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ABSTRACT. Let E/Q be an elliptic curve and let Q(3°°) be the compositum of all cubic extensions
of Q. In this article we show that the torsion subgroup of E(Q(3%)) is finite and determine 20
possibilities for its structure, along with a complete description of the Q-isomorphism classes of
elliptic curves that fall into each case. We provide rational parameterizations for each of the 16
torsion structures that occur for infinitely many Q-isomorphism classes of elliptic curves, and a
complete list of j-invariants for each of the 4 that do not.

1. INTRODUCTION

Interest in the rational points on elliptic curves dates back at least to Poincaré, who in 1901
conjectured that the group E(Q) of rational points on an elliptic curve E over Q is a finitely
generated abelian group [31]. This conjecture was proved by Mordell [28] in 1922 and then vastly
generalized by Weil [40], who proved in 1929 that the group of rational points on an abelian variety
defined over a number field is finitely generated. An immediate consequence of the Mordell-Weil
theorem is that the torsion subgroup E(F')os of an elliptic curve E over a number field F' is finite,
and therefore isomorphic to a group of the form

Z/aZ & Z]abZ,

for some integers a,b > 1. In 1996, Merel [27] proved the existence of a uniform bound on the
cardinality of E(F)ios that depends only on the number field F', not the particular elliptic curve
E/F; in fact, Merel’s bound depends only on the degree of the field extension F'/Q. This bound was
improved and made effective by Oesterlé in 1994 (unpublished), and later by Parent [30] in 1999.

It is thus a natural goal to classify (up to isomorphism), the torsion subgroups of elliptic curves
defined over number fields of degree d, for fixed integers d > 1. Mazur famously proved such a
classification for d = 1.

Theorem 1.1 (Mazur [25]). Let E/Q be an elliptic curve. Then

Z/MZ with 1 < M <10 or M =12, or

E ~
(@1ors {2/22 BL/2MZ  with1 < M < 4.

The classification for d = 2 was initiated by Kenku and Momose, and completed by Kamienny.
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Theorem 1.2 (Kenku, Momose [19], Kamienny [13]). Let E/F be an elliptic curve over a quadratic
number field F'. Then

7Z/MZ with 1 < M <16 or M =18, or
Z2Z & ZL)2MZ  with 1 < M <6, or
Z)3L®L)3MZ with M =1 or 2, only if F = Q(v/=3), or
Z]AZ & L] AZ only if F = Q(v/-1).
The case d = 3 remains open. Jeon, Kim, and Schweizer have determined the torsion structures
that appear infinitely often as one runs through all elliptic curves over all cubic fields [11], and Jeon,

Kim, and Lee have constructed infinite families of elliptic curves that realize each of these torsion
structures [12].

E(F)tors ~

Theorem 1.3 (Jeon, Kim, Lee, Schweizer [11, 12]). Suppose that T is an abelian group for which
there exist infinitely many Q-isomorphism classes of elliptic curves E over cubic number fields F,
such that E(F)iors ~T. Then

N Z/M7 with 1 < M <16 or M = 18,20, or
~\z/220Z/2MZ  with1 <M <T.

Moreover, for each such T an explicit infinite family of elliptic curves over cubic fields with torsion
subgroup isomorphic to T is known that contains infinitely many Q-isomorphism classes.

Sharper results can be proved if one restricts to base extensions of elliptic curves that are defined
over Q. In this setting the second author has obtained bounds on the largest prime-power order that
may appear in a torsion subgroup [22, 24|, and the third author has classified the torsion subgroups
that can arise over extensions of degrees 2 and 3 [29].

Theorem 1.4. [29, Thm. 2] Let E/Q be an elliptic curve and let F' be a quadratic number field.
Then

Z/MZ with 1 < M <10 or M = 12,15,16, or
Z2Z®ZL/2MZ  with 1 < M <6, or

Z)3L®LI3MZ  with1 < M <2 and F = Q(v/-3), or

Z/AZSL/AL  with F = Q(v/—1).

Theorem 1.5. [29, Thm. 1] Let E/Q be an elliptic curve and let F' be a cubic number field. Then

E(F)tors ~

Z./MZ with 1 < M <10 or M = 12,13,14, 18,21, or

E(F ors = .
(E) {Z/2Z@Z/2MZ with1 < M <4 or M =1.

Moreover, the elliptic curve 162B1 over Q({o)™ is the unique rational elliptic curve over a cubic field
with torsion subgroup isomorphic to Z/217. For all other groups T listed above there are infinitely
many Q-isomorphism classes of elliptic curves E/Q for which E(F) ~T for some cubic field F.

In the setting of base extensions of elliptic curves E/Q, one may also consider the torsion sub-
groups that can arise over certain infinite algebraic extensions of Q. In general these need not be
finite, and there may be infinitely many possibilities; but for suitably chosen extensions, this is not
the case. For example, Ribet proved that for an abelian variety defined over a number field F', the
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torsion subgroup of its base change to the maximal cyclotomic extension of F' is finite [32]. Here we
consider infinite extensions obtained as the compositum of all number fields of a fixed degree d.

Definition 1.6. For each fived integer d > 1, let Q(d™) denote the compositum of all field extensions
F/Q of degree d. More precisely, let Q be a fixed algebraic closure of Q, and define

Q(d™®) :=Q({8 €Q: [Q(B): Q] = d}).

The fields Q(d*®) have been studied by Gal and Grizzard [9], who use the notation Q!4 (they
also consider the fields Q@ = QRIQB! ... QU and show that Q = Q@) precisely when d < 5). For
elliptic curves E/Q, the group F(Q(d*)) is not finitely generated. This was proved for d = 2 by
Frey and Jarden [6] in 1974, and the result for d > 2 follows from the inclusion Q(2%°) C Q(d*)
given by [9, Theorem 1].

The torsion subgroups of E(Q(d>)) have been studied in the case d = 2, in which the field Q(2°°)
is the maximal elementary abelian 2-extension of Q. Even though F(Q(2°)) is not finitely generated,
the torsion subgroup E(Q(2%°))iors is known to be finite, and the possible torsion structures have
been classified by Laska and Lorenz [20], and Fujita [7, §].

Theorem 1.7 (Laska, Lorenz [20], Fujita [7, 8]). Let E/Q be an elliptic curve and let
Q(2*) :=Q({vm :m € Z}).
The torsion subgroup E(Q(2°°))tors is finite, and

Z/MZ with M € 1,3,5,7,9,15, or
Z]2Z. & ZL]2MZ with1 <M <6 or M =8, or

Z]AZ & Z]AMZ with 1 < M <4, or
LZ2MZ ®Z/2MZ  with 3 < M < 4.

In this article we classify the torsion subgroups E(Q(3%))iors that arise for elliptic curves E/Q.
Our main theorem is the following.

Theorem 1.8. Let E/Q be an elliptic curve. The torsion subgroup E(Q(3%))iors is finite, and
7)20&Z)2MZ  with M =1,2,4,5,7,8,13, or

ZJAZ & TJAMZ  with M =1,2,4,7, or

Z)67&Z)6MZ  with M =1,2,3,5,7, or

7)2M7 & Z)2MZ  with M = 4,6,7,9.

E(Q(Bm))tors =~

All but 4 of the torsion subgroups T listed above occur for infinitely many Q-isomorphism classes of
elliptic curves E/Q; for T = Z/AZXZ/28Z, L[6ZXZ/30Z, Z[6ZXL[A2Z, and Z|/14Z X Z|14Z there
are only 2, 2, 4, and 1 (respectively) Q-isomorphism classes of E/Q for which E(Q(3%))tors ~ T .

Remark 1.9. Minimal conductor examples of elliptic curves E/Q that realize each of the torsion
subgroups permitted by Theorem 1.8 are listed in the table below. Here and throughout we identify
elliptic curves over QQ by their Cremona label [2] and provide a hyperlink to the corresponding entry
in the L-functions and Modular Forms Database (LMFDB) [21].
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E/Q E(Q(goo))tors E/Q E(Q(goo))tors

11a2 | Z/2Z®Z/2Z7 || 338al |Z/AZ ®Z/28Z
17a3 | Z/2Z & Z/AZ || 20al | Z/6Z & Z/67

15a5 | Z/22 & Z/87 || 30al | Z/6Z & Z/12Z
11al | Z/2Z ® Z/10Z || 14a3 | Z/6Z & Z/187Z
26b1 | Z/22 & 7J147 || 50a3 | Z/6Z & Z/30Z
210el | Z/2Z © Z/16Z || 162b1 | Z/6Z & Z/]42Z
147v1 | Z/2Z ® 7.J26Z || 15a1 | Z /87 & Z/8Z

17al |Z/AZ®ZJAZ || 3022 | Z/12Z S Z/12Z
1522 | Z/AZ ® 7/8Z || 2450al | Z/14Z & Z./14Z
210e2 | Z/AZ & 7J16Z || 14a1 | Z/187 & Z/187Z

Magma [1] scripts to verify these examples, and all other computational results cited herein, are
available at [4], including a function to compute E(Q(3°))tors for any elliptic curve E/Q.

For each of the torsion structures 7' in Theorem 1.8 that arises infinitely often we provide a
complete set of rational functions that parameterize the j-invariants of the elliptic curves E/Q for
which E(Q(3%))tors contains a subgroup isomorphic to T' (for the general member of each family,
isomorphism holds), and for those that occur only finitely often we provide a complete list of j-
invariants; this information appears in Table 1 at the end of the article.

