therefore, from now on we assume that c ∈ ZM\ {0,±2} and c 6= ±1 if

D = 1 or 3 and we consider an infinite family of octic fields Kc = M(ξ) with ring

of integers ZKc .

Since the integral basis of Kc is not known in a parametric form, our goal

is to determine all non-equivalent generators α of relative power integral basis of

O =ZM [ξ] over ZM (instead of ZKc
over ZM ). So, (9) is of the form

F (u, v) = (u+ 2v) (u− 2 (c+ 1) v) (u+ 2 (c− 1) v) = ε, (14)

where ε is an unit in M, ie. ε ∈ {±1,±i,±ω,±ω2} ∩ ZM and (7), (8) can be

rewritten as

Q1(x, y, z) = x2 + 2cxy + 2y2 + 4(c2 − 1)xz + 6cyz + z2(4c2 + 5),

Q2(x, y, z) = y2 − xz + 2cyz + 2z2.
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According to (14) we conclude that u − 2v, u − 2 (c+ 1) v, u + 2 (c− 1) v are

units in ZM and that implies v = 0. Therefore, all solutions of (14) are given by

(u, v) = (η, 0), where η is an unit in ZM . Since v = 0, the equation (11) implies

Q2(x, y, z) = y2 − xz + 2cyz + 2z2 = 0, (15)

and (x, y, z) = (2, 0, 1) is one nontrivial solution of (15). Therefore, all solutions

can be parameterized by

x = 2r + p, y = q, z = r, (16)

where p, q, r ∈ M and r 6= 0. By substituting (16) into (15), we obtain q2 =

r(p− 2cq). Further, if we multiply (16) by k = p− 2cq, we get

kx = 2q2 + p2 − 2cqp, ky = qp− 2cq2, kz = q2. (17)

We can assume that k, p, q ∈ ZM and since the corresponding determinant equals

1, the parameter k must be an unit in ZM . Now, by substituting kx, ky, kz given

by (17) into the equation Q1(x, y, z) = η (η is an unit in ZM ) we obtain

p4 − 2cp3q + 2p2q2 + 2cpq3 + q4 = µ, (18)

where µ = k2η is an unit in ZM . This is a relative Thue equation over ZM and it

can be transformed into a system of Pellian equations

cV 2 − (c+ 2)U2 = −2µ, (c− 2)U2 − cZ2 = −2µ, (19)

by putting

U = p2 + q2, V = p2 + 2pq − q2, Z = −p2 + 2pq + q2. (20)

Both of equations in (19) are of the same form as the equation already studied in

[10], ie. of the form

(k − 1)x2 − (k + 1)y2 = −2µ. (21)

Proposition 6 ([10, Proposition 5.2]). Let k ∈ ZM and let µ ∈ ZM be an

unit. Suppose |k| ≥ 2 or k is not an element of the set

S = {0,±1,±
√
−1,±1±

√
−1,±

√
−2,±

√
−3,±ω,±ω2},

with mixed signs, where ω = −1+
√
−3

2 . If the equation (21) is solvable, then

µ ∈ {1,−1, ω, ω2}. All solutions are of the form (x, y) = (±xm,±ym), with mixed

signs, where the sequences (xm) and (ym) are given by the recurrence relations

x0 = ε, x1 = ε(2k + 1), xm+2 = 2kxm+1 − xm, m ≥ 0,

y0 = ε, y1 = ε(2k − 1), ym+2 = 2kym+1 − ym, m ≥ 0,

where ε = 1,
√
−1, ω2, ω corresponds to µ = 1,−1, ω, ω2, respectively.
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Proposition 6 implies that if c 6∈ Sc, where Sc is given in (4), and if the system

(19) is solvable, then µ ∈ {1,−1, ω, ω2}. Furthermore, if (U, V, Z) is a solution of

(19), then

U = ±um = ±u′n

for some n,m ∈ N0, with mixed signs, where um, u′n are given by

u0 = ε, u1 = ε(2c+ 1), um+2 = (2c+ 2)um+1 − um, (22)

u′0 = ε, u′1 = ε(2c− 1), u′n+2 = (2c− 2)u′n+1 − u′n (23)

and ε = 1,
√
−1, ω2, ω corresponds to µ = 1,−1, ω, ω2. Evidently, U = ±u0 =

±u′0 = ±ε. So, the next step consists of determining eventual intersections of

sequences (±um) and (±u′n) for m,n ≥ 1.

4. Proof of the main Theorem for |c| ≥ 159 108

In this section we apply the congruence method introduced in [2] to obtain

lower bound for |U |. Combining that result with a generalization of Bennett’s

theorem, we are able to solve the system (19) for large values of |c|.

Lemma 7. Let |c| ≥ 2. Sequences (um) and (u′n) given by (22) and (23)

satisfy the following inequalities

(2|c| − 3)m ≤ |um| ≤ (2|c|+ 3)m, (2|c| − 3)n ≤ |u′n| ≤ (2|c|+ 3)n, for m,n ≥ 0.

(24)

Proof. The inequality for |u′n| is given in [10, Lemma 5.5.]. Similarly, we

prove the other one. �

Lemma 8. Sequences (±um) and (±u′n) given by (22) and (23) satisfy the

following congruences

um ≡ ε(1 +m(m+ 1)c) (mod 4c2), (25)

u′n ≡ (−1)nε(1− n(n+ 1)c) (mod 4c2), (26)

for m,n ≥ 0.

