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Chapter 1

Introduction to Diophantine
m-tuples

1.1 Definition

Definition 1.1. The set of m (distinct) non-zero integers {a1, a2, . . . , am} is called a Dio-
phantine m-tuples if

aiaj + 1 is a perfect square in Z,

for all 1 ≤ i < j ≤ m. (A perfect square is often denoted by □.)

The set is named after the ancient Greek mathematician Diophantus from the 3rd century
AD who found the set of four rational numbers{

1

16
,
33

16
,
17

4
,
105

16

}
(1.1)

with the property that the product of each two elements increased by 1 equals a perfect square
of some rational number. Indeed,

1

16
·
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16
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(
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)2

,
1

16
·
17

4
+ 1 =

(
9

8

)2

,
1

16
·
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16
+ 1 =

(
19

16

)2

,

33

16
·
17

4
+ 1 =

(
25

8

)2

,
33

16
·
105

16
+ 1 =

(
61

16

)2

,
17

4
·
105

16
+ 1 =

(
43

8

)2

.

Let us note that Diophantinem-tuples can be observed in any commutative ring with unity.
If we observe them in the field of rational numbers Q, then they are called rational Diophantine
m-tuples. So, (1.1) is an example of a rational Diophantine quadruple.

The first Diophantine quadruple (in Z) was found by the French mathematician (and lawyer)
Pierre de Fermat (17th century):

{1, 3, 8, 120}. (1.2)

Indeed, we have

1 · 3 + 1 = 22, 1 · 8 + 1 = 32, 1 · 120 + 1 = 112, 3 · 8 + 1 = 52, 3 · 120 + 1 = 192, 8 · 120 + 1 = 312.

The set (1.1) is sometimes called Fermat’s quadruple.
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The problem that mathematicians are most concerned with is how large these sets can be.
This, of course, depends on the ring in which we observe these sets. In the ring of integers,
this problem is almost completely solved.

In this course we mainly talk about Diophantine m-tuples in the ring of integers. Note
that (integer) Diophantine m-tuples have either all positive or all negative elements, so we will
focus on those with positive elements, i.e. on m-tuples in the set of natural numbers. (The
only Diophantine m-tuple with mixed signs is the Diophantine pair {−1, 1}.)

1.2 On Diophantine pairs

There are infinitely many Diophantine pairs in N. Indeed, for any integer r > 1, consider the
pairs

(a, b) = (1, r2 − 1) or (a, b) = (r − 1, r + 1).

In both cases, we have
ab+ 1 = r2,

which shows that {a, b} is a Diophantine pair.
Moreover, for any a ∈ N, there are infinitely many b’s in N such that {a, b} is a Diophantine

pair. This is because a divides r2 − 1 for values of r satisfying

r − 1 = ka or r + 1 = ka,

where k is non-zero integer. Solving for b yields

b = k2a± 2k.

Thus, for any positive integers a and k , the pair

{a, k2a± 2k}

is a Diophantine pair.

1.3 On Diophantine triples

There are infinitely many Diophantine triples. For any integer k > 1, the set

{k − 1, k + 1, 4k}

forms a Diophantine triple, since:

(k − 1)(k + 1) + 1 = k2, 4k(k − 1) + 1 = (2k − 1)2, 4k(k + 1) + 1 = (2k + 1)2.

Now we may ask: given a Diophantine pair {a, b}, how many Diophantine triples {a, b, c}
can be formed by extending it? The answer is: infinitely many.

To see this, assume {a, b} is a Diophantine pair, so that ab + 1 = r2 for some integer r.
Then both sets

{a, b, a+ b+ 2r} and {a, b, a+ b− 2r}
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are Diophantine triples if a + b ± 2r ̸∈ {0, a, b}. Let’s verify that these extensions satisfy the
required conditions. Indeed,

a(a+ b+ 2r) + 1 = a2 + ab+ 2ar + 1 = a2 + r2 + 2ar = (a+ r)2

and similarly:

a(a+ b± 2r) + 1 = (a± r)2, b(a+ b± 2r) + 1 = (b± r)2.

This construction guarantees at least one valid extension, since

a+ b+ 2r > max{a, b} for r > 0.

It is possible that a+ b− 2r = 0 (for example for pairs {1, 3} and {2, 4}), but it is never equal
to a or b. So, it makes sense to assume that a < b < c and r > 0 (since {a, a+ b+ 2r} can be
extended by a+ (a+ b+ 2r)− 2(a+ r) = b). In this case the extension is c = a+ b+ 2r and
the Diophantine triple of the form

{a, b, a+ b+ 2r}

is called a regular Diophantine triple.
In what follows, we will see that there are infinitely many c’s that extend a given pair {a, b}.

Suppose we want to extend a Diophantine pair {a, b}, a < b, by an element c such that

ac+ 1 = s2, bc+ 1 = t2,

for some s, t > 0. By multiplying the first equation by b and the second by a and subtracting
them, we eliminate c and get Diophantine equation

at2 − bs2 = a− b.