Key to our results are a number of recent advances in our explicit understanding of Galois rep-
resentations attached to elliptic curves over number fields. In particular, we rely on work of Rouse
and Zureick-Brown [34] classifying the 2-adic representations of elliptic curves over Q, work of Zy-
wina [42] on the possible mod-p representations of an elliptic curve over Q, and algorithms developed
by the fourth author [38] for efficiently computing the images of Galois representations of elliptic
curves over number fields.

Acknowledgements. The authors would like to thank Robert Grizzard for helpful conversations
about the structure of Gal(Q(3*°)/Q) and Jackson Morrow, Jeremy Rouse, David Zureick-Brown,
and David Zywina, for their computational assistance, including explicit models for some of the
modular curves that appear in this article. We also thank Lukas Pottmeyer and David Zureick-
Brown for their feedback on an early draft of this article.

2. NOTATION AND TERMINOLOGY

We fix once and for all an algebraic closure Q that contains all the algebraic extensions of Q that
we may consider, including the fields Q(d*°) and the Galois closure and algebraic closure of every
number field. As usual, for an elliptic curve E/F, we use E[n] to denote the n-torsion subgroup
of E(F), where F = Q when F is a number field. We recall that E[n] ~ Z/nZ @& Z/nZ, so long
as n is prime to the characteristic of F', which holds for all the cases we consider. If L/F is a field
extension, we write E(L)[n] for the n-torsion subgroup of E(L), and for primes p, we write E(L)(p)
for the p-primary component of E(L). For any point or set of points P in E(F), we write F(P) for
the extension generated by the coordinates of P and F(x(P)) for the extension generated by the
x-coordinates of P (we assume E is given by a Weierstrass equation in x and y).

For an elliptic curve E/F, an n-isogeny is a cyclic isogeny ¢: E — E’ of degree n; this means
ker ¢ is a cyclic subgroup of E[n|, and as all the isogenies we consider are separable, this cyclic group
has order n. The isogenies ¢ that we consider are also rational, meaning that ¢ is defined over F,
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equivalently, that ker o is Galois-stable: the action of Gal(F/F) on E[n] given by its action on the
coordinates of the points P € E[n| permutes ker ¢ C E[n]. To avoid any possible confusion, we will
usually state the rationality of ¢ explicitly. We consider two (separable) isogenies to be distinct
only when their kernels are distinct (otherwise they differ only by an isomorphism).

We recall that if E/Q is an elliptic curve, then for each positive integer n the action of the group
Gal(Q/Q) on the Z/nZ-module E[n] induces a Galois representation (continuous homomorphism)

pEn: Gal(Q/Q) — Aut(E[n]) ~ GLy(Z/nZ),

whose image we view as a subgroup of GlLg(Z/nZ) (determined only up to conjugacy). When
n = p is prime, we may identify GLy(Z/pZ) with GL2(F,). The extension Q(E[n])/Q is Galois,
and the homomorphism Gal(Q(E[n])/Q) — GL2(Z/nZ) induced by restriction is injective; thus
Gal(Q(E[n])/Q) is isomorphic to a subgroup of GLg(Z/nZ). This subgroup necessarily contains
elements of every possible determinant (each residue class in (Z/nZ)* contains the norms of infin-
itely many unramified primes of Q(E[n])/Q), and an element v with trace 0 and determinant —1
(corresponding to complex conjugation).! We refer the reader to [35] for further background on
Galois representations.

We distinguish two standard subgroups of GL2(Z/nZ) (up to conjugacy): (1) the Borel group
of upper triangular matrices, and (2) the split Cartan group of diagonal matrices. Recall that an
elliptic curve E/Q admits a rational n-isogeny if and only if the image of pg, in GLo(Z/nZ) is
conjugate to a subgroup of the Borel group (both conditions hold if and only if E[n] contain a
Galois-stable cyclic subgroup of order n). Similarly, £/Q admits two rational n-isogenies whose
kernels intersect trivially if and only if the image of pg , in GL2(Z/nZ) is conjugate to a subgroup
of the split Cartan group.

If H is a subgroup of GLy(Z/nZ) with surjective determinant map that contains —1, we use Xg
to denote the associated modular curve over Q whose non-cuspidal rational points parameterize
elliptic curves E//Q for which the image of pg, in GL2(Z/nZ) is conjugate to a subgroup of H.
Certain information about Xy, including its genus, can be determined from the congruence subgroup
'y of PSLa(Z) obtained by taking the inverse image of the intersection of H with SLo(Z/nZ) in
PSL2(Z) = SLa(Z)/{£1}. The tables of Cummins and Pauli [3] contain data for all congruence
subgroups of genus up to 24 in which subgroups are identified by labels of the of the form “mX9”,
where m is the level, g is the genus, and X is a letter that distinguishes groups of the same level
and genus. We note that the level m of I'yy divides but need not equal n, and two non-conjugate
H; and Hs may give rise to the same congruence subgroup I'y, = 'y, in PSLy(Z).

3. THE FIELD Q(3%°)

As noted in the introduction, the field Q(2*°) C Q(3*) is the maximal elementary abelian 2-
extension of Q; the number fields in Q(2°°) are precisely those whose Galois group is isomorphic
to (Z/2Z)™ for some integer n > 0. In this section we similarly characterize the number fields in
Q(3%°) in terms of their Galois groups.

Definition 3.1. We say that a finite group G is of generalized Ss-type, if it is isomorphic to a
subgroup of a direct product S3 X --- x S3 of symmetric groups of degree 3.

IThe element ~ also must act trivially on a maximal cyclic subgroup of Z/nZ @& Z/nZ corresponding to the real
line, an additional constraint that is important when n is even; see Remark 3.14 in [38].
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Recall that a finite group G is supersolvable (or supersoluble) if it has a normal cyclic series;
an equivalent criterion is that every maximal subgroup of G has prime index [10], or that every
subgroup of G is Lagrangian (each subgroup H contains subgroups of every order dividing |H|) [41].
The following lemma characterizes finite groups of generalized Ss-type.

Lemma 3.2. A finite group G is of generalized Ss-type if and only if (i) G is supersolvable, (ii) the
exponent of G divides 6, and (iii) the Sylow subgroups of G are abelian.

Proof. For the forward implication, properties (i), (ii), and (iii) are all preserved by taking direct
products and subgroups (and quotients). Thus to show that every finite group G of generalized
Ss-type has all three properties, it is enough to note that S5 does, which is clearly the case.

For the reverse implication, suppose that G is a finite group with properties (i), (ii), and (iii).
Then G is supersolvable, so it has a cyclic normal series whose successive quotients have non-
increasing prime orders (see [33, Thm. 5.4.8], for example), and since G has abelian Sylow subgroups
and exponent dividing 6, we can write this series as

1<(o1) Q- <(01,y ooy Om) <{OLy ooy Oy T1) <D= <TA{O1y oo Oy Ty ooy Tn) = G
where each o; has order 3, each 7; has order 2, the o; commute, and so do the 7;. Conjugation
by any 7; fixes both (o1,...,0;) and (o1,...0j41) ~ (01,...,04) X (0j+1), and therefore (o;i1); it
follows that for each 7; and o, either 7; and o; commute or 7,07, " = aj_l.
If we now consider an n x m matrix (a;;) over Fy with a;; = 1 if and only if 7; and ¢; do not
commute, by row-reducing this matrix so that each column has at most one nonzero entry, we can

construct a new basis {7{,...,7,} for the 2-Sylow subgroup of G with the property that each o}
commutes with all but at most one 7. We can then write G in the form

(1) G~ (Z/3Z2)*° x ((Z/3Z)** x ZJ2Z) x --- x ((Z/3Z)*" x Z/2Z),

where sg is the number of zero columns and s; is the number of nonzero entries in the ith row of
the reduced matrix (possibly s; = 0). It is then clear from (1) that G is isomorphic to a subgroup
of the product of sg + - - - + s, copies of S3, hence of generalized Ss-type. O

Example 3.3. The alternating group Ay, the cyclic group Z/4Z, and the Burnside group B(2,3)
(the unique non-abelian group of order 27 and exponent 3) are examples of groups that are not of
generalized S3-type; each satisfies only two of the three properties required by Lemma 3.2.

Corollary 3.4. The product of two groups of generalized Ss-type is of generalized Ss-type, as is
every subgroup and every quotient of a group of generalized Ss-type.

Our main goal in this section is to show that the groups that arise as Galois groups of number fields
in Q(3%°) are precisely the groups of generalized Ss-type. We first address the forward implication.

Theorem 3.5. Let L be a number field in Q(3%°) with Galois closure L. Then L C Q(3°°) and
Gal(L/Q) is of generalized Ss-type. In particular, the exponent of Gal(L/Q) divides 6.

Proof. Every number field L in Q(3°°) lies in a compositum of cubic fields F} - - - F,,,. The composi-
tum of the Galois closures I} - - - F, is a Galois extension F /Q that contains L, and therefore E,
and it is a subfield of Q(3°°), since we can write each E = F;1F;2F; 3 as a compositum of cubic
fields F;; := Q(«;) generated by the roots a; of an irreducible cubic polynomial defining F;/Q.
Each G; := Gal(ﬁ’i) is isomorphic to either Z/37Z or Ss, both of which are of generalized Ss-type,
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Gal(F/Q) is isomorphic to a subgroup of Gy x - - - X G, hence of generalized S3-type, and Gal(L/Q)
is isomorphic to a quotient of Gal(F'/Q), hence also of generalized Ss-type, by Corollary 3.4. O

We now prove the converse of Theorem 3.5.

Theorem 3.6. Let L be a number field with Galois closure Z, and suppose that Gal(f/@) is of
generalized S3-type. Then L C L C Q(3%).