Proof. The congruence relation for u′n has already been proved in [10,

Lemma 6.2.]. The other relation can be easily shown by induction. �
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Proposition 9. Let c /∈ Sc. If um = ±u′n, then

m ≥
√

2|c|+ 0.25− 0.5 or n ≥
√

2|c|+ 0.25− 0.5 or m = n = 0. (27)

Proof. If um = ±u′n, then Lemma 8 implies that

ε(1 +m(m+ 1)c) ≡ ±(−1)nε(1− n(n+ 1)c) (mod 4c2).

Therefore we have the congruence relation ε(1 ∓ (−1)n) ≡ 0 (mod 2c). If ε(1 ∓
(−1)n) 6= 0, then |ε(1 ∓ (−1)n)| = 2 and |c| = 1, which is not possible. So, we

conclude that ∓(−1)n = −1 and ε(1 +m(m+ 1)c) ≡ ε(1−n(n+ 1)c) (mod 4c2).

Furthermore,

ε

(
m(m+ 1)

2
+
n(n+ 1)

2

)
≡ 0 (mod 2c). (28)

Consider the algebraic integer A = ε
2 (m(m+ 1) +n(n+ 1)). It is clear that A 6= 0

for m > 0 or n > 0. So, (28) implies that |A| ≥ 2|c|. Hence, m(m + 1) ≥ 2|c| or

n(n+ 1) ≥ 2|c| imply the inequalities in (27). �

Finally, the previous proposition yields a lower bound for a nontrivial solution

of equations in (19). Directly from Lemma 7 and Proposition 9 we get:

Corollary 10. Let c /∈ Sc. If U ∈ ZM\{±ε} is a solution of the system (19),

then

|U | ≥ (2|c| − 3)
√

2|c|+0.25−0.5.

Now, we will find an upper bound for |U | by using a generalization of Ben-

nett’s theorem for imaginary quadratic fields stated and proved in [10]:

Theorem 11 ([10, Theorem 7.1]). Let θi =
√

1 + ai
T for 1 ≤ i ≤ m, with ai

pairwise distinct imaginary quadratic integers in K := Q(
√
−D) with 0 < D ∈ Z

for i = 0, . . . ,m and let T be an algebraic integer of K. Furthermore, let A :=

max |ai|, |T | > A and a0 = 0 and

l = cm
(m+ 1)m+1

mm
· |T |
|T | −A

, L = |T |m (m+ 1)m+1

4mm
∏

0≤i<j≤m |aj − ai|2
·
(
|T | −A
|T |

)m
,

p =

√
2|T |+ 3A

2|T | − 2A
, P = |T | · 2m+3

∏
0≤i<j≤m |ai − aj |2

mini 6=j |ai − aj |m+1
· 2|T |+ 3A

2|T |
,

where cm =
3Γ(m− 1

2 )
4
√
πΓ(m+1)

, such that L > 1, then

max

(∣∣∣∣θ1 −
p1

q

∣∣∣∣ , . . . , ∣∣∣∣θm − pm
q

∣∣∣∣) > cq−λ
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for all algebraic integers p1, . . . , pm, q ∈ K, where

λ = 1 +
logP

logL
and C−1 = 2mpP (max {1, 2l})λ−1

.

The first step in the application of Theorem 11 consists of choosing suitable

values for θ1 and θ2. Let (U, V, Z) ∈ Z3
M be a solution of the system of Pellian

equations in (19). The candidates for θ1 and θ2 are

θ
(1)
1 = ±

√
c+ 2

c
, θ

(1)
2 = ±

√
c− 2

c
, θ

(2)
1 = −θ(1)

1 , θ
(2)
2 = −θ(1)

2 , (29)

where the signs are chosen such that |V − θ(1)
1 U | < |V − θ(2)

1 U | and |Z − θ(1)
2 U | <

|V − θ(2)
2 U |. The next lemma shows that V

U and Z
U are good approximations to

the algebraic numbers θ
(1)
1 and θ

(1)
2 .

Lemma 12. Let |c| > 2. If (U, V, Z) ∈ Z3
M is a solution of (19), then

max

{∣∣∣∣θ(1)
1 − V

U

∣∣∣∣ , ∣∣∣∣θ(1)
2 − Z

U

∣∣∣∣} ≤ 2√
|c|(|c| − 2)

|U |−2.

Proof. The inequality for θ
(1)
2 is proved in [10, Lemma 8.1]. Similarly, we

prove the other inequality for θ
(1)
2 . �

We apply Theorem 11 with m = 2, θ1 = θ
(1)
1 , θ2 = θ

(1)
2 , a1 = 2, a2 = −2,

A = 2, T = c, with |T | = |c| > 2,

l =
27

64

|c|
|c| − 2

, L =
27

4096
(|c|−2)2 > 1 if |c| ≥ 15, p =

√
|c|+ 3

|c| − 2
, P = 1024(|c|+3),

λ = 1+
log 1024 + log(|c|+ 3)

log 27− log 4096 + 2 log(|c| − 2)
, C−1 = 4096(|c|+3)

√
|c|+ 3

|c| − 2
if |c| ≥ 13.

Finally, Lemma 12 and Theorem 11 for p1 = V , p2 = Z and q = U give us the

inequality

2√
|c|(|c| − 2)

≥ max

{∣∣∣∣θ1 −
V

U

∣∣∣∣ , ∣∣∣∣θ2 −
Z

U

∣∣∣∣} · |U |2 > C|U |2−λ.