Multiplying both sides by a, we get

(at)2 − abs2 = a(a− b). (1.3)

This equation is of the form
X2 −DY 2 = N, (1.4)

where D > 0 and D ̸= □, and is better known as Pellian or generalized Pell’s equation.
Pellian equation might not have solutions, but if it does, it has infinitely many solutions. Unlike
that, Pell’s equation

X2 −DY 2 = 1, (1.5)

always has infinitely many solutions (if D is a nonsquare positive integer).
If (X,Y ) ∈ N2 is a solution of (1.4) and (U, V ) ∈ N2 is a solution of the associated Pell’s

equation (1.5) then (X ′, Y ′) given by

X ′ +
√
DY ′ = (X +

√
DY )(U +

√
DV )

is a solution of (1.4). Indeed,

X ′2 −DY ′2 = (X ′ +
√
DY ′)(X ′ −

√
DY ′)

= (X +
√
DY )(U +

√
DV )(X −

√
DY )(U −

√
DV )

= (X2 −DY 2)(U2 −DV 2)

= N · 1 = N
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Since every Pell’s equation has infinitely many solutions in N, we conclude that (1.4) also has
infinitely many solutions in N (if it is solvable). Equation (1.3) has a solution that arises from
the regular expansion c = a+ b+ 2r. So, (T, s) = (a(b+ r), a+ r) is a solution of (1.3) (where
T := at). Another solution of (1.3) can be constructed in the following way:

(a(b+ r) +
√
ab(a+ r))(U +

√
abV ) = T ′ +

√
abs′,

where (U, V ) is a solution of the related Pell’s equation X2 − abY 2 = 1. We get

s′ = (a+ r)U + a(b+ r)V.

Note that
s′2 − 1 ≡ 0 (mod a).

Indeed,
s′2 − 1 ≡ r2U2 − 1 = (ab+ 1)U2 − 1 ≡ U2 − 1 (mod a)

and U2 − 1 = abV 2 ≡ 0 (mod a). Therefore, the following is well defined

c′ :=
s′2 − 1

a
=

((a+ r)U + a(b+ r)V )2 − 1

a

and {a, b, c′} is a Diophantine triple.

Solutions to Pellian equations can be described using recurrence sequences. More precisely,
the solutions to a Pellian equation in one variable can be generated by a second-order linear
recurrence. This will be discussed in one of the following chapters.

1.4 On Diophantine quadruples

There exist infinitely many Diophantine quadruples. Here are some examples of families of
Diophantine quadruples:

{k, k + 2, 4k + 4, 4(k + 1)(2k + 1)(2k + 3)}, k ≥ 1

{F2n, F2n+2, F2n+4, 4F2n+1F2n+2F2n+3}, n ≥ 0.

Previous sets are taken to be generalizations of Fermat’s quadruple {1, 3, 8, 120}. More general,
if the sequence (gn) be defined as:

g0 = 0, g1 = 1, gn = pgn−1 − gn−2, n ≥ 2,

where p ≥ 2 is an integer, then the set

{gn, gn+2, (p± 2)gn+1, 4gn+1((p± 2)g2n+1 ∓ 1)}

had the property of Diophantus. For p = 2, 3 we get the previous sets.

More examples with with Pell numbers Pn and Pell-Lucas numbers Q′
n = 2Qn:

{P2n, P2n+2, 2P2n, 4Q2nP2n+1Q2n+1},

{P2n, P2n+2, 2P2n+2, 4P2n+1Q2n+1Q2n+2}
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(These numbers are defined by

P0 = 0, P1 = 1, Pn+2 = 2Pn+1 + Pn, n ≥ 0,

Q0 = 1, Q1 = 1, Qn+2 = 2Qn+1 +Qn, n ≥ 0.)

What can we say about the extensions of a Diophantine pair or triple to a Diophantine
quadruple? The following propositions show that this is always possible.

Proposition 1.2 (Euler,18th century). If {a, b} is a Diophantine pair, then

{a, b, a+ b+ 2r, 4r(a+ r)(b+ r)}

is a Diophantine quadruple, where ab+ 1 = r2.

Proposition 1.3 (Arkin, Hogatt and Strauss, 1979). If {a, b, c} is a Diophantine triple, then

{a, b, c, a+ b+ c+ 2abc+ 2rst} (1.6)

is a Diophantine quadruple, where ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2.

A Diophantine quadruple of the form (1.6), where a < b < c, is called regular. It can be
shown that {a, b, c, d} is a regular Diophantine quadruple if and only if

(a+ b− c− d)2 = 4(ab+ 1)(cd+ 1).

The problem of extending the Diophantine triple {a, b, c} to a Diophantine quadruple
{a, b, c, d} is equivalent to determining an integer triple (x, y, z) such that

ad+ 1 = x2, bd+ 1 = y2, cd+ 1 = z2.

By eliminating d, the previous equations reduce to a system of Diophantine equations:

ay2 − bx2 = a− b, (1.7)

az2 − cx2 = a− c, (1.8)

i.e. to a system of Pellian equations:

(ay)2 − (ab)x2 = a(a− b), (1.9)

(az)2 − (ac)x2 = a(a− c), (1.10)

Systems of the form (1.7) and (1.8), or (1.9) and (1.10), are not easy to solve. For some
specific values of the elements a, b and c, we will show how they can be treated by applying
Baker’s theory on linear forms in logarithms of algebraic numbers. A linear form in logarithms
of algebraic numbers is an expression of the form

Λ = b1 logα1 + · · ·+ bn logαn,

where b1, . . . , bn are rational numbers and α1, . . . , αn are algebraic numbers. Also, we will need
so called Baker-Davenport’s reduction base on the expansion into a continued fraction.

How is the problem of finding solutions to the system (1.9), (1.10) related to Baker’s theory
on linear forms in logarithms?
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Each of these equations has solutions that can be described by binary (second-order) recur-
rence sequences. So, solving the system means finding the intersection of two such sequences.
This leads to the problem of finding positive integers m and n such that:

γαm ≈ δβn

for certain algebraic numbers α, β, γ, δ.Taking logarithms of both sides, we get

m logα− n log β + log
γ

δ
≈ 0.