Proof. From the proof of Lemma 3.2, if Gal(f /Q) is of generalized Ss-type then, as in (1), we have
Gal(i/@) ~ (Z/32) x ((Z)3Z)** x ZJ2Z) x --- x ((Z/3Z)*" x LJ2Z).
It follows that L is a compositum of linearly disjoint Galois extensions Fy, ..., F;, of Q for which
Gal(Fy/Q) ~ (Z/3Z)* and Gal(F;/Q) ~ (Z/37)% x 7./2.

for 1 < i < n. It suffices to show F; C Q(3%) for 0 < ¢ < n. Note that Fp is the compositum of
cyclic (Galois) cubic extensions of Q, so Fyp C Q(3%). It remains to show that if F//Q is Galois and

Gal(F/Q) ~ ((Z/3Z)° x Z/2Z)

for some s > 0, then FF C Q(3%°). Let Gal(F/Q) = ({7, 0; : 1 < j < s}), where 72 = 02 = 1, and

J
-1 —1
TOT =0, and put

Hjp = ({ofr, 0i:1<i<s, i#j})

forj=1,...,s,and k = 0,1,2. Each Hj, is a subgroup of Gal(F/Q) of order 2 - 3571, and if K
is the subfield of F' fixed by Hj, then [Kj ) : Q] = 3. Moreover, the extension K; = K;0K;1Kj2
is Galois over Q (because Gal(F/K;) = ({0, : 1 < i <'s, i # j}) is normal in Gal(F/Q)) with
Gal(K;/Q) ~ S3. Since F = K - - - K, it follows that

S
F=]]K0K;1K;»
j=1

is a compositum of cubic fields and therefore lies in Q(3°). O

We will appeal to Theorems 3.5 and 3.6 repeatedly in the sections that follow; for the sake of
brevity we do not cite them in every case.

We conclude this section by determining the roots of unity (, of prime-power order n that lie
in Q(3°°). The possible values of n are severely constrained by the fact that if ¢, € Q(3°°), then
the exponent of Gal(Q((,)/Q) ~ (Z/nZ)* must divide 6.

Lemma 3.7. Let n be a prime power. Then Q((,) C Q(3%) if and only if n € {2,3,4,7,8,9}.

Proof. Suppose Q(¢,) € Q(3%). Then the exponent A(n) of Gal(Q(¢,)/Q) ~ (Z/nZ)* divides 6.
We have A(2¢) = 272 and A\(p®) = ¢ (p®) = (p—1)p°~! for primes p > 2. It follows that A(n) divides 6
only for n € {2,3,4,7,8,9}. The group (Z/nZ)* is abelian, hence it is supersolvable and has abelian
Sylow subgroups. Lemma 3.2 and Theorem 3.6 imply Q(¢,) € Q(3*°) for n € {2,3,4,7,8,9}. O
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4. FINITENESS RESULTS

Our goal in this section is to prove that E(Q(3%))os is finite. The only property of Q(3°°) that
we actually require is that it is a Galois extension of Q that contains only a finite number of roots
of unity, a property that applies to all the fields Q(d*®). We thus work in a more general setting.

Theorem 4.1. Let E/Q be an elliptic curve and let F' be a (possibly infinite) Galois extension of Q
that contains only finitely many roots of unity. Then E(F)iors s finite. Moreover, there is a uniform
bound B, depending only on F, such that #E(F)ios < B for every elliptic curve E/Q.

Before proving the theorem we first establish some intermediate results. We begin with the usual
consequence of the existence of the Weil pairing.

Proposition 4.2. [36, Ch. III, Cor. 8.1.1] Let E/L be an elliptic curve with L C Q. For each
integer n > 1, if E[n] C E(L) then the nth cyclotomic field Q((,) is a subfield of L.

This immediately implies the following result.
Lemma 4.3. Let E and F be as in Theorem 4.1. Then E[n| C E(F) for only finitely many n.

The following theorem summarizes results of Mazur and Kenku that yield a complete classification
of the rational n-isogenies that can arise for elliptic curves over Q (recall that n-isogenies are defined
to be cyclic). See [22, §9] for further details.

Theorem 4.4. [25, 15, 16, 17, 18] Let E/Q be an elliptic curve with a rational n-isogeny. Then
n <19 orn € {21,25,27, 37, 43,67, 163).
Theorem 4.4 limits the primes p for which E(F')[p] can be cyclic.
Lemma 4.5. Let E and F be as in Theorem 4.1. If E(F)[p| has order p then p < 163.

Proof. The group H = E(F)[p] is stable under the action of Gal(F/Q), hence Galois-stable. If
|H| = p, then H is the kernel of a rational p-isogeny and p < 163, by Theorem 4.4. O

Lemmas 4.3 and 4.5 together imply that for any elliptic curve E/Q, the p-torsion subgroup of
E(F) is trivial for all but finitely many primes p, and E[p*] C E(F) for only finitely many prime
powers p¥. It remains only to check that the cyclic prime-power torsion of E(F) is finite.

Lemma 4.6. Let E and F be as in Theorem /.1, let p be a prime, and let k be the largest integer
for which E[p*] C E(F). If E(F)ors contains a subgroup isomorphic to Z/p*Z ® Z./pZ with j > k,
then E admits a rational pP~*-isogeny. Moreover, j — k < 4, 3, 2, if p = 2, 3, 5, respectively,
j—k<1ifp=17,11,13,17,19,43,67,163, and j = k otherwise.

Proof. Let Q € E(F) be a point of order p/, and choose P € E[p/] so that {P,Q} is a Z/p’Z-basis
for E[p?]. If o € Gal(Q/Q), then 0(Q) € E(F), because F is Galois, and ¢(Q) is a point of order p’.
Thus 0(Q) € E[p’], so o(Q) = aP + bQ for some integers a and b.

We claim that ¢ = 0 mod p~*. Indeed, the equality o(Q) = aP + bQ implies that

aP = (Q) - bQ € B(F),
and if ¢ is the p-adic valuation of a, then aP € E[p’~!] and {aP,p'!Q} C E(F) is a Z/p’~tZ-basis
for E[p’~*]. By the definition of k, we must have j —t < k, so j — k < t. Thus a = 0 mod p/ ¥, as
claimed, and we may write a = a’p’~* for some integer a’.
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Let Qi := p*Q € E(F). We claim that (Q;_) is Gal(Q/Q)-stable. Indeed, we have
0(Qj-1) = 0" Q) = "0(Q) = b (aP +bQ) = " (¢p P +0Q) = W P + ' Q = bQ; .

for any o € Gal(Q/Q). Thus (Q;—x) is a Galois-stable cyclic subgroup of E(F) of order p/~*, and
E — E/(Qj_) is a rational p/~*-isogeny. The bounds on j — k then follow from Theorem 4.4. [

Proof of Theorem 4.1. To show that E(F)ios is finite, it suffices to show that (1) E(F)iors has a
non-trivial p-primary component for only finitely many primes p, and (2) for each of these primes p,
the p-primary component of E(F )i is finite.

(1) Let n be the maximum of 163 and the largest order of a root of unity in F, and let p > n
be prime. Then E[p| € E(F), by Lemma 4.3, so if the p-primary component of E(F)ios iS
non-trivial, it must be cyclic, and in this case Lemma 4.5 implies that p < 163 < n, which
is a contradiction. So the p-primary part of E(F )y is trivial for all p > n.

(2) Let p < n be prime and let k be the largest integer for which Q((,x) € F'. It follows from

Lemma 4.6 that the cardinality of the p-primary part of E(F )i is bounded by p?++4.

The integer n and the maximum value of k over primes p < n depend only on F', as does the bound
on E(F)iors- This concludes the proof of Theorem 4.1. O

Lemma 3.7 allows us to apply Theorem 4.1 with F' = Q(3°°); more generally, we have the following
proposition.

Proposition 4.7. For every d > 2 the cardinality of E(Q(d*))tors 1S finite and uniformly bounded
as E wvaries over elliptic curves over Q.

Proof. Tt follows from [9, Prop. 10] that for any finite Galois extension K /Q in Q(d*)), the exponent
of Gal(K/Q) is bounded. Indeed, K is a subfield of a compositum of degree-d fields, and Gal(K/Q)
is isomorphic to a quotient of a subgroup of a direct product of transitive groups of degree d, each
of which has exponent dividing the exponent A(S;) of the symmetric group Sy. For all sufficient
large prime powers p¥, the exponent \(p¥) > p¥/4 of Gal(Q(¢yr)/Q) is larger than A(Sy), implying
that (x & Q(d*°). The proposition then follows from Theorem 4.1. O

We now make this result more precise in the case d = 3 by determining the primes p for which
E(Q(3%))(p) can be non-trivial. We first note the following lemma.

Lemma 4.8. Let E/Q be an elliptic curve that admits a rational n-isogeny p, and let P € E[n] be
a point of order n in the kernel of . The field extension Q(P)/Q generated by the coordinates of P
is Galois and Gal(Q(P)/Q) is isomorphic to a subgroup of (Z/nZ)*. In particular, if n is prime
then Gal(Q(P)/Q) is cyclic and its order divides n — 1.