So, if 2− λ > 0, then the upper bound obtained for |U | is

log |U | < 1

2− λ
· log(

2C−1√
|c|(|c| − 2)

). (30)
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It can be shown that 2 − λ > 0 for |c| ≥ 155 352. Now, we use the lower bound

for |U | given in Corollary 10 and obtain

log |U | ≥ (
√

2|c|+ 0.25− 0.5) log(2|c| − 3), |c| > 2. (31)

Comparing (30) and (31) we get an inequality which does not hold for |c| ≥
159 108. Therefore, we have proved the following assertion.

Proposition 13. For |c| ≥ 159 108, the only solutions of the system (19)

are (U, V, Z) = (±ε,±ε,±ε) with mix signs and ε = 1, i, ω, ω2 corresponding to

µ = 1,−1, ω, ω2, respectively.

Let (p, q) ∈ Z2
M be a solution of (18) and let |c| ≥ 159 108. From Proposition

13 and equations in (20), we have

U = p2 + q2 = ±ε, V = p2 + 2pq − q2 = ±ε, Z = −p2 + 2pq + q2 = ±ε,

where ε = 1, i, ω, ω2. Adding V and Z yields 2pq = 0,±ε. Since |2pq| ≥ 2 or

|2pq| = 0, we have 2pq = 0. Hence, either p or q is equal to 0 which implies

p4 = µ and q = 0 or q4 = µ and p = 0, where µ ∈ {1,−1, ω, ω2}. So the following

theorem is obtained immediately.

Theorem 14. Let c /∈ Sc. If the equation (18) is solvable in (p, q) ∈ Z2
M ,

then µ ∈ {1,−1, ω, ω2} where ω = 1
2 (−1 +

√
−3). Furthermore, if |c| ≥ 159 108,

then all solutions of (18) are given by

1. (p, q) ∈ {(0,±1), (±1, 0), (0,±i), (±i, 0)} ∩ Z2
M if µ = 1;

2. (p, q) ∈ {(0,±ω), (±ω, 0)} ∩ Z2
M if µ = ω;

3. (p, q) ∈ {(0,±ω2), (±ω2, 0)} ∩ Z2
M if µ = ω2.

Note that if µ = −1 and |c| ≥ 159 108, then there is no solution of (18). The

equations in (5), (17) and Theorem 14 imply the following proposition directly.

Proposition 15. If |c| ≥ 159 108, then all non-equivalent generators of rel-

ative power integral basis of O =ZM [ξ] over ZM are α = ξ, 2ξ − 2cξ2 + ξ3.

Remark 4.1. Note that (U, V, Z) = (±ε,±ε,±ε) with mixed signs and ε = 1,

i, ω, ω2 corresponding to µ = 1,−1, ω, ω2, respectively, are solutions of the system

(19) for all c ∈ ZM . This implies that α = ξ, 2ξ − 2cξ2 + ξ3 are non-equivalent

generators of power integral basis for all c ∈ ZM\ {0,±2} and c 6= ±1 if D = 1 or

3.
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5. Applying Baker’s theory for |c| < 159 108

In this section we apply Baker’s theory on linear forms in the logarithms of

algebraic numbers. So, first let us show that um = ±u′n leads to such a linear

form.

Assume that |c| < 159 108, c /∈ Sc and Re(c) ≥ 0. Indeed, if Re(c) < 0, then

by replacing c in the system (19) by −c, we obtain the system (c− 2)U2− cV 2 =

−2µ, cZ2 − (c + 2)U2 = −2µ, which corresponds to the initial system (19) by

switching places of Z and V . Therefore, it is enough to observe only c’s with

Re(c) ≥ 0. Let us agree that the square root of a complex number z = reiϕ,

−π < ϕ ≤ π is given by
√
z =
√
rei

ϕ
2 , i.e. the one with a positive real part (or

the principal square root).

Let (U, V, Z) be a solution of the system (19). In Section 3 we showed that

there exists m ≥ 0 such that U = ±um, where the sequence (um) is given by (22).

Solving the recursion in (22) yields an explicit expression for um:

um=ε
(c+

√
c(c+2))(c+ 1 +

√
c(c+ 2))m−(c−

√
c(c+ 2))(c+ 1−

√
c(c+ 2))m

2
√
c(c+2)

.

(32)

Since Re(c) ≥ 0, |c+1+
√
c(c+ 2)|·|c+1−

√
c(c+ 2)| = 1 and |c+1+

√
c(c+ 2)| 6=

|c + 1 −
√
c(c+ 2)| for c 6= 0,−1,−2, we have |c + 1 +

√
c(c+ 2)| > 1 (and

|c+ 1−
√
c(c+ 2)| < 1). So, we put

P =
1√
c+ 2

(c+
√
c(c+ 2))(c+ 1 +

√
c(c+ 2))m. (33)

It is easy to show that

um =
ε

2
√
c
(P +

2c

c+ 1
P−1), (34)

since
√
c(c+ 2) =

√
c
√

(c+ 2) if Re(c) ≥ 0 (because
√
z1z2 =

√
z1
√
z2 is not true

in general) and

P−1 =

√
c+ 2

2c
(
√
c(c+ 2)− c)(c+ 1−

√
c(c+ 2))m.