Now, Baker’s theory tells us that a nonzero linear combination of logarithms of algebraic
numbers cannot be too close to zero. In fact, Baker’s result gives an explicit lower bound on
how far from zero such an expression must be—unless it is exactly zero. As a result, we can
obtain an explicit upper bound for the possible values of m and n. However, this bound is
usually too large to check directly, so we apply a refinement method developed by Baker and
Davenport to reduce the search range.

Another way to obtain an upper bound on the solutions is by using results on the si-
multaneous approximation of square roots — this is known as the hypergeometric method in
Diophantine approximation. Specifically, if we assume that the system (1.7),(1.8) has some
relatively large solution x, y, z, then y/x and z/x provide very good rational approximations
(with a common denominator) to the irrational numbers

√
a/c and

√
b/c, respecively.

Conjecture 1.4. If {a, b, c, d} is a Diophantine quadruple and d > max{a, b, c}, then

d = a+ b+ c+ 2abc+ 2rst.

Conjecture (1.4) implies that all quadruples are regular and thta there is no Diophantine
quintuple.

1.5 On Diophantine quintuples

For many years, mathematicians have studied the well-known Diophantine quintuple conjecture,
which asserts that no Diophantine quintuple exists. The first significant step toward resolving
this conjecture was made in 1969 by Baker and Davenport [3], who showed that Fermat’s
quadruple {1, 3, 8, 120} cannot be extended to a Diophantine quintuple. Using Baker’s theory
of linear forms in logarithms of algebraic numbers, along with a reduction method based on
continued fractions, they proved that if d is a positive integer such that {1, 3, 8, d} forms a
Diophantine quadruple, then d = 120. This implies that the triple {1, 3, 8} cannot be extended
to a quintuple. Similar results have been established for many families of Diophantine pairs
and triples.

Euler was able to extend Fermat’s quadruple to the rational quintuple

{1, 3, 8, 120, 777480

8288641
}.

Dujella ([9]) generalized Euler’s construction and extended an arbitrary Diophantine quadruple
{a, b, c, d} to a (rational) Diophantine quintuple:

{a, b, c, d, e = (a+ b+ c+ d)(abcd+ 1) + 2abc+ 2abd+ 2acd+ 2bcd± 2r1r2r3r4r5r6
(abcd− 1)2

}
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where ab+ 1 = r21, ac+ 1 = r22, ad+ 1 = r23, bc+ 1 = r24, bd+ 1 = r25, cd+ 1 = r26.
In 2004 Dujella ([12]) made an important breakthrough showing that a Diophantine sextuple

does not exist and that there are only finitely many Diophantine quintuples. The bound for the
number of possible Diophantine quintuples has been improved by several authors and finally
in 2019, He, Togbé and Ziegler ([13]) published the proof of Diophantine quintuple conjecture.

Teorem 1.5. There does not exist a Diophantine quintuple.

1.6 D(n)-tuples

There are several generalizations of classical Diophantine quadruples. One natural generaliza-
tion is to replace the original condition - where the product of any two elements increased by 1
yields a perfect square - with the more general condition of adding an arbitrary element n ∈ R.
This leads to the broader concept of sets with the property D(n).

Definition 1.6. Let R be a commutative ring with unity, let m ∈ N, and let n ∈ R. A set
{a1, . . . , am} ⊆ R is said to have the property D(n) if for every pair of distinct elements in
the set, the expression aiaj + n is a perfect square in R.

A set with the property D(n) contained in R\{0} is called a Diophantine m-tuple with the
property D(n) in the ring R, or more briefly, a D(n)-m-tuple.

Interestingly, in certain integer rings of number fields - such as the ring of rational integers,
the rings of integers of some quadratic fields, and specific cubic and quartic fields - the existence
of D(n)-quadruples is closely related to the representability of n as a difference of two squares.
More precisely, a D(n)-quadruple exists in such rings if and only if n = a2 − b2 for some
elements a, b in the ring (up to finitely many exceptions). However, recent results show that in
some rings of quadratic integers, there exist elements n that are not expressible as a difference
of two squares, yet a D(n)-quadruple still exists.

We will investigate D(n)-m-tuples in the ring of integers Z and briefly show the equivalence
between the existence of D(n)-quadruples and the representability of n as a difference of two
squares, up to finitely many exceptions. Note that if ab+ n = r2, then

{a, b, a+ b± 2r}

is a D(n)-triple - this can be verified in the same way as for the case n = 1. Furthermore, all
c’s such that a given Diophantine D(n)-pair {a, b} can be extended to a D(n)-triple {a, b, c}
are connected to the following Pell-type equation:

bx2 − ay2 = n(b− a).

Assignment 1. a) Show Proposition 1.3

b) If ab + 1 = r2, show that {a, b, a + b + 2r, 4r(a + r)(b + r)} is a regular Diophantine
quadruple.

c) Show that
{F2n, F2n+6, 4F2n+2, 4F2n+1F2n+3F2n+4}

is a D(4)-quadruple for n ∈ N. (Fn is the nth Fibonacci number.)
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Chapter 2

Simple continued fractions

2.1 Simple continued fraction expansion

Let α ∈ R and
a0 = ⌊α⌋ ∈ Z,

where ⌊α⌋ denote the floor of α, that is the greatest integer less than or equal to α.
If α ̸= a0, then 0 < α− a0 < 1 and

α1 =
1

α− a0
> 1.