Proof. The fact that ¢ is rational implies that (P) is a Galois-stable subgroup of E[n]. It follows
that Q(P)/Q is Galois: every Galois conjugate of a coordinate of P is necessarily a coordinate of
some aP € (P), all of which lie in Q(P) because E (and therefore the group law on E) is defined
over Q. The homomorphism Gal(Q(P)/Q) — (Z/nZ)* given by o +— a, where o(P) = aP, is
injective, since if o(P) = 7(P) then o7~ 1(P) = P, and this implies o7~ ! = 1 fixes Q(P). O

Proposition 4.9. Let E/Q be an elliptic curve, and let p be a prime dividing the cardinality of
E(Q(3%))tors- Then p € {2,3,5,7,13}.
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Proof. For primes p > 11, Lemma 3.7 implies that Q(3°°) does not contain a primitive pth root
of unity, and therefore E[p] Z Q(3°), by Proposition 4.2. If p > 17 with p # 37,43,67,163, then
Lemma 4.6 implies that E(Q(3%))[p] is trivial.

For the primes p = 11,17,37,43,67, and 163, if the p-primary part H of E(Q(3%))tors is not
trivial then it must be cyclic of order p, in which case E admits a rational p-isogeny with a point
P € E(Q(3%))[p] of order p in its kernel. By Lemma 4.8, the group Gal(Q(P)/Q) is cyclic, and it
follows from Theorems 6.2 and 9.4 of [22] that its order is at least (p —1)/2 for p # 37, and at least
(p—1)/3 = 12 for p = 37. In each case, the exponent of Gal(Q(P)/Q) cannot divide 6, and therefore
Q(P) Z Q(3*°), by Theorem 3.5. But this contradicts P € E(Q(3*)), so in fact E(Q(3°))[p] must
be trivial for all p > 11 except possibly p = 13. The proposition follows. 0

As can be seen by the examples in Remark 1.9, all the values of p permitted by Proposition 4.9
actually do arise for some E/Q. Lemmas 3.7 and 4.6 imply explicit bounds on the prime powers pF
that can divide E(Q(3%))tors (namely, & < 10,7,2,3,1 for p = 2,3,5,7, 13, respectively), but as we
will show in the next section, these bounds are not tight.

5. MAXIMAL p-PRIMARY COMPONENTS OF E(Q(3%))tors

In this section we obtain sharp bounds on the p-primary components of E(Q(3°)) for elliptic
curves E/Q. We will prove the following theorem.

Theorem 5.1. Let E/Q be an elliptic curve. Then E(Q(3%))tors s isomorphic to a subgroup of
Tonax = (/87 ® ZJ16Z) & (Z)9Z & Z,)9Z) & L/5Z & (Z/7Z & Z/TZ) & 7./ 13Z,
and Thax s the smallest group with this property.

In order to prove the theorem it suffices to address the p-primary components E(Q(3%))(p) for
each of the primes p = 2,3,5,7,13 permitted by Proposition 4.9. We first prove two preliminary
results that will be used in the subsections that follow. We recall that the Q-isomorphism class of
an elliptic curve F/Q may be identified with its j-invariant j(F).

Proposition 5.2. Let E/Q be an elliptic curve with j(E) # 1728. The isomorphism type of
E(Q(3%))t0rs depends only on the Q-isomorphism class of E, equivalently, only on j(E).

Proof. Recall that for j(E) # 0,1728, if j(E') = j(FE) for some E’'/Q then E’, is a quadratic twist of
E, hence isomorphic to E over an extension of degree at most 2. If j(E) = 0 and j(E') = j(F), then
E’/Q is isomorphic to E over a cyclic extension of Q of order dividing 6 (see §X.5 of [36], for example).
Thus for j(E) = j(E') # 0, the elliptic curves E and E’ are isomorphic over a field of generalized
S3-type, hence their base changes to Q(3°°) are isomorphic and E(Q(3%)ors = E'(Q(3%°))tors. U

Remark 5.3. When j(E) = 1728 there are two possibilities: either E(Q(3%))iors ~ Z/2Z D7 /27 or
E(Q(3%))ors =~ Z/AZDBZ/AZ. These are realized by the elliptic curves 256b1 and 32a1, respectively.

Lemma 5.4. Let p and q be distinct primes, let Ko/ K1 be a finite Galois extension of number fields
with [Ks : K1] a power of q, and let E be an elliptic curve defined over Q.
(1) If E(K1)[p] = E(K2)[p], then E(K1)(p) = E(K2)(p), that is, if the p-torsion of E does not
grow when we move from Ky to Ko, then neither does the p-primary torsion.
(2) Let P = E(K3)[p]. Then E(K1(P))(p) = E(K2)(p), that is, the p-primary torsion of E(K»)
stabilizes over the extension of K1 generated by the the p-torsion of E(Ka).


http://www.lmfdb.org/EllipticCurve/Q/256b1
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Proof. We first note that (2) is implied by (1), since K;(P) has all the properties required of K3
(indeed, K1 C K1(P) C Ko, so Ko/K;(P) and [Ks : K1(P)] divides [K3 : K1], so it is a power of q).

To prove (1), we assume E(K;)[p] = E(K2)[p]; (1) clearly holds when this group is trivial,
we assume otherwise. We now suppose for the sake of contradiction that E(K7)(p) is properly
contained in E(K3)(p). Then there exists a point Q € E(K3)(p) for which P = p@ is a nonzero
point in E(K7)(p), say of order p* for some k > 1. Then R = p*~'P is a nonzero element of
E(K1)[p] C E[p], and we may choose S € E[p| so that {R, S} is a Z/pZ-basis for E|p).

The multiplication-by-p map is a separable endomorphism of degree p?, so there are p? distinct
preimages of P under multiplication by p (including Q); these are precisely the points in the set

Q:=[p] Y P)={Q+aR+bS:0<a,b<p}

Put Q1 := QN E(K;) and Qs := QN E(K3). Of the p? points in Q, at least p lie in E(K3), namely,
the points Q@+ aR (since @, R € E(K3)), so Q has cardinality at least p. If its cardinality is greater
than p, then @ + aR + bS € E(K3) for some b # 0 mod p, which implies bS € E(K3), and therefore
S € E(K3), since b is invertible modulo p and S has order p. Thus the cardinality of Qs is either p?
or p, depending on whether E(K>3)[p] = E[p| or not.

We claim that Q; is empty. For the sake of contradiction, suppose @ + aR + bS € Q; C E(K3).
We then have Q+bS € E(K4), since R € E(K1), and since Q ¢ E(K7) by assumption, we must have
b # 0 mod p. This implies S € E(K3), since Q,Q+bS € E(K3). But then S € E(K»)[p| = E(K1)[p],
so S € E(K), which contradicts Q ¢ E(K), since Q + bS € E(K1).

The Galois group Gal(K2/K7) acts on the set Q, since it is the solution set of pX = P, which is
stable under Gal(K2/K;) because P € E(K7). The fact that Q; is empty implies that this action
has no fixed points. By the orbit-stabilizer theorem, the size of each orbit divides | Gal(K2/K1)|, a
power of the prime ¢, and since no orbit is trivial, the size of each orbit is divisible by ¢. It follows
that the cardinality p? of Q is divisible by ¢, which is a contradiction, since p and ¢ are distinct
primes. Thus our supposition that F(K1)(p) # E(K2)(p) must be false, which proves (1). O

5.1. Primes without the possibility of full p-torsion (p = 5,13). We start with the primes p
for which E[p] € E(Q(3%)), namely, p = 5,13. In these cases E(Q(3°°))(p) is necessarily cyclic.

Lemma 5.5. Let E/Q be an elliptic curve. Then E(Q(3%))(5) is either trivial or isomorphic
to Z/5Z; the latter holds if and only if E admits a rational 5-isogeny whose kernel generates an
extension of degree at most 2.

Proof. 1t follows from Lemma 3.7 and Proposition 4.2 that E[5] € E(Q(3%)), thus E(Q(3%))(5) is
cyclic of order 57 for some j > 0. Lemma 4.6 implies, j < 2; we will show that in fact j < 1. Suppose
for the sake of contradiction that E(Q(3°°)) contains a point P of order 25. Let K := Q(P) C Q(3*),
let K5 C Q(3°°) be the Galois closure of K, and let K7 := K>NQ(2°°). Then [K> : K] is a power of 3,
since Gal(K3/Q) is of generalized S3-type and Q(3°°)/Q(2%) is elementary 3-abelian. Theorem 1.7
then implies that E(K7)(5) C E(Q(2%))(5) is either trivial or isomorphic to Z/5Z.

Suppose first that E(K1)(5) is trivial. The point P, = 5P € F(K3) has order 5, but E[5] Z E(K>),
since Ky C E(Q(3%)), so (P1) C E(K3) is Galois-stable and therefore the kernel of a rational
5-isogeny. This implies that G := Gal(Q(F1)/Q) is isomorphic to a subgroup of (Z/5Z)*, by
Lemma 4.8. The group G cannot have order 4, because it is the Galois group of a number field
in Q(3%°) and must have exponent dividing 6, by Theorem 3.5. On the other hand, G cannot
have order 1 or 2, because then P; would be defined over a quadratic extension, and therefore over
K1 = Ko NQ(2%), contradicting our assumption that E(K;)(5) is trivial.
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We therefore must have E(K7)(5) ~ Z/57Z, in which case F(K1)[5] = E(K3)[5] ~ Z/5Z, and we
may apply Lemma 5.4 with p = 5 and ¢ = 3. But then E(K;)(5) = E(K2)(5), which contradicts
our assumption that E(K3) contains a point of order 25. So j < 1 as claimed and E(Q(3°))(5)
is either trivial or isomorphic to Z/5Z. In the latter case E(Q(3%))(5) is a Galois-stable cyclic
subgroup of order 5 that is the kernel of a rational 5-isogeny. It follows from Lemma 4.8 that this
kernel generates a cyclic extension K/Q whose degree divides 4, and in fact it must have degree
2, since K C Q(3%) implies that the exponent of Gal(K/Q) divides 6. Conversely, if E admits a
rational 5-isogeny whose kernel generates an extension K/Q of degree at most 2, then K C Q(3*),
by Theorem 3.6, in which case E(Q(3*°))(5) ~ Z/5Z. O

Example 5.6. Any elliptic curve £/Q with a rational point of order 5 has E(Q(3%))(5) ~ Z/5Z;
the curve 11a1 is an example. Another example is the curve 50a3, which has trivial rational 5-torsion
but admits a rational 5-isogeny whose kernel generates an extension of degree 2.