Analogously, there exists n ≥ 0 such that U = ±u′n, where the sequence (u′n) is

given by (23) and its explicit expression is

u′n=ε
(c+

√
c(c−2))(c− 1 +

√
c(c−2))n−(c−

√
c(c−2))(c−1−

√
c(c−2))n

2
√
c(c−2)

.

(35)
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Also, since |c − 1 +
√
c(c− 2)| 6= |c − 1 −

√
c(c− 2)| for c 6= 0, 1, 2 and |c − 1 +√

c(c− 2)| · |c− 1−
√
c(c− 2)| = 1, we put

Q =
1√
c− 2

(c+
√
c(c− 2))(c− 1 +

√
c(c− 2))n, (36)

if |c − 1 +
√
c(c− 2)| > 1. Alternatively, if |c − 1 +

√
c(c− 2)| < 1, ie. |c − 1 −√

c(c− 2)| > 1, we put

Q =
1√
c− 2

(c−
√
c(c− 2))(c− 1−

√
c(c− 2))n. (37)

To be more precise, if Re(c) > 1 or Re(c) = 1 and Im(c) > 0, then Q is given

by (36) and also
√
c(c− 2) =

√
c
√
c− 2. On the other hand, if 0 ≤ Re(c) < 1 or

Re(c) = 1 and Im(c) < 0, then
√
c(c− 2) = −

√
c
√
c− 2 and Q is defined by (37).

Note that, in both cases, Q can be given by

Q =
1√
c− 2

(c+
√
c
√
c− 2)(c− 1 +

√
c
√
c− 2)n. (38)

Similarly to the previous case, we have

u′n = ± ε

2
√
c
(Q− 2c

c− 2
Q−1), (39)

where Q−1 =
√
c−2
2c (c−

√
c
√
c− 2)(c−1−

√
c
√
c− 2)n. Assuming that um = ±u′n,

relations (34) and (39) imply

P ±Q = ± 2c

c− 2
Q−1 +

2c

c+ 2
P−1. (40)

We will apply the theorem of Baker and Wüstholz from [1] to the form

Λ = log |Q||P | . So, we have to estimate the upper bound for |Λ|. If c ∈ ZM\{Sc},

|Λ| < 3−m, |Λ| < (1.55)
−n

, for m,n ≥ 2.

and that is enough for our purposes since there are no solutions of um = ±u′n if

m = 1 or n = 1. Indeed, for c ∈ ZM , |c| ≥
√

2 and Re(c) ≥ 0, we have

|u1|, |u′1| ≤ 2|c|+1, |um| > (2
√

1 + |c|2−1)m, |u′n| > (2
√

1 + |c|2−1)n−1(2|c|−1),

for m,n ≥ 2 (where the last two inequalities are obtained similarly to those in

Lemma 7). Hence, |u1| ≤ 2|c| + 1 < (2
√

1 + |c|2 − 1)(2|c| − 1) ≤ |u′n|, |u′1| ≤
2|c|+1 < (2

√
1 + |c|2−1)2 ≤ |um| for m,n ≥ 2, and the equations u1 = ±u′n and

u′1 = ±um have no solution for m,n ≥ 2, i.e. for m,n ≥ 1 (because u1 6= ±u′1).
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5.1. The condition Λ 6= 0. Without proving that Λ 6= 0, i.e. |P | 6= |Q|, we

cannot use the theorem of Baker and Wüstholz. This proof is rather complicated

and involves several cases.

First, we show that P 6= ±Q. Let us assume that P = ±Q. According to

(40), the following cases occur:

c

c2 − 4
= 0 or P 2 =

2c

c2 − 4
.

The first one is not possible since c 6= 0,±2 nor is the other one because |P |2 ≥ 162

and
∣∣∣ 2c
c2−4

∣∣∣ < 5 for |c| ≥
√

2 and c 6= ±2.

Before presenting other cases, let us take a closer look at |P | and |Q| from

an algebraic point of view. According to (33), we have

P√
c

=
c+

√
c(c+ 2)√

c(c+ 2)
(c+ 1 +

√
c(c+ 2))m = a+ bα = a+

b1
c+ 2

α, (41)

where α =
√
c(c+ 2) and a, b1 ∈ ZM . Similarly, (36) and (37) imply that

Q√
c

= d+ eβ = d+
e1

c− 2
β, (42)

where β =
√
c(c− 2) and d, e1 ∈ ZM . It follows straight away that

um =
ε

2
(a+ bα+ a− bα) = εa, u′n =

ε

2
(d+ eβ + d− eβ) = εd,

where we have used the explicit expressions (32) and (35) for um and u′n . Since

um = ±u′n, we get a = ±d. Note that a 6= 0, d 6= 0, because |um|, |u′n| > 0 for

m,n ≥ 2. Also,∣∣∣∣ P√c
∣∣∣∣2 = |a|2 + (ab)α+ (ab)α+ |b|2|α|2,

∣∣∣∣ Q√c
∣∣∣∣2 = |d|2 + (de)β + (de)β + |e|2|β|2.

can be understood as the elements of the vector subspaces span(1, α, α, |α|2) and

span(1, β, β, |β|2), respectively, since the algebraic extension Q(
√
−D)(α, α, β, β)

can be considered as a vector space over Q(
√
−D) generated by the set {1, α, α,

|α|2, β, β, |β|2}. Before continuing with the proof, we establish the following useful

claims:

Lemma 16. If c 6∈ {0,±1,±2}, then α, β 6∈ Q(
√
−D).
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Proof. Indeed, we can show that α ∈ Q(
√
−D) if and only if c = 0,−1,−2.