So,

α = a0 +
1

α1
.

Now we put
a1 = ⌊α1⌋ ∈ N

and if α1 ̸= a1, then

α1 = a1 +
1

α2
,

where

α2 =
1

α1 − a1
> 1.

Hence,

α = a0 +
1

a1 +
1

α2

.

This procedure can be repeated as long as ak ̸= αk. Suppose that an = αn for some n ∈ N.
Then the procedure terminates and we get

α = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

. (2.1)
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We say that (2.1) is a finite simple continued fraction expansion of α (or finite simple continued
fraction representation). In what follows, we will omit the word ”simple”. In short, we write
it as

α = [a0; a1, a2, . . . , an]. (2.2)

Integers a0, a1, . . . , an are called the partial quotients (sometimes coefficients or terms) of the
continued fraction. Note that a1, . . . , an are positive integers. Also, if an ≥ 2 in (2.2), then
[a0, a1, . . . , an−1, an − 1, 1]. This means that we can have two continued fraction expansions of
α (in some cases).

It is important to point out that finite simple continued fractions correspond to rational
numbers and every rational number has a finite (simple) continued fraction expression. In that
case, that is if

α =
b

c
∈ Q,

coefficients of continued fraction can be computed by Euclid’s algorithm applied on b and c:

b = ca0 + r0, 0 < r0 < c,

c = r0a1 + r1, 0 < r1 < r0,

r0 = r1a2 + r2, 0 < r2 < r1,

...

rn−2 = rn−1an + rn, 0 < rn < rn−1,

rn−1 = rnan+1.

Example 1. Find continued fraction expansion of
173

119
using the Euclid’s Algorithm.

173 = 119 · 1 + 54 ⇒ 173

119
= 1 +

54

119
,

119 = 54 · 2 + 11 ⇒ 119

54
= 2 +

11

54
,

54 = 11 · 4 + 10 ⇒ 54

11
= 4 +

10

11
,

11 = 10 · 1 + 1 ⇒ 11

10
= 1 +

1

10
,

10 = 1 · 10 + 0 ⇒ 10

1
= 10.

So,
173

119
= [1; 2, 4, 1, 10].

On the other hand, the process for finding the simple continued fraction continues indefi-
nitely if and only if α is an irracional number. In this case

α = a0 +
1

a1 +
1

a2 +
1

. . . +
1

αn

= [a0; a1, a2, . . . , αn].
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and ak ̸= αk, for all k. So, we get an infinite simple continued fraction representation of α
which can be written as

α = a0 +
1

a1 +
1

a2 +
1

. . .

= [a0; a1, a2, . . .]. (2.3)

But what the right-hand object means? That is, in what sense do we have the equality in (2.3).
This will be argued in the following section.

2.2 Convergents

Let a0, a1, . . . , ak be coefficients of the continued fraction representation of α. The rational
number

pk
qk

= [a0; a1, . . . , ak] ,

is called the k-th convergent of the continued fraction. Here are the first few convergents:

p0
q0

= a0,
p1
q1

=
a0a1 + 1

a1
,
p2
q2

=
a0a1a2 + a0 + a2

a1a2 + 1
, . . .

Teorem 2.1 (Convergents’ properties ). Let

(
pn
qn

)
be convergents of α. Then following prop-

erties hold:

(a)

pn = anpn−1 + pn−2, p−2 = 0, p−1 = 1, (2.4)

qn = anqn−1 + qn−2, q−2 = 1, q−1 = 0, n ≥ 0; (2.5)

(b) qnpn−1 − pnqn−1 = (−1)n,
n ≥ −1;

(c) gcd(pn, qn) = 1, n ≥ −2;

(d)

(
p2n
q2n

)
is an increasing sequence,

(
p2n+1

q2n+1

)
is a decreasing sequence;

(e)
p2n
q2n

<
p2m+1

q2m+1
, m, n ∈ N0;

(f)

lim
n→∞

pn
qn

= α; (2.6)

(g) ∣∣∣∣α− pn
qn

∣∣∣∣ < 1

q2n
, n ∈ N0. (2.7)
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Proofs of the above properties can be found in [?], 8.13 – 8.22.

Now we can argue that the equality in relation (2.3) makes sense due to the convergence of
(pn/qn).

The numerator and denominator of convergents satisfy two-term linear recursions (2.4) and
(2.5) that allow efficient calculations.

2.3 On approximation of irrationals by continued fractions

According to (2.7), the convergents are very good rational approximations to rationals.

Teorem 2.2. If
pn−1

qn−1
and

pn
qn

are two consecutive convergents of α, then at least one of them

satisfies ∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

Proof. Since numbers α− pn
qn

and α− pn−1

qn−1
have the opposite signs, we have

∣∣∣∣α− pn
qn

∣∣∣∣+ ∣∣∣∣α− pn−1

qn−q

∣∣∣∣ = ∣∣∣∣pnqn − pn−1

qn−1

∣∣∣∣ = 1

qnqn−1
<

1

2q2n
+

1

2q2n−1

Assuming that

∣∣∣∣α− pn
qn

∣∣∣∣ ≥ 1

2q2n
and

∣∣∣∣α− pn−1

qn−1

∣∣∣∣ ≥ 1

2q2n−1

, we get

1

qnqn−1
≥ 1

2q2n
+

1

2q2n−1

⇐⇒ (qn − qn−1)
2 ≤ 0,

a contradiction! Hence, ∣∣∣∣α− pn
qn

∣∣∣∣ < 1

2q2n
or

∣∣∣∣α− pn−1

qn−1

∣∣∣∣ < 1

2q2n−1

.