Lemma 5.7. Let E/Q be an elliptic curve. Then, E(Q(3%))(13) is either trivial or isomorphic
to Z/13Z; the latter holds if and only if E admits a rational 13-isogeny whose kernel generates an
extension of degree dividing 6.

Proof. Tt follows from Lemma 3.7 and Proposition 4.2 that F[13] Z E(Q(3%)), thus E(Q(3%))) is
cyclic of order 13/ for some j > 0, and Lemma 4.6 implies 5 < 1. The last statement follows from
Lemma 4.8: the kernel of a 13-isogeny admitted by F generates a cyclic extension K/Q of degree
dividing 12, and then K C Q(3%°) if and only [K : Q] divides 6, by Theorems 3.5 and 3.6. O

Example 5.8. The curve 147b1 has E(Q(3%)) ~ Z/13Z; its 13-division polynomial has a cubic
factor, so it has a point of order 13 over an extension whose degree divides 6 (in fact, 3).

5.2. Primes with the possibility of full p-torsion (p = 2,3,7). We now consider the primes
p = 2,3,7 for which Q(3%) contains a primitive pth root of unity (so E[p] C E(Q(3°)) is not
immediately ruled out by the Weil pairing). In this subsection we address p = 2,7; the case p = 3
is addressed in the next subsection.

Lemma 5.9. If E/Q is an elliptic curve, then E(Q(3%))[2] = E[2| ~Z/2Z & Z/2Z.

Proof. If we put E/Q in the form y? = f(x) with f(x) cubic, the non-trivial points in E[2] are
precisely the points of the form («,0) with a a root of f, all of which lie in Q(3°). O

Lemma 5.10. Let E/Q be an elliptic curve. If E(Q)[2] is non-trivial then E(Q(3%))(2) is equal to
E(Q(2%))(2); otherwise E(Q(3%))(2) is equal to E[2] or E[4] and E(Q(2%))(2) is trivial. In either
case, E(Q(3%)) is isomorphic to a subgroup of 7/87 & 7./87 or Z/AZ & 7/16Z.

Proof. We first suppose that E(Q)[2] is non-trivial. Then E(Q(2°°))[2] is also non-trivial, and
therefore E(Q(2°°))[2] = E[2], by Theorem 1.7. Lemma 5.4 then implies that the 2-primary torsion
cannot grow in any 3-power Galois extension of Q(FE[2]). Since Q(E[2]) C Q(2%°) C Q(3°°), we must
have E(Q(3%))(2) = E(Q(2%))(2), and Theorem 1.7 then implies that F(Q(3°))(2) is isomorphic
to a subgroup of Z/8Z & Z/8Z or Z/AZ & 7./ 16Z.

We now suppose that F(Q)[2] is trivial. Then E(Q(2%))(2) is also trivial: if E: y*> = f(x)
has no rational points of order 2 then the cubic f must be irreducible, in which case every point
of order 2 generates a field of degree 3. We also note that E cannot admit a rational 2-isogeny,
since the unique point of order 2 in the kernel of such an isogeny would be Galois-stable, hence
rational. Thus E does not admit a rational 2/-isogeny for any j > 0; Lemma 4.6 then implies
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B(Q(3%))(2) ~ Z/2"7 x 7./2*Z for some k > 0, and Proposition 4.2 and Lemma 3.7 imply k < 3.
To show k < 3, we note that an enumeration (in Magma) of the subgroups G of GL2(Z/8Z) with
surjective determinant maps finds that whenever G is of generalized S3-type, it is actually elementary
2-abelian. This implies that if Q(E[8]) C Q(3°°) then in fact Q(E[8]) C Q(2*°), but we have assumed
that E(Q][2]) is trivial, hence E(Q(2°))(2) is trivial, so this cannot occur. O

Example 5.11. The elliptic curves 15al1 and 210e2 realize the maximal possibilities Z /87 @ 7 /87
and Z/AZ @& Z/16Z, respectively, for E(Q(3))(2).

Before addressing the 7-primary component of F(Q(3%)), we prove a lemma that relates the
degree of the p-torsion field Q(E[p]) of E/Q to the number of rational p-isogenies admitted by E
(we consider two isogenies to be distinct only if their kernels are distinct).

Lemma 5.12. Let E/Q be an elliptic curve and let p > 2 be a prime for which E admits a rational
p-isogeny. Then [Q(E[p]) : Q] is relatively prime to p if and only if E admits two rational p-isogenies
(with distinct kernels). For p > 5 this implies that p divides [Q(E[p]) : Q].

Proof. The hypothesis implies that the image of pg, is conjugate to a subgroup B of the Borel
group in GLo(Z/pZ). Lemma 2.2 of [23] implies that B = ByB; where

B :—Bﬁ{(é l{):beZ/pZ}, andBd:—Bﬂ{<g 2>:a,c€(Z/pZ)X}.

Thus the order of B ~ Gal(Q(FE[p])/Q) is relatively prime to p if and only if Bj is trivial, equivalently,
B = By is a subgroup of the split Cartan group, in which case E admits two rational p-isogenies
with distinct kernels. However, as proved in [14], this can only occur for p < 5. O

Lemma 5.13. Let E/Q be an elliptic curve. Then E(Q(3°))(7) is isomorphic to a subgroup of
Z)T2 ®Z)TZ. The case E(Q(3%°))(7) ~ Z/TZ & Z]TZ occurs if and only if j(E) = 2268945/128,
and the case E(Q(3%))(7) =~ Z/7Z occurs if and only if E admits a rational T-isogeny, equivalently,
(t2 + 13t +49)(t> + 5t + 1)

t 9

J(E) =
for some t € Q*.

Proof. Lemma 3.7 and Proposition 4.2 imply that E[49] Z Q(3°°), and Lemma 4.6 then implies that
B(Q(3®)(7) ~ Z)T"Z & Z)TZ with k < 1, and k < j < k + 1.

If j > k then Lemma 4.6 implies that E admits a rational 7-isogeny, and Lemma 5.12 then implies
that [Q(E]7]) : Q] is divisible by 7. The exponent of Gal(Q(E[7])/Q) is therefore not divisible by 6,
so Q(E[7]) € Q(3%), therefore k = 0, 7 = 1, and E(Q(3*°)) ~ Z/7Z. This also rules out the case
k =1 and 7 = 2, which proves the first statement in the theorem.

If j = k then we claim that E cannot admit a rational 7-isogeny. Indeed, if F admits a rational
7-isogeny and P is a non-trivial point in its kernel, then Lemma 4.8 implies that Gal(Q(P)/Q) is
cyclic of order dividing 6, hence of generalized Ss-type, so Q(P) € Q(3°), by Theorem 3.6. But
then we must have j = k = 1, so Q(E[7]) € Q(3%), but then Lemma 5.12 implies that 7 divides
[Q(E[7]) : Q], which contradicts Q(E[7]) C Q(3*°). Thus k = 0,57 = 1 if and only if £ admits a
rational 7-isogeny, equivalently, j(F) lies in the image of the map from X((7) to the j-line that
appears in the statement of the lemma and can be found in [22, Table 3], for example.

If j = k =1 then Q(E[p]) € Q(3%®), so Gal(Q(E[p])/Q) has exponent dividing 6, by Theo-
rem 3.5. This implies that for every prime p # 7 of good reduction for E, the elliptic curve E,/F),
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obtained by reducing E modulo p has its 7-torsion defined over an [Fj-extension of degree dividing
6, and in particular, admits an Fp-rational 7-isogeny (two in fact). Thus E/Q admits a rational 7-
isogeny locally everywhere but not globally, and as proved in [37], this implies j(E) = 2268945/128.
Conversely, as also proved in [37], for every elliptic curve E/Q with this j-invariant the group
Gal(Q(E[7])/Q) is isomorphic to a subgroup of GLy(F7) with surjective determinant map whose
image in PGLy(F7) is isomorphic to S3; up to conjugacy there are exactly two such groups (labeled
7NS.2.1 and 7NS.3.1 in [38]), and both are of generalized Ss-type. Thus every elliptic curve E/Q
with j(F) = 2268945/128 has E(Q(3%°))(7) ~ Z/TZ © 7] 7.

Otherwise, j = k = 0 and E(Q(3%))(7) is trivial; the lemma follows. O

Example 5.14. The curve 2450a1 has j-invariant 2268945/128 and is thus an example of an elliptic
curve E/Q for which E(Q(3%))(7) ~Z/TZ & Z]TZ.

Corollary 5.15. Let E/Q be an elliptic curve. Then E(Q(3%))tors >~ Z/147Z & Z/14Z if and only
if §(E) = 2268945,128.