Note that α ∈ Q(
√
−D) if and only if c(c+2) = t2 for some t ∈ ZM or equivalently

if there exist t, s ∈ ZM such that t± s are units in ZM , since c = −1±
√
t2 + 1.

It is easy to check that the only possibilities are c = 0,−1,−2. It can be proved

similarly that β ∈ Q(
√
−D) if and only if c = 0, 1, 2. �

Lemma 17. If B1 is a basis of the subspace span(1, α, α, |α|2), then B1 =

{1, α, α, |α|2} or B1 = {1, α}. Set {1, α} is a basis of span(1, α, α, |α|2) if and

only if α = Aα, A ∈ Q(
√
−D). The analogous statement is true for a basis of

span(1, β, β, |β|2).

Proof. According to Lemma 16, it is obvious that {1, α} is a linearly inde-

pendent set. Let α = Aα + C, for A,C ∈ Q(
√
−D). By squaring it, we obtain

2ACα = α2−C2−α2A2 ∈ Q(
√
−D). Since α 6∈ Q(

√
−D), we have that AC = 0.

If A = 0, then α = C ∈ Q(
√
−D), a contradiction. If C = 0, then α = Aα and

|α|2 = Aα2 ∈ Q(
√
−D) which imply B1 = {1, α}.

The assumption that {1, α, α} is a linearly independent set leads to several

contradictions (obtained similarly as in the previous cases but more complicated).

�

Lemma 18. Let c 6∈ {0,±1,±2}. If β ∈ span(1, α, α, |α|2), then B1 =

{1, α, α, |α|2} is a basis of the subspace span(1, α, α, |α|2) and β = Aα or β =

A |α|2, for some A ∈ Q(
√
−D). The analogous statement is true if α ∈ span(1, β,

β, |β|2).

Proof. Let β ∈ span(1, α, α, |α|2). Obviously, this implies β, |β|2 ∈ span(1,

α, α, |α|2) too. If we assume that β = Aα for some A ∈ Q(
√
−D), then A =

±
√
c2−4
c−2 . Therefore, c2−4 = r2 for some r ∈ ZM . Since c, r ∈ ZM and |c±r| ≤ 4,

by checking all possibilities, we find c = 0,±1,−2. (Similarly, if α = Aβ for

A ∈ Q(
√
−D), then c = 0,±1, 2).

If B1 = {1, α} is a basis of span(1, α, α, |α|2), then β = Aα + C for some

A,C ∈ Q(
√
−D). Then, by squaring it, it is easy to see β = C ∈ Q(

√
−D) or

β = Aα, which is impossible.

If B1 = {1, α, α, |α|2} is a basis of span(1, α, α, |α|2), then β = C + Aα +

A′α + A′′ |α|2 for C,A,A′, A′′ ∈ Q(
√
−D). Similarly as before, we prove that

one of the following possibilities occurs: 1) β = C ∈ Q(
√
−D), 2) β = Aα, 3)

β = A′α, 4) β = A′′ |α|2 . Therefore, we might have β = A′α or β = A′′ |α|2, since

the first two cases are impossible. �

Furthermore,
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∣∣∣∣ P√c
∣∣∣∣2 − ∣∣∣∣ Q√c

∣∣∣∣2 ∈ V = span(1, α, α, |α|2, β, β, |β|2).

There are several possibilities for choosing a basis B for V from {1, α, α, |α|2, β, β,
|β|2}:

(1) B = {1}. This happens if and only if α, β ∈ Q(
√
−D). So, this is not

possible according to Lemma 16.

(2) B = {1, α} (or B = {1, β}). This is also not possible. Indeed, in this

case B1 = {1, α} is basis of span(1, α, α, |α|2) and β ∈ span(1, α, α, |α|2), which

contradicts Lemma 18.

(3) B = {1, α, α, |α|2} (or B = {1, β, β, |β|2}). In this case β ∈ span(1, α, α,

|α|2) or more precisely β = Aα or β = A|α|2 for A ∈ Q(
√
−D) according to

Lemma 18.

(4) B = {1, α, β}. This implies that α = Aα and β = Cβ, for A,C ∈
Q(
√
−D) according to Lemma 17.

(5) B = {1, α, β, β, |β|2} (or B = {1, α, α, |α|2, β}). Here, we have α = Aα

for A ∈ Q(
√
−D) (or β = Aβ for A ∈ Q(

√
−D)).

(6) B = {1, α, α, |α|2, β, β, |β|2}.
In what follows, we show that |P | 6= |Q| in each of the possible cases (3) to

(6) unless Re(c) = 0. Assume that |P | = |Q|, i.e.

0 =

∣∣∣∣ P√c
∣∣∣∣2 − ∣∣∣∣ Q√c

∣∣∣∣2 = (ab)α+ (ab)α+ |b|2|α|2 − (de)β − (de)β − |e|2|β|2. (43)

Case (6): Let B = {1, α, α, |α|2, β, β, |β|2} be a basis B for V. Since the

set {α, α, |α|2, β, β, |β|2} is linearly independent, all coefficients in (43) have to

be zero: ab = ab = |b|2 = de = de = |e|2 = 0. This implies b = e = 0 and

P = a
√
c = ±d

√
c = ±Q, which is not possible.