The following theorem is a kind of reversal of the previous one. It will play a key role in
determining the fundamental solution to Pell’s equation.

Teorem 2.3 (Legendre). Let p and q be integers such that∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

Then
p

q
is a convergent of the continued fraction expansion of α.

Sketch of proof. If α =
p

q
, then the statement is trivially satisfied. So, assume that α ̸= p

q
and

α − p

q
=

εϑ

q2
, where 0 < ϑ <

1

2
and ε = ±1. Let

p

q
= [b0, b1, . . . , bn−1] be a continued fraction

12
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representation of
p

q
where n is such that (−1)n−1 = ε. (We can always achieve this because

[a0, a1, . . . , am] = [a0, a1, . . . , am − 1, 1].)
We now define ω as

ω =
pn−2 − αqn−2

αqn−1 − pn−1
.

Hence,

α =
ωpn−1 + pn−2

ωqn−1 + qn−2
,

ane
α = [b0, b1, . . . , bn−1, ω].

Due to the properties of convergents and the conveniently chosen n, it can be shown that ω > 1

and this means that [b0, b1, . . . , bn−1] =
p

q
is a convergent of the continued fraction expansion

of α.

2.4 Periodic continued fractions

A periodic continued fraction is an infinite continued fraction of the form

[a0, a1, . . . , ak−1, ak, ak+1, . . . , ak+m−1], (2.8)

where a vinculum (horizontal line) marks the repeating block. If (2.8) represents the continued
fraction of α, then

β = [ak, ak+1, . . . , ak+m−1]

is its purely periodic part. The length m of the minimal repeating block is called the period of
the continued fraction.

Teorem 2.4 (Euler, Lagrange). A continued fraction expansion of α is periodic if and only if
α is a quadratic irrational (i.e. α is an irrational solution to a quadratic equation with integer
coefficients).

Sketch of Proof. Suppose that α has a periodic continued fraction expansion:

α = [b0, b1, . . . , bk−1, a0, a1, . . . , am−1].

Define its purely periodic part as

β = [a0, a1, . . . , am−1] = [a0, a1, . . . , am−1, β].

From formulas (2.4) and (2.5), we obtain

β =
βpm−1 + pm−2

βqm−1 + qm−2

which implies that β satisfies a quadratic equation and is therefore a quadratic irrational.
Consequently, α is also a quadratic irrational.

To prove the converse, let α be a quadratic irrationality. Then there exist d, s0, t0 ∈ Z,
t0 ̸= 0, d ̸= □ such that

α =
s0 +

√
d

t0
and t0 | (d− s20).

13
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(If t0 ∤ (d−s20), then multiplying numerator and denominator by t0 yields t
2
0 | (dt20−(s0t0)

2)). To
compute the continued fraction expansion of α the following iterative algorithm (or recurrence)
is performed for a0 = ⌊α⌋ and i ≥ 0:

si+1 = aiti − si, ti+1 =
d− s2i+1

ti
, ai+1 =

⌊
si+1 +

√
d

ti+1

⌋
. (2.9)

It turns out that there exist j, k ∈ N, j < k, such that (sj , tj) = (sk, tk). Therefore, the
sequence becomes periodic and

α = [a0, . . . , aj−1, aj , aj+1, . . . , ak−1].

In particular, the continued fraction expansion of
√
d, d ̸= □, is a bit more specific. These

expansions are especially important due to their connection with Pell’s equation.

Teorem 2.5. Let d be a non-square positive integer. The continued fraction expansion of
√
d

is of the form √
d = [a0, a1, a2, . . . , ar−1, 2a0],

where a0 = ⌊
√
d⌋, and the remaining coefficients are computed by the recurrence:

si+1 = aiti − si, ti+1 =
d− s2i+1

ti
, ai+1 =

⌊
si+1 + a0

ti+1

⌋
, i = 0, . . . , r − 1, (2.10)

with the initial terms s0 = 0, t0 = 1.
Moreover, the sequence a1, a2, . . . , ar−1 forms a palindromic string:

a1 = ar−1, a2 = ar−2, . . .

Proof. See Theorem 8.41 in [?].

Remark 2.6. Since the period of the continued fraction for
√
d is not known in advance, we

continue applying the recurrence (2.10) until the pair (s1, t1) repeats. If the period is r, we will
have (s1, t1) = (sr+1, tr+1) which signals that the process can stop.

14



Chapter 3

Pell’s equation

3.1 Existence of solutions to Pell’s equation

Definition 3.1. Let d be a positive integer that is not a perfect square. Diophantine equation
of the form

x2 − dy2 = 1 (3.1)

is called Pell’s equation.
Pellian equation or generalized Pell’s equation is of the form

x2 − dy2 = N, (3.2)

where N is an integer.