Proof. The forward implication is an immediate consequence of Lemmas 5.9 and 5.13. A direct
computation of E(Q(3%))(p) for p = 2,3,5,7,13 for the elliptic curve 2450al in Example 5.14 finds
that E(Q(3%))tors = E[14] for this particular E/Q with j(E) = 2268945/128, hence for every E/Q
with the same j-invariant, by Proposition 5.2. U

5.3. The 3-primary component of E(Q(3°°))tors-

Lemma 5.16. Let E/Q be an elliptic curve. Then E(Q(3%))[3] = E[3] if and only if E admits a
rational 3-isogeny, and E(Q(3°))(3) is trivial otherwise.

Proof. An enumeration of the subgroups G of GL2(Z/37Z) finds that G is of generalized Ss-type if
and only if it is conjugate to a subgroup of the Borel group; this implies the first part of the lemma,
since E(Q(3%))[3] = E[3] if and only if Gal(Q(E[3])/Q) ~ impg 3 C GL2(Z/3Z) is of generalized
Sa-type. If Q(E[3]) € Q(3%), then Lemma 4.6 implies that if E(Q(3°))(3) is non-trivial then FE
admits a rational 3-isogeny, but this cannot occur, so E(Q(3°°))(3) is trivial. O

Lemma 5.17. Let E/Q be an elliptic curve. Then E(Q(3°°)) does not contain a subgroup isomor-
phic to Z)9Z & Z]27Z.

Proof. Suppose for the sake of contradiction that there is an elliptic curve £//Q for which E(Q(3%))
contains a subgroup isomorphic to Z/9Z & Z/27Z. Then the image G := im pg o7 € GL2(Z/27Z) of
the mod-27 Galois representation attached to E satisfies the following properties:

(i) G has a surjective determinant map and an element with trace 0 and determinant —1;

(ii) G contains a normal subgroup N that acts trivially on a Z/27Z-submodule of Z/27 & Z /27

isomorphic to Z/9Z @ 7Z/277Z for which G/N is of generalize S3-type.

As noted in §2, the first condition is required by pg , for any elliptic curve £/Q. The second require-
ment reflects the fact that Q(E[27]) contains the Galois extension Q(E(Q(3°°))[27])/Q whose Galois
group is a quotient G/N of G and for which the Galois group Gal(Q(E[27]/Q(E(Q(3%))[27]) ~ N
acts trivially on a subgroup of E[27] isomorphic to Z/9Z & Z/27Z.

An enumeration in Magma of the subgroups of GLo(Z/27Z) finds that every such G is conjugate
to a subgroup of the full inverse image of

{2 ) s
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in GL2(Z/27Z). Taking the intersection of H with SLy(Z/9Z) shows that H corresponds to the
congruence subgroup labeled 9H! in the tables of Cummins and Pauli [3]. The modular curve Xy
of level 9 and genus 1 is defined over Q and has 3 rational cusps (the number of rational cusps can
be determined via [43, Lemma 3.4], for example). The group H is equal to the intersection Hy N Ha
of two subgroups of GL2(Z/9Z) whose intersection with SLy(Z/9Z) gives the congruence subgroups
91° and 9J°. Explicit rational parameterizations for the genus zero modular curves Xp, and Xz,
appear in [39]; these curves both admit rational maps to X(3), allowing us to explicitly construct
a rational model for Xy as the fiber product of these maps over Xy(3). This model is isomorphic
to the elliptic curve 27a3, which has just 3 rational points, which is equal to the number of rational
cusps on X, so there are no non-cuspidal rational points. It follows that for every elliptic curve
E/Q, the image of pg 27 is not conjugate to a subgroup of H, which is our desired contradiction. [J

Proposition 5.18. If E/Q is an elliptic curve, then E(Q(3°)) does not have a point or order 27.

Proof. Suppose for the sake of obtaining a contradiction that E/Q is an elliptic curve with a point
of order 27 defined over Q(3*°). By Lemmas 5.16 and 5.17, we must have E(Q(3*))(3) ~ Z/3Z x
Z./27Z, We now proceed as in the proof of Lemma 5.17, and consider the subgroups G of GLy(Z/277)
that may arise as the image of the mod-27 Galois image im pg 27, except in (ii) we now only require
the normal subgroup N of G for which G/N is of generalized Ss-type to act trivially on a submodule
isomorphic to Z/3Z @ Z/277Z. We find that every such G is conjugate to a subgroup of one of three
subgroups Hi, Ho, H3 C GLo(Z/27Z) whose intersection with SLo(Z/277) yields the congruence
subgroups with Cummins-Pauli labels 27C*, 27B*, 27A*, respectively. We now show that no elliptic
curve E/Q can have im pg 27 conjugate to a subgroup of any of the groups Hy, Ho, Hz, which is our
desired contradiction.

The group H; lies in the Borel subgroup of upper triangular matrices in GL2(Z/27Z), so if im pg 27
is conjugate to a subgroup of Hy then F admits a rational 27-isogeny. From [22, Table 4] we see that
there is just one Q-isomorphism class of elliptic curves that admit a rational 27-isogeny, represented
by the curve 27a2. None of the four curves in its isogeny class 27a have j-invariant 1728, so by
Proposition 5.2, it is enough to check whether E(Q(3%)) contains a point of order 27 for each of
the four curves E/Q in isogeny class 27a; a direct computation finds that none do.

The group Hs is conjugate to a subgroup of

() ) ) ) s

whose intersection with SL(2,7Z/27Z) is conjugate to 27A%. Using the methods of [34], Rouse and
Zureick-Brown have computed a model for the corresponding modular curve X, of genus 2, which
has two rational cusps:

X, cy? =a% — 1823 — 27.

A 2-descent on the Jacobian of this curve shows that it has rank zero, so the rational points on
X, can be easily determined via Chabauty’s method (using the Chabauty0 function in Magma,
for example). The only points in X7, (Q) are the 2 points at infinity, both of which must be cusps.
This rules out the possibility that im pg 27 is conjugate to a subgroup of Hy C Hjy.

This leaves only the group

{3 ) 8- ) s


http://www.uncg.edu/mat/faculty/pauli/congruence/csg1.html#group9H1
http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group9I0
http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group9J0
http://www.lmfdb.org/EllipticCurve/Q/27a3
http://www.uncg.edu/mat/faculty/pauli/congruence/csg1.html#group27C1
http://www.uncg.edu/mat/faculty/pauli/congruence/csg4.html#group27B4
http://www.uncg.edu/mat/faculty/pauli/congruence/csg4.html#group27A4
http://www.lmfdb.org/EllipticCurve/Q/27a2
http://www.lmfdb.org/EllipticCurve/Q/27a
http://www.lmfdb.org/EllipticCurve/Q/27a
http://www.uncg.edu/mat/faculty/pauli/congruence/csg2.html#group27A2
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Using the results of [39], a singular model for the modular curve X, can be explicitly constructed
as the fiber product over X¢(9) of two genus zero curves with maps ¢> and (¢3 —6t2 + 3t +1) /(1% —t)
to Xo(9) (the corresponding congruence subgroups are 27A% and 91°, respectively). This yields the
genus 4 curve

X, 23y — a3y —y® + 69> — 3y = 1.
which has two rational points at infinity (both singular).

Over Q(¢3) the automorphism group of X, is isomorphic to Z/3Z @ Z/3Z, and with a suitable
choice of basis for Aut(X,) the two cyclic factors yield two distinct genus 2 quotients, corresponding
to the curve

C:y? =2 — 18¢a23 — 27¢2
and its complex conjugate C. The curve C is isomorphic to Xy, over Q({y), consistent with the fact
that the restriction of Hs to elements with determinant 1 mod 9 is a subgroup of Hy. A calculation
by Jackson Morrow (see [4] for details) shows that the Jacobian of C' has rank 0 and torsion subgroup
of order 3 generated by the difference of the two points at infinity on C' (and similarly for C). It
follows that the only rational points on C' and C are the points at infinity; pulling back these points
to our model for Xg, yields only the two rational points at infinity, both of which correspond to
cusps on Xp,; this rules out the possibility that im pf 27 is conjugate to a subgroup of H3s. O

Having ruled out points of order 27 in E(Q(3%))tos, we now give a necessary and sufficient
criterion for E(Q(3°))(3) to be maximal

Lemma 5.19. Let E/Q be an elliptic curve. Then E(Q(3%°))(3) = E[9] ~ Z/9Z®Z/9Z if and only
if one of the following holds:

(i) The image of pg3 is conjugate to a subgroup of the split Cartan subgroup of GLa(Z/3Z);
equivalently, E admits two distinct rational 3-isogenies. This case occurs if and only if
i(B) = 27t3(8 — 3)3
(t3 + 1)3 ’
for somet € Q, t # —1.
(ii) The image of pg9 is conjugate in GLa(Z/9Z) to a subgroup of

w= (6161686

This case occurs if and only if
, 432t (t* — 9)(t* 4+ 3)3(t> — 9t + 12)3(¢3 + 9% + 27t + 3)3 (5% — 9% — 9t — 3)3
J(E) = 3 2 9(43 2 3
(t3 — 3t2 — 9t + 3)9(t3 + 3t2 — 9t — 3)
for some t € Q.

Proof. 1t is easy to verify that both H and the full inverse image of the split Cartan subgroup C' of
GL2(Z/3Z) in GLy(Z/9Z) are of generalized S3-type; it follows that if the image of pg 3 lies in C
or if the image of pg g lies in H, then pg g gives an isomorphism from Gal(Q(E[9])/Q) to a group
of generalized S3-type and therefore Q(FE[9]) C Q(3%°), so E(Q(3°))[9] = E]9].