Case (5): The assumption is that the set B = {1, α, β, β, |β|2} forms a basis

for V . In this case we know that α = Aα and |α|2 = Aα2 for A ∈ Q(
√
−D).

Obviously, A 6= 0. So, (43) implies

(|b|2Aα2)1 + (ab+ abA)α− (de)β − (de)β − |e|2|β|2 = 0.

The coefficients must be zero: |b|2Aα2 = ab + abA = de = de = |e|2 = 0. Since

Aα2 6= 0, we have b = e = 0 and P = a
√
c = ±d

√
c = ±Q, which is not possible.

Similarly, we obtain a contradiction if we assume that B = {1, α, α, |α|2, β} is a

basis for V.

Case (4): The set B = {1, α, β} forms a basis for V . This is a situation

when α = Aα, |α|2 = Aα2, β = Cβ, |β|2 = Cβ2, for A,C ∈ Q(
√
−D) and
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A,C 6= 0. Substituting that into (43) we get (|b|2Aα2−|e|2Cβ2)1+(ab+abA)α−
(de+deC)β = 0 and |b|2Aα2 = |e|2Cβ2, ab = −abA, de = −deC. The assumption

b, e 6= 0, after some calculations, leads to (bα− eβ)(bα+ eβ) = 0 and that implies

that α, β are linearly dependent, which they are not according to Lemma 18. So,

b = e = 0 implies P = ±Q again, a contradiction!

Case (3): Recall that {1, α, α, |α|2} forms a basis of V and β = Aα or

β = A|α|2 for A ∈ Q(
√
−D). If β = A|α|2, then β = A|α|2 and |β|2 = |A|2|α|4 ∈

Q(
√
−D). So, (43) implies that

(−|e|2|A|2|α|4) · 1 + (ab)α+ (ab)α+ (|b|2 − deA− deA)|α|2 = 0.

Therefore, |e|2|A|2|α|4 = 0, ab = 0, |b|2 − deA − deA = 0. Evidently, e = b = 0

which imply P = ±Q, a contradiction.

If β = Aα, then β = Aα and |β|2 = |A|2|α|2. Notice that β 6= Cβ for all

C ∈ Q(
√
−D). (If β = Cβ, then β = C−1Aα, which is not possible by Lemma

18.) According to (43) we have (ab−deA)α+(ab−deA)α+(|b|2−|e|2|A|2)|α|2 = 0,

and ab− deA = 0, |b|2 − |e|2|A|2 = 0. Therefore,

A =
ab

de
= ±ab

ae
. (44)

From (41) and (42) we obtain

a2 − b2c(c+ 2) =
2

c+ 2
, a2 − e2c(c− 2) = − 2

c− 2
(45)

and cb21 − (c+ 2)a2 = −2, (c− 2)a2 − ce2
1 = −2, which again implies

e2c(c− 2)− b2c(c+ 2) =
4c

c2 − 4
and (c+ 2)e2

1 − (c− 2)b21 = 4. (46)

Equation (44) gives us |eβ| = |bα|, which gives us
∣∣e2

1 (c+ 2)
∣∣ =

∣∣b21 (c− 2)
∣∣ . Let

X = (c+ 2) e2
1 and Y = (c− 2) b21. Therefore, we have X − Y = 4 and |X| = |Y |.

Also, ReX = 2 and ReY = −2. On the other hand, from (44) and (46) we obtain

c2 − 4

c · a2 (b
2
a2α2 − a2b2α2) = 4. (47)

Since b
2
a2α2−a2b2α2 = 2 Im

(
abα

)2
i, the equation (47) implies Re( 1

ca2
(c2−4)) =

0 or equivalently Re(a
2

c (c2 − 4)) = 0. By (45) and Re
(
(c+ 2) e2

1

)
= 2, it follows

Re c = 0, i.e. c = vi, v ∈ Z(
√
D), v 6= 0,±1. In general, we have

√
z =

√
z, if
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z ∈ C\R− and
√
z = −

√
z, if z ∈ R−, where R− = {x ∈ R : x < 0}. So, since

β =
√
vi (vi− 2), α =

√
vi (vi+ 2) and (vi− 2) vi = vi (vi+ 2) /∈ R−, we have

β = α i.e. A = 1. Also, from Re( 1
ca2

(c2 − 4)) = 0 we get Re( −ivv2+4 (a)2) = 0,

which again implies a = −a or a = a. Therefore, (44) gives e = ±b and we can

distinguish four cases:

1. If a = a = d, then e = ab
d

= b and P√
c

= a+ bα, Q√
c

= a+ bα;

2. If a = −a, a = d, then e = ab
d

= −b and P√
c

= a+ bα, Q√
c

= a− bα;

3. If a = a, a = −d, then e = ab
d

= −b and P√
c

= a+ bα, Q√
c

= −a− bα;

4. If a = −a, a = −d, then e = ab
d

= b and P√
c

= a+ bα, Q√
c

= −a+ bα.

Note that each of the above cases implies that |P | = |Q| and hence Λ = 0. In

what follows we show that in these cases the equation um = ±u′n, m,n > 0, has

no solution. First we observe that a = ±a implies bα 6= ±bα. It is enough to show

Im (bα)
2 6= 0. Suppose Im (bα)

2
= 0. Then, (45) gives us (bα)2 = b2c(c + 2) =

a2−2/(vi+2). Since Im (bα)
2

= Im a2 = 0, then Im 2
vi+2 = 0 which again implies

v = 0, a contradiction. From (40) we obtain

P√
c
− Q√

c
= − 2

c− 2
·
√
c

Q
+

2

c+ 2
·
√
c

P
, if a = d, (48)

P√
c

+
Q√
c

=
2

c− 2
·
√
c

Q
+

2

c+ 2
·
√
c

P
, if a = −d. (49)

If a = a = d, then (48) implies

bα− bα =
2

2− vi
· 1

a+ bα
+

2

2 + vi
· 1

a+ bα
.