Equation (3.1) is named after the English 17th-century mathematician John Pell, who did
not significantly contribute to its solution. Credit was incorrectly attributed to him by Euler.
However, the equation had been of interest to mathematicians much earlier. Thus, the equation
x2 − 2y2 = 1 appears among ancient Greek mathematicians (6th century BC) in connection
with their research into the nature of the number

√
2. Furthermore, it was also studied by the

Indian 7th-century mathematicians Brahmagupta and Bhaskara, who found solutions for some
special values of the number d, specifically d = 11, 31, 61, 67. These values are not chosen at
random, but are such that the smallest solution in the set of natural numbers is unexpectedly
large. Thus, the smallest solution to the equation x2 − 61y2 = 1 is equal to x = 1776319049,
y = 22615390. Five centuries later, Bhaskara II perfected the method for solving the Pell
equations of his predecessors and called this method the caravala (cyclic procedure). What
he did not prove was whether the method was effective for each d. The first Europeans to
participate significantly in the study were Fermat, Frenicle de Bessy, Brouncker and Wallis in
the mid-17th century, but the greatest credit goes to Lagrange (18th century) who would offer
a completely new approach based on continued fractions.

Pell’s equation (3.1) has infinitely many solutions in the set of positive integers, in contrast
to (3.2) which is not necessarily solvable. (For example, X2 − 5y2 = 2 has no solution.)

Teorem 3.2. There is at least one pair of positive integers (x, y) that satisfies Pell’s equation
(3.1).

Theorem 3.2 was stated (without proof) by Fermat. The proof is based on the following
consequence of Dirichlet’s theorem (see, for example, Theorem 6.1. in [?]) which we state
without proof, but it also follows directly from the proposition 2.1(g)).

15
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Lemma 3.3. If α is an irrational number, then there are infinitely many relatively prime
integers p and q such that ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
. (3.3)

Corollary 3.4. Let d be a positive integer that is not a perfect square. There are infinitely
many pairs of positive integers (x, y) such that

|x2 − dy2| < 1 + 2
√
d. (3.4)

Proof. Since
√
d is an irrational number, Lemma 3.3 implies that there exist infinitely many

pairs of positive integers (x, y) such that∣∣∣∣xy −
√
d

∣∣∣∣ < 1

y2
.

Also, ∣∣∣∣xy +
√
d

∣∣∣∣ = ∣∣∣∣xy −
√
d+ 2

√
d

∣∣∣∣ < 1

y2
+ 2

√
d.

Hence,
|x2 − dy2| = |(x− y

√
d)(x+ y

√
d)| < 1 + 2

√
d.

Proof of Theorema 3.2. According to Corollary 3.4 there exists an non-zero integer k ̸= 0 such
that x2 − dy2 = k is valid for infinitely many pairs of positive integers (x, y). Since there
are infinitely many of such pairs, there exist at least two pairs (x1, y1) and (x2, y2) such that
|x1| ≠ |x2| and

x1 ≡ x2 (mod |k|), y1 ≡ y2 (mod |k|). (3.5)

We have
(x1 − y1

√
d)(x2 + y2

√
d) = x1x2 − y1y2d+ (x1y2 − x2y1)

√
d.

According to (3.5) and x21 − dy21 = x22 − dy22 = k, the following congruences are valid

x1x2 − y1y2d ≡ x21 − y21d ≡ 0 (mod |k|), x1y2 − x2y1 ≡ x1y1 − x1y1 ≡ 0 (mod |k|).

Hence,
x1x2 − y1y2d = ku, x1y2 − x2y1 = kv,

for some integers u, v and

(x1 − y1
√
d)(x2 + y2

√
d) = k(u+ v

√
d),

(x1 + y1
√
d)(x2 − y2

√
d) = k(u− v

√
d).

Multiplying these two equations gives

k2 = (x21 − dy21)(x
2
2 − dy22) = k2(u2 − dv2)

which means that u2 − dv2 = 1.
To complete the proof, we have to see that v ̸= 0. Let us assume the opposite, v = 0. Then

x1y2 = x2y1, u = ±1 and

(x1 − y1
√
d)k = (x1 − y1

√
d)(x2 + y2

√
d)(x2 − y2

√
d) = ±k(x2 − y2

√
d).

So, x1 = ±x2 and y1 = ±y2. This is a contradiction with |x1| ≠ |x2|. Hence, v ̸= 0 and (|u|, |v|)
is a positive integer solution of Pell’s equation.
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We formally denote the solution of Pell’s equation (3.1) by

u+ v
√
d,

that is as an element of the quadratic field Q(
√
d). Among other things, such a notation has

some technical advantages. If u+ v
√
d < u′ + v′

√
d (in the numerical sense), then the solution

u + v
√
d is less the solution u′ + v′

√
d. The smallest (or minimal) positive integer solution

of Pell’s equation is called fundamental solution and is usually denoted by x1 + y1
√
d. The

solution x0 + y0
√
d = 1 + 0

√
d is called trivial.

Example 2. If u+v
√
d and u′+v′

√
d are solutions of Pell’s equation (3.1), then (u+v

√
d)(u′+

v′
√
d) is also a solution of (3.1).
If a+ b

√
d is a solution of Pellian equation x2 − dy2 = −1, then (a+ b

√
d)2 is a solution of

Pell’s equation (3.1).

Basic facts on quadratic fields
Let us assume that d is a square-free integer. The set

Q(
√
d) = {a+ b

√
d : a, b ∈ Q}

a field under operations under standard addition and multiplication, called quadratic field. In
other words, it is an algebraic number field of degree two over Q. Elements of Q(

√
d) are roots

of unique monic polynomials with rational coefficients of degree one or two. If the element
α ∈ Q(

√
d) is a root of a monic polynomial with integer coefficients, then α is an algebraic

integer. The set of all algebraic integers in any number field, K, forms a ring that is frequently
denoted as OK. For K = Q(

√
d) a ring of integers depends on d:

OQ(
√
d) =


Z[
√
d] = {a+ b

√
d : a, b ∈ Z}, d ≡ 2 or 3 (mod 4),

Z[1+
√
d

2 ] = {a+ b1+
√
d

2 : a, b ∈ Z},
= {u+v

√
d

2 : u, v ∈ Z, u ≡ v (mod 2)}, d ≡ 1 (mod 4).