An enumeration of the subgroups G C GL2(Z/9Z) of generalized Ss-type shows that either the
image of G in GL2(Z/37Z) is conjugate to a subgroup of C, or G is conjugate to a subgroup of H.
The groups C and H correspond to the congruence subgroups 3D? and 9J°, both of genus 0; the
rational maps from X¢ and Xpg to the j-line are taken from [39]. O


http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group27A0
http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group9I0
http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group3D0
http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group9J0
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Example 5.20. The elliptic curve E/Q with Cremona label 27a3 admits two rational 3-isogenies,
hence E(Q(3%))(3) ~ Z/9ZSHZ/9IZ. On the other hand, the curve 17100g2 admits only one rational
3-isogeny but also has E(Q(3%))(3) ~ Z/9Z & Z/9Z.

Lemma 5.21. Let E/Q be an elliptic curve. Then E(Q(3%°))(3) ~ Z/3Z & Z/9Z if and only if
the image of pgg in GLa(Z/9Z) is not of generalized Ss-type and is conjugate in GLo(Z/9Z) to a
subgroup of one of the following two groups:

me= (1) G068 =G DENCY)

FEquivalently, j(E) lies in the image of one of the rational maps

(t+3)3(t3 + 9t2 + 27t + 3)3

(t+3)(t* — 3t +9)(t3 + 3)3
t(t? 4 9t + 27) ’ '

t3

J2(t) =

Ji(t) =

Proof. 1t is easy to verify that neither H; nor Hy are of generalized Ss-type (which rules out
E(Q(3%))(3) ~Z/9Z&Z/IZ), and that each contains a normal subgroup N; for which the quotient
H;/N; is of generalized Ss-type, and for which the image of N; in GLg(Z/3Z) is trivial and for which
N; acts trivially on an element of order 9 in Z/9Z®7/9Z. This implies that if Gal(Q(E[9])/Q) ~ H;
then the base change of E to the field K; C Q(3%) corresponding to the normal subgroup of
Gal(Q(E[9])/Q) isomorphic to N; has torsion subgroup that contains a subgroup isomorphic to
Z/3Z & Z./9Z; moreover, E(Q(3°))(3) cannot be any larger than this because we have ruled out
any points of order 27 in E(Q(3%)) (Proposition 5.18) and N; cannot be the trivial group.

An enumeration of the subgroups of GL2(Z/97Z) shows that every group G that is not of gener-
alized Ss3-type and which contains a normal subgroup N satisfying all the properties of IN; above is
either conjugate to a subgroup of Hy or Hs, or is conjugate to a subgroup of

me=((30)-6 1) (5 2))

with congruence subgroup 9A'. As computed by Rouse and Zureick-Brown (using the techniques
of [34]), the corresponding modular curve Xy, has genus 1 and is isomorphic to the elliptic curve
27a3, which has just 3 rational points; two of these are cusps, while the other corresponds to j-
invariant 0. But for every elliptic curve E/Q with j-invariant 0, we have E(Q)(3) ~ Z/9Z ® 7 /97
as can be verified by checking one example and applying Proposition 5.2.

The groups H; and Hy yield congruence subgroups 9B and 9C°, respectively, both of genus zero;
the maps j1(t) and ja(t) to the j-line are taken from [39]. O

5.4. Proof of Theorem 5.1. Let E/Q be an elliptic curve. Proposition 4.9 shows that any prime
divisor p of the order of E(Q(3%))¢ors lies in the set {2,3,5,7,13}. Lemma 5.10 (p = 2), Lemma 5.17
and Proposition 5.18 (p = 3), Lemma 5.5 (p = 5), Lemma 5.13 (p = 7), and Lemma 5.7 (p = 13)
together imply that E(Q(3%))¢es is isomorphic to a subgroup of

Tax = (Z/16Z & Z/8Z) & (Z/9Z & L./)9Z) & Z/5Z & (Z)TZ & L) TZ) & 7,131

Examples 5.11, 5.20, 5.6, 5.14, 5.8 for p = 2, 3,5, 7,13, respectively, show that Ti,.x is the smallest
group with this property. O


http://www.lmfdb.org/EllipticCurve/Q/27a3
http://www.lmfdb.org/EllipticCurve/Q/17100g2
http://www.uncg.edu/mat/faculty/pauli/congruence/csg1.html#group9A1
http://www.lmfdb.org/EllipticCurve/Q/27a3
http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group9B0
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5.5. An algorithm to compute the structure of E(Q(3°))tos. With Theorem 5.1 in hand we
can now sketch a practical algorithm to compute the isomorphism type of E(Q(3%))tors for a given
elliptic curve E/Q. The strategy is to separately compute each p-primary component E(Q(3°))(p)
for p = 2,3,5,7,13 by first determining the largest integer k for which E(Q(3))[p*] = E[p*] and
then determining the largest integer j for which E(Q(3%))(p) contains a point of order p’.

Both steps make use of the division polynomials ff ,(x) whose roots are the distinct z-coordinates
of the nonzero points P € E[n]. The polynomials fg ,(z) satisfy well-known recurrence relations
that allow them to be efficiently computed; see [26], for example. If m divides n then fg, is
necessarily divisible by fg,, and roots of the polynomial fg ,/fr,m are the distinct z-coordinates
of the points in E[n] that do not lie in E[m|; by removing the factor fg,, of fg, for each maximal
proper divisor m of n one obtains a polynomial hg, whose roots are the distinct z-coordinates of
the points in E[n] of order n.

The field Q(E[n]) is an extension of the splitting field Ky of fg,(x) of degree at most 2 (the
degree is 2 when imppg, contains —1 € GLy(Z/nZ), and 1 otherwise, see [38, Lemma 5.17]). A
necessary and sufficient condition for Q(E[n])) € Q(3%) is that for every irreducible factor g of
hEn(z) with splitting field K, the field Ly := K4(1/ f(r)) is of generalized S3-type, where r is any
root of g (note that each L, is of the form Q(P) for some P € E[n] of order n and is necessarily a
Galois extension of Q that contains the coordinate of every point in (P)). A necessary and sufficient
condition for E(Q(3%))tors to contain a point of order n is that for some irreducible factor g of
hEn(z) the field Ly is of generalized S3-type. We may thus compute E(Q(3°°))(p) as follows:

e Determine the largest k for which E[p¥] C Q(3°°) by checking increasing values of k from 1
up to the bound given by Theorem 5.1. For each k, compute the polynomial hp ., factor it
over Q, and for each irreducible factor g compute the field L, and check whether Gal(L,/Q)
is of generalized Ss3-type (via Lemma 3.2) for all g.

e Determine the largest j for which E(Q(3°))(p) contains a point of order p’ by checking
increasing values of j from k up to the bound given by Theorem 5.1. For each k, compute
the polynomial h ;, factor it over Q, and for each irreducible factor g compute the field L
and check whether Gal(Ly/Q) is of generalized S3-type for some g.

As written this algorithm is not quite practical, but there are two things that may be done to
make it so. First, one can use a Monte Carlo algorithm to quickly rule out polynomials g whose
splitting fields cannot be of generalized Ss-type by picking random primes and factoring the reduced
polynomial g over the corresponding finite field; if g has an irreducible factor whose degree does
not divide 6 then the splitting field of g cannot be of generalized Ss-type. The second practical
improvement is to use the explicit criterion for j(E) given by Lemmas 5.13, 5.19, and 5.21 to more
quickly compute the 3-primary and 7-primary components of E(Q(3%))tors.

A magma script implementing the algorithm with these optimizations can bound found in [4]; it
was used to determine the 20 examples of minimal conductor that appear in Remark 1.9. These
examples prove that each of these cases arise; in the next section we prove that no others do.

Remark 5.22. In Section 7 we obtain a complete list of parameterizations for each torsion structure
E(Q(3%))tors; see Table 1. With this list in hand one can immediately determine E(Q(3°))tors from
j(E) whenever j(F) # 1728, making it unnecessary to use the algorithm sketched above, except for

2We did not exploit this second improvement when using the algorithm to perform any of the explicit computations
of E(Q(3°°))sors cited in §5, since this improvement depends on some of these computations.
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distinguishing the two possibilities when j(E) = 1728 (see Remark 5.3). However, the algorithm is
implicitly used in several of the proofs in the next section that require us to explicitly check a finite
number of cases, and our list of parameterizations depends on these results. (We did not use the
algorithm to prove any of the results in this section; see [4] for details of our computations.)

6. THE STRUCTURE OF E(Q(3%))¢ors

In this section we complete the classification of the torsion structures T' ~ E(Q(3%))ors that
appears in Theorem 1.8. There are a total of 1008 isomorphism types T given by subgroups of
the maximal group Tiax that appears in Theorem 5.1, of which 648 contain the minimal subgroup
Z]2Z & Z/27 required by Lemma 5.9, but we will prove that in fact only 20 occur as E(Q(3%))tors
for some elliptic curve E/Q. In the five subsections that follow, for p = 13, 7, 5, 3, 2, we will prove
that there are 1, 4, 2, 5, 8 (respectively) possibilities for 7" when p is the largest prime divisor of its
cardinality, and determine these T' explicitly.

We begin with a lemma that allows us to distinguish the two possibilities for E(Q(2°°))(2) per-
mitted by Lemma 5.10 when E(Q)[2] is trivial. For an elliptic curve E/Q, we use A(E) € Q%
to denote its discriminant. We recall that for j(E) # 0,1728, the image of A(E) in Q*/Q*2 is
determined by j(E) (see [36, Cor. 5.4.1]); in fact,

(2) A(E) = j(EB) - 1728 (in Q/Q*?),

as one can verify by computing the discriminant A(E) = —16(4A43 + 27B2) of the elliptic curve
E:y?* =23+ Az + B with A = 35(E)(1728 — j(E)) and B = 25(E)(1728 — j(E))? both nonzero.