Since Re(bα − bα) = 0 and Im
(

2
2−vi ·

1
a+bα

+ 2
2+vi ·

1
a+bα

)
= 0, we get bα = bα,

a contradiction. Similarly, we have obtained a contradiction in the other three

cases. If B = {1, β, β, |β|2} is a basis for V , analogous results are verified.

Note that if c = vi, v ∈ Z[
√
D], v 6= 0,±1, then β = α and, according to

Lemma 18, {1, α, α, |α|2} forms a basis of V = Q(
√
−D)(α, α, β, β), that is Case

(3). Hence, we have proved the following assertion.

Proposition 19. Let c /∈ Sc and Λ = log |P ||Q| . Then

i) Λ 6= 0 if and only if Re(c) 6= 0;

ii) If Re(c) = 0, then the equation um = ±u′n has no solutions for m,n > 0.

Corollary 20. If c 6= ±
√
−1 and Re(c) = 0, then all non-equivalent genera-

tors of power integral basis of O = ZM [ξ] over ZM are α = ξ, 2ξ − 2cξ2 + ξ3.
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5.2. A reduction procedure. We are now ready to apply the theorem of Baker

and Wüstholz to our linear form in logarithms of algebraic numbers

Λ = log |Q| − log |P | = n log η −m log ϑ+ log ξ,

where η = |c−1+
√
c
√
c− 2|, ϑ = |c+1+

√
c(c+ 2)|, ξ =

∣∣∣∣√c+ 2(
√
c+
√
c− 2)√

c− 2(
√
c+
√
c+ 2)

∣∣∣∣.
First, we have to calculate the standard logarithmic Weil height of η, ϑ and

ξ. The standard logarithmic Weil height h(α) can be bounded by

1

k
log

(
a0

k∏
i=1

max{1, |α(i)|}

)
,

where the algebraic number α is a root of a0

∏k
i=1(x−α(i)). Since we are able to

find explicit polynomials of which these algebraic integers are zeros, the following

inequalities hold: h(η), h(ϑ) < 28.12, h(ξ) < 271.82. Also h′(η), h′(ϑ) and h′(ξ)

are less than the corresponding values given above. Since d ≤ 32 · 8 · 8, we get

− log |Λ| ≤ 18 ·4! ·34(32 ·2048)528.122 ·271.82 · log(2 ·3 ·2048) log l < 8.6 ·1034 log l,

where l = max{m,n}. If l = m, applying |Λ| < 3−m to the previous inequality,

we get m
logm < 7.8 · 1034 which does not hold for m ≥ 6.7 · 1036. Therefore, we

solve

|mθ − n+ γ| < δ · 3−m (50)

for m < 6.7 · 1036, where θ = log ϑ
log η , γ = − log ξ

log η and δ = 1
| log η| .

Similarly, if l = n, we have to solve

|nθ′ − n+ γ′| < δ′ · 1.55−n (51)

for n < 1.715 · 1037, where θ′ = log η
log ϑ , γ′ = log ξ

log ϑ and δ′ = 1
| log ϑ| .

Now we will apply the reduction method described in [2], Lemma 5. Since

our bound for the absolute value of c is huge (almost 160 000), we carried out

reductions only for |c| ≤ 1000, c ∈ ZM and obtained that (50) and (51) have

no integer solutions for m ≥ n > 31 and n ≥ m > 67, respectively. The reason

for not achieving a better bound for m and n is that θ and θ′ are very close

to 1 and hence their first convergent is too large, although for certain values of

c the reduction procedure is very efficient. To illustrate this, c = 1 + 984
√
−1

with related θ′ ≈ 1.000000272 and q1 = 3 672 014 (the denominator of the first

convergent) represents a non-efficient example of reduction (m ≤ n ≤ 67), while
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on c = 10 +
√
−61 with related θ ≈ 1.039 the reduction works much better

(n ≤ m ≤ 2). Finally, we showed that the equations um = ±u′n for 1 ≤ m,n ≤ 67

have no solutions in ZM except c = ±1,±2. (Note that according to (22) and (23),

uk and u′k are k-th degree polynomials in the variable c. So, solving um = ±u′n
reduces to finding roots of certain polynomials in ZM .) Thus, we have proved:

Proposition 21. If |c| ≤ 1000 and c 6∈ Sc, then all non-equivalent generators

of power integral basis of O =ZM [ξ] over ZM are α = ξ, 2ξ − 2cξ2 + ξ3.

Computational aspects. All reductions and calculations were performed

in Wolfram’s Mathematica 9.0 with 150-digit precision. Since the algorithm for

|c| ≤ 200, |c| ≤ 400 and |c| ≤ 1000 took 1718 s, 9757 s and 99710 s, respectively,

we estimated that the time required to do all computations for |c| < 159108 would

be more then 1010 seconds.