The set of all invertible elements in OQ(
√
d) forms a (multiplicative) group called the group of

units or unit group.
The norm of the element α = a+ b

√
d is

N(α) = αα = (a+ b
√
d)(a− b

√
d) = a2 − db2.

The norm satisfies the following properties:

• N(αβ) = N(α)N(β), for all α, β ∈ Q(
√
d),

• N(α) = 0 if and only if α = 0,

• α ∈ OQ(
√
d) ⇒ N(α) ∈ Z,

• α ∈ OQ(
√
d) is a unit if and only if N(α) ∈ {−1, 1}.

The last property establishes a connection between the units of OQ(
√
d) and Pell’s equation, or

Pellian equations. So, if d ≡ 2 or 3 (mod 4), α = a+ b
√
d is a unit if and only if it is a solution

to one of equations x2 − dy2 = ±1. If d ≡ 1 (mod 4), α = a+ b
√
d is a unit if and only if it is

a solution to one of equations x2 − dy2 = ±4.
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3.2 Structure of the solution set of Pell’s equation

Teorem 3.5. Let x1 + y1
√
d be a fundamental solution to Pell’s equation (3.1). All solutions

in positive integers are given by

xn + yn
√
d = (x1 + y1

√
d)n. (3.6)

Furthermore.

xn =

⌊n/2⌋∑
k=0

(
n

2k

)
xn−2k
1 y2k1 dk,

yn =

⌊n/2⌋∑
k=0

(
n

2k + 1

)
xn−2k−1
1 y2k+1

1 dk.

Proof. It is easy to see that xn+yn
√
d is a solution. By multiplying the expressions xn+yn

√
d =

(x1 + y1
√
d)n and xn − yn

√
d = (x1 − y1

√
d)n, we get

x2n − dy2n = (x1 + y1
√
d)n(x1 − y1

√
d)n = (x21 − dy21)

n = 1.

In the following, it is necessary to prove that there are no other solutions than (3.6). Assume
that u+ v

√
d, u, v ∈ N, is a solution that is not obtained by formula (3.6). Hence, there exits

n ∈ N such that
(x1 + y1

√
d)n < u+ v

√
d < (x1 + y1

√
d)n+1.

This yields
1 < (u+ v

√
d)(x1 + y1

√
d)−n < x1 + y1

√
d,

and since (x1 + y1
√
d)−1 = x1 − y1

√
d

1 < (u+ v
√
d)(x1 − y1

√
d)n < x1 + y1

√
d.

Obviously,
a+ b

√
d = (u+ v

√
d)(x1 − y1

√
d)n

is a solution to Pell’s equation. If we show that a and b are positive integers, than we have a
contradiction with the fact that x1 + y1

√
d is a fundamental solution. Indeed,

2a = a+ b
√
d+ (a− b

√
d) = a+ b

√
d+ (a+ b

√
d)−1 > 0,

and
2b
√
d = a+ b

√
d− (a− b

√
d) = a+ b

√
d− (a+ b

√
d)−1 > 0,

because a+ b
√
d > 1 and 0 < (a− b

√
d) = (a+ b

√
d)−1 < 1.

Let S be a set of all integer solutions (x, y) to Pell’s equation such that x > 0, that is

S = {x+ y
√
d : x2 − dy2 = 1, (x, y) ∈ N× Z}.

Note that points (x, y) of S lie on the right branch of the hyperbola x2 − dy2 = 1. In addition,
S has a strong algebraic structure under common multiplication.

Teorem 3.6. The S is a multiplicative cyclic group.
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Proof. First, let us verify that S is closed under multiplication. Let x+ y
√
d and x′ + y′

√
d be

elements of S. Then

(x+ y
√
d)(x′ + y′

√
d) = xx′ + yy′d+ (xy′ + x′y)

√
d.

is a solution to Pell’s equation since

(xx′ + yy′d)2 − d(xy′ + x′y)2 = x2(x′2 − dy′2)− dy2(x′2 − dy′2) = x2 − dy2 = 1.

Also, xx′ + yy′d > 0 because x2 = 1+ dy2 > dy2, that is x >
√
d|y| and therefore xx′ > d|yy′|.

Hence, (x+ y
√
d)(x′ + y′

√
d) ∈ S.

Obviously, the neutral element for multiplication 1 ∈ S.The invertible element of x+y
√
d ∈

S is x−y
√
d ∈ S. According to Theorem 3.5, the fundamental solution x1+y1

√
d is a generator

of the group S.

3.3 Recurrence relations for solutions of Pell’s equation

Teorem 3.7. All solutions of Pell’s equation (3.1) in positive integers (xn, yn) satisfy the
following recurrence relations

xn = x1xn−1 + dy1yn−1,
yn = y1xn−1 + x1yn−1, n ≥ 1,

(3.7)

where (x1, y1) and (x0, y0) = (1, 0) are fundamental and trivial solution of (3.1), respectively.
Furthermore,

xn = 2x1xn−1 − xn−2,
yn = 2x1yn−1 − yn−2, n ≥ 2.