6. On the case c ∈ Sc

So far, we have observed the case when the parameter c /∈ Sc, where Sc is

given in (4). Note that if c ∈ Sc, then for at least one of the equations in (19)

we can not apply Lemma 6. Indeed, if c ∈ Sc, there are additional classes of

solutions of the equations in (19), or there exist only finitely many solutions of

those equations. Also, according to the remark at the beginning of Section 5, it

is enough to observe only c’s from the set Sc with Re(c) ≥ 0. Furthermore, each

c ∈ Sc belongs to exactly one imaginary quadratic field except for c = ±1 that

belong to each field M = Q
(√
−D

)
. Thus, for each c ∈ Sc, c 6= ±1, we have

to find additional classes of solutions of (at least one of) the equations in (19)

(see [3]) and repeat the entire procedure from the previous sections. On the one

hand, this situation is much simpler because we handle a specific value of c in the

exact field, but on the other hand, we need to find intersections of at least four

recursive series.

For c = 1 Thue equation (18) has the form

p4 − 2p3q + 2p2q2 + 2pq3 + q4 = µ, (52)

and the related system is

V 2 − 3U2 = −2µ, U2 + Z2 = 2µ. (53)

Note that Lemma 6 can be applied on the first equation in (53) to obtain µ ∈{
1, ω, ω2

}
∩Q

(√
−D

)
, if D 6= 1 and µ ∈ {1,−1} if D = 1.
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It can be shown that the second equation in (53) has finitely many solutions

if D = 1, but the cases c = ±1 when D = 1 or 3 are excluded. If D 6= 1, 3 the

equation U2 + Z2 = 2 has infinitely many solutions in the ring of integers ZM of

the field M = Q(
√
−D) (and the form of these solutions depends on D).

7. On elements with the absolute index 1

Let Q ⊂ M ⊂ K be number fields with m = [M : Q] and k = [K : M ].

Let O be either the ring of integers ZK of K or an order of ZK . Denote by DO
and DM the discriminant of O and subfield M , respectively. Also, denote by γ(i)

the conjugates of any γ ∈ M (i = 1, . . . ,m). Let δ(i,j) be the images of δ ∈ K
under the automorphisms of K leaving the conjugate field M (i) fixed elementwise

(j = 1, . . . , k). According to [9] for any primitive α ∈ O we have

IO(α) =
[
O+ : Z[α]+

]
=
[
O+ : ZM [α]+

]
·
[
ZM [α]+ : Z[α]+

]
. (54)

The first factor IO/M (α) = [O+ : ZM [α]+] we call the relative index of α and for

the second factor we have

J(α)=
[
ZM [α]+ : Z[α]+

]
=

1√
|DM |

[K:M ]
·

∏
1≤i1<i2≤m

k∏
j1=1

k∏
j2=1

∣∣∣α(i1,j1) − α(i2,j2)
∣∣∣.

(55)

Generators α0 of relative power integral bases of O over M have relative index

IO/M (α0) = 1. The elements

α = A+ ε · α0, (56)

(where ε is a unit in M and A ∈ ZM ) have the same relative index, and are called

equivalent with α0 over M . Equivalently, all elements α ∈ O generating a power

integral basis of O (over Q), that is having IO(α) = 1, must be of the form (56),

where α0 has relative index IO/M (α0) = 1. For α to generate a power integral

basis of O we must also have J(α) = 1. Therefore for each α0 ∈ O with relative

index IO/M (α0) = 1, we have to determine the unit ε ∈ M and A ∈ ZM such

that J(α) = 1.

We consider the octic field Kc = Q(ξ), where ξ is a root of the polynomial

(2), where c ∈ ZM\ {0,±2} and c 6= ±1 if D = 1 or 3, M = Q(
√
−D) and D is a

squarefree positive integer. Therefore, m = [M : Q] = 2 and Kc is an extension

of M of degree k = [Kc : M ] = 4. We have proved that all generators of relative
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power integral bases ofO =ZM [ξ] over M are given by α1 = ξ, α2 = 2ξ−2cξ2+ξ3,

in the cases given in Theorem 1. Also, according to Remark 4.1, α1 and α2 are

the generators of relative power integral bases for all c ∈ ZM\ {0,±2} and c 6= ±1

if D = 1 or 3.

Proof of Theorem 3. Taking α0 = α1, α2 we calculate J(α) with the α

in (56). For −D ≡ 2, 3 (mod 4) an integral basis of M is given by {1, ϑ} with

ϑ =
√
−D. We have

√
|DM |

[K:M ]
= 16D2. We set c = p + qϑ with integer

parameters p, q. Let A = a+bϑ with a, b ∈ Z. Note that the product (55) in J(α)

does not depend on a. We have ε = ±1 and for −D = −1 we also have ε = ±i.
The product

4∏
j1=1

4∏
j2=1

∣∣∣α(1,j1) − α(2,j2)
∣∣∣ (57)

is of degree 16, depending on D, p, q and b. We calculated this product by Maple

using symmetric polynomials. The result is a very complicated polynomial with

integer coefficients of the above variables. We found that in each case the product

(57) was divisible by 4096D2. Therefore dividing it by 16D2 would give that the

J(α) is divisible by 256. This implies that we cannot have J(α) = 1, therefore we

cannot have IO(α) = 1. �

Computational aspects. It was very difficult to perform the calculation

of the product (57). We had to do it in several steps making simplifications by

using symmetric polynomials in each step. Even so, this calculation has reached

the limits of the capacities of Maple. We were not able to perform this calculation

for −D ≡ 1 (mod 4).
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