(3.8)

with the same initial conditions (x1, y1) and (x0, y0) = (1, 0).

Proof. Recurrences in (3.7) follow straight forward by (3.6), that is

(xn−1 + yn−1

√
d)(x1 + y1

√
d) = xn + yn

√
d.

Since x1 − y1
√
d = (x1 + y1

√
d)−1, we have

(xn−1 + yn−1

√
d)(x1 − y1

√
d) = xn−2 + yn−2

√
d.

Last two relations can be rewritten as

x1xn−1 + y1xn−1

√
d+ x1yn−1

√
d+ y1yn−1d = xn + yn

√
d,

x1xn−1 − y1xn−1

√
d+ x1yn−1

√
d− y1yn−1d = xn−2 + yn−2

√
d.

By adding them, we get (3.8).

Recurrences (3.7) can be rewritten in a matrix multiplication form:(
xn
yn

)
=

(
x1 dy1
y1 x1

)(
xn−1

yn−1

)
=

(
x1 dy1
y1 x1

)n(
1

0

)
. (3.9)

In addition, we have:(
xn dyn
yn xn

)
=

(
x1 dy1
y1 x1

)(
xn−1 dyn−1

yn−1 xn−1

)
=

(
x1 dy1
y1 x1

)n(
1 0
0 1

)
=

(
x1 dy1
y1 x1

)n

. (3.10)

This matrix form of the recursions allows us to derive useful identities satisfied by the
solutions of the Pell equation.
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3.4 Solving Pell’s equation using continued fractions

We have established that Pell’s equation is always solvable and described its set of solutions.
However, we still do not know how to determine a fundamental solution. The smallest positive
solution of Pell’s equation can, in principle, be found by inspection: we check whether 1 + dy2

is a perfect square for y = 1, 2, . . .. However, this method is inefficient, since even for small
values of d, the fundamental solution can be extremely large. For example, the fundamental
solution of the equation x2 − 61y2 = 1 is (1 766 319 049, 226 153 980). An effective method is
based on the continued fraction expansion of

√
d into a simple continued fraction (described in

Section 2.4).

Teorem 3.8. If (u, v) ∈ N2 is a solution of Pell’s equation x2−dy2 = 1, then
u

v
is a convergent

of the continued fraction expansion of
√
d.

Proof. Since
(u− v

√
d)(u+ v

√
d) = 1, (3.11)

we conclude that u − v
√
d > 0 and

u

v
>

√
d. Also, (3.11) implies that u − v

√
d =

1

u+ v
√
d
.

Hence,
u

v
−
√
d =

1

v(u+ v
√
d)

=
1

v2
(u
v
+
√
d
) <

1

2
√
dv2

<
1

2v2
.

Note that 0 <
u

v
−

√
d =

∣∣∣u
v
−
√
d
∣∣∣ < 1

2v2
. According to Theorem 2.3

u

v
is a convergent of

√
d.

Remark 3.9. With slight modifications, it can be shown that the statement of Theorem 3.4 is
also valid for all equations of the form x2 − dy2 = N where |N | <

√
d.

Theorem tells us that all positive integer solutions of Pell’s equation are among the conver-
gents of

√
d. Moreover, we can determine exactly which convergents are solutions.

Teorem 3.10. Let r be the length of the period in the continued fraction expansion of
√
d and

let (pn/qn) denote the convergents of
√
d.

If r is even, then the equation x2−dy2 = −1 has no solution, and all solutions of x2−dy2 = 1
are (pnr−1, qnr−1) for n ∈ N.

If r is odd, all solutions of x2−dy2 = −1 are (pnr−1, qnr−1) for odd n ∈ N and all solutions
of x2 − dy2 = 1 are (pnr−1, qnr−1) for even n ∈ N.

Remark 3.11. If r is even, then the fundamental solution of x2 − dy2 = 1 is (pr−1, qr−1). If
r is odd, then the fundamental solution of x2 − dy2 = −1 is (pr−1, qr−1)and the fundamental
solution of x2 − dy2 = 1 is (p2r−1, q2r−1), since

p2r−1 + q2r−1

√
d = (pr−1 + qr−1

√
d)2.

From the previous remark, we now understand why some fundamental solutions of Pell’s
equation can be very large even for small values of d. So, for d = 61 we get

√
61 = [7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14],

and since the period is large and odd (r = 11), the fundamental solution of x2 − 61y2 = 1 is

(x0, y0) = (p21, q21) = (1 766 319 049, 226 153 980).
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Assignment 2. .

i) Find the continued fraction of F13/F12, where Fn is nth Fibonacci number. (Use the
Euclidean algorithm).

ii) Find the value of the real number α = [1, 2, 1, 2, 3].

iii) Find the continued fraction of α =
−5 +

√
10

4
using the algorithm (2.9).

iv) Find the continued fraction of α =
√
29 using the algorithm (2.10).

v) With notations as in Theorem 3.5 and 3.7, prove the following sum and subtraction
identities:

xm±n = xmxn ± dymyn,
ym±n = xnym ± xmyn, m ≥ n.

In particular, “double angle identities” hold,

x2n = 2x2n − 1,
y2n = 2xnyn, n ≥ 0.

Hint: Use (3.10)

vi) Find the fundamental solution of Pell’s equation x2 − dy2 = 1 for d = 29 and d = 39.
Also, list all solutions such that y < 106.

Determine whether the negative Pell’s equation x2−dy2 = −1 is solvable for these values
of d’s?
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