Lemma 6.1. Let E/Q be an elliptic curve for which E(Q)[2] is trivial, but E(Q(3%))[4] = E[4].
Then —A(E) is a square in Q and
—4(t? = 3)3(¢2 — 8t — 11)

(t+1)4 ’

J(E) =

for somet € Q\ {—1}.

Proof. If E(Q)[2]) is trivial and E(Q(3°))[4] = E[4] then the image G := im pp 4 is conjugate to a
subgroup of GLg(Z/47Z) of generalized S3-type whose image in GL2(Z/2Z) does not fix any nonzero
element of Z/27Z & 7, /2Z (equivalently, has order at least 3). As noted in §2, the group G must have
a surjective determinant map and contain an element v corresponding to complex conjugation (here
we use the stronger criterion of [38, Rem. 3.15]). An enumeration of the subgroups of GL2(Z/4Z)
finds that every such G is conjugate to a subgroup of

(000 600)

The corresponding modular curve Xp is labeled X20a in [34] and has genus zero. A map to the
j-line is given by the rational function
—4(t% = 3)3(1% — 8t — 11)

i) = (t+ 1)

Since neither 0 nor 1728 lie in the image of the map j(t), from (2) we see that the discriminant A(t)
of an elliptic over Q with j-invariant j(¢) must satisfy

At) =1728 - j(t) = =1 (in Q*/Q*?),
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thus —A(t) is always a square, as claimed. O

6.1. When 13 divides #E(Q(3°))tors- There is only on possibility for E(Q(3%))tors when it
contains a point of order 13.

Proposition 6.2. Let E/Q be an elliptic curve for which E(Q(3%)ors contains a point of order 13.
Then E(Q(3%))tors is isomorphic to Z/27 & 7./26.

Proof. By Lemma 5.7, E must admit a rational 13-isogeny, since E(Q(3°))(13) is non-trivial. Theo-
rem 4.4 implies that E admits no other rational n-isogenies, and it follows that Q(3°°)(3), Q(5*)(5),
and Q(7°°)(7) are all trivial, by Lemma 5.16, Lemma 5.5, and Lemma 5.13 and Corollary 5.15, re-
spectively. Since E admits no rational 2-isogenies, E(Q)[2] is trivial, and Lemma 5.10 implies that
E(Q(3%))(2) is isomorphic to either E[2] or E[4]. By Lemma 6.1, if the latter holds then —A(FE) is
a rational square; we claim that this cannot occur.

The modular curve X((13) that parameterizes 13-isogenies has genus 0 and yields a rational
parameterization of the j-invariants of elliptic curves E//Q that admit a rational 13-isogeny. From
[22, Table 3] we see that j(E) must lie in the image of the rational map

) (t2 + 5t + 13)(t* + 73 + 202 + 19t + 1)3
j(t) == :
t
Neither 0 nor 1728 lie in the image of the map j(t), so by (2), the corresponding discriminant A(t)
of an elliptic curve over Q with j-invariant j(¢) must satisfy
At) = (j(t) —1728)3 = t(t? + 6t + 13)  (in Q*/Q*?),

with ¢ # 0. Finding t € Q* for which —A(¢) € Q is a square is equivalent to finding nonzero rational
points P on the elliptic curve

En:y? = x(2? — 62 +13)
for which z(P) # 0, equivalently, P ¢ EA(Q)[2]. But a calculation shows that Ea has rank 0 and
torsion subgroup isomorphic to Z/27Z, so no such P exists. O

Remark 6.3. One can obtain infinitely many elliptic curves E/Q with E(Q(3%))tors ~ Z/2Z®7/26
and distinct j-invariants by choosing F for which E(F') ~ Z/13Z for some cubic field F', as shown
in [29]. The curve 147b1 is an example F = Q[z]/ (x> 4+ 22 — 2z — 1).

6.2. When 7 divides #E(Q(3°))tors- We now address the cases where # E(Q(3°))tors is divisible
by 7 (but not 13). The case where it is also divisible by 49 is already covered by Lemma 5.13, and
Corollary 5.15, which imply that we then must have E(Q(3%))ors > Z/14Z & Z/14Z. Theorem 4.4
and Lemma 5.13 then leave us just 3 possibilities to consider: (1) E admits a rational 21-isogeny,
(2) E admits a rational 14-isogeny, (3) E admits a rational 7-isogeny and no others. These are
addressed in the next three lemmas. Recall that if ¥ admits a rational m-isogeny ¢ and a rational
n-isogeny v, with m and n coprime, then it necessarily admits a rational mn-isogeny, namely, the
isogeny E — E/(ker ¢, ker ).

Lemma 6.4. Let E/Q be an elliptic curve. Then E admits a rational 21-isogeny if and only if
E(Q(3%))tors ~ Z/6Z @ Z/427Z.

Proof. 1t follows from Lemmas 5.13 and 5.16 that if E(Q(3%))tors >~ Z/6Z & Z/42Z, then E admits
a rational 7-isogeny and a rational 3-isogeny, hence a rational 21-isogeny. From [22, Table 4] we
see that there are just four Q-isomorphism classes of elliptic curves E/Q that admit a rational


http://www.lmfdb.org/EllipticCurve/Q/147b1
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21-isogeny, represented by the four elliptic curves in the isogeny class with Cremona label 162b. A
direct computation finds that E(Q(3%))iors ~ Z/6Z & 7 /427 for each of these four curves. O

Lemma 6.5. Let E/Q be an elliptic curve. If E admits a rational 14-isogeny then E(Q(3%))tors is
isomorphic to Z./27 @ 7./ 147.

Proof. From [22, Table 4] we see that there are just two Q-isomorphism classes of elliptic curves E/Q
that admit a rational 14-isogeny, represented by the curves 49al and 49a2. A direct computation
finds that E(Q(3%))ors =~ Z/27 & Z /147 for both curves. O

Lemma 6.6. Let E/Q be an elliptic curve. If E admits a rational 7-isogeny and no other non-trivial
rational n-isogenies, then E(Q(3°°))tors @s isomorphic to Z/27 & Z/14Z or Z]AZ & 7] 28Z.

Proof. Lemmas 5.16, 5.5, and 5.7 imply that E(Q(3°))(p) is trivial for p = 3,5,13, and Lemma
5.10 implies that E(Q(3%°))(2) = E[2] or E4]. O

We summarize the results of this subsection in the following proposition.

Proposition 6.7. Let E/Q be an elliptic curve for which E(Q(3%))ors contains a point of order 7.
Then E(Q(3%°))tors is isomorphic to one of the groups: 7./2Z®L/147, L]ALSL /287, 7.]6ZDL]/42Z,
7.)147 & 7./147..

Proof. This follows from Corollary 5.15 and Lemmas 6.4, 6.5, 6.6. O

6.3. When 5 divides #E(Q(3°))tors- We now address the cases where # E(Q(3°))tors is divisible
by 5 (but not 7 or 13).

Lemma 6.8. Let E/Qbe an elliptic curve. If E admits a rational 15-isogeny then E(Q(3%))tors is
isomorphic to Z/6/6Z @& Z/6Z or Z/6Z & Z/30Z (both occur). If E(Q(3%))tors =~ Z/6Z & Z/30Z
then E admits a rational 15-isogeny.

Proof. As can be seen in [22, Table 4], there are four Q-isomorphism classes of elliptic curves
E/Q that admit a rational 15-isogeny, represented by the four curves in isogeny class 50a. A
direct computation finds that E(Q(3%))tors ~ Z/67Z & Z/6Z for the curves 50al and 50a2, while
E(Q(3%))tors >~ Z/6Z & Z/30Z for the curves 50a3 and 50a4. It follows from Lemmas 5.5 and 5.16
that if E(Q(3%))tors ~ Z/6Z @® Z/307Z then E admits a rational 5-isogeny and a rational 3-isogeny,
hence a rational 15-isogeny. O

Proposition 6.9. Let E/Q be an elliptic curve for which E(Q(3%)) contains a point of order 5
Then E(Q(3%))tors is isomorphic to Z/27 & Z/10Z or Z/6Z & Z/30Z.

Proof. As noted above, the results of the previous two subsections imply that E(Q(3%))os is not
divisible by 7 or 13. Lemma 5.5 implies that £ admits a rational 5-isogeny, and if E(Q(3°°))(3) is
non-trivial, then E also admits a rational 3-isogeny, by Lemma 5.16, in which case it falls into the
case covered by Lemma 6.8. We know that E(Q(3*))(5) ~ Z/5Z, by Lemma 5.5, thus it remains
only to consider E(Q(3%))(2) when E(Q(3%))(p) is trivial for p = 3,7,13.

We first suppose that E(Q)[2] is non-trivial. Then E(Q(3%))(2) = E(Q(2*°))(2), by Lemma 5.10.
Lemma 5.5 implies that E(Q(3*°))(5) = E(Q(2*°))(5), since E must admit a rational 5-isogeny
whose kernel generates and extension of degree at most 2, hence a subfield of Q(2°°). Theorem 1.7
then implies E(Q(3%°))tors = E(Q(2%°))tors =~ Z/27 & Z./10Z.


http://www.lmfdb.org/EllipticCurve/Q/162b
http://www.lmfdb.org/EllipticCurve/Q/49/a//4
http://www.lmfdb.org/EllipticCurve/Q/49/a/3
http://www.lmfdb.org/EllipticCurve/Q/50a
http://www.lmfdb.org/EllipticCurve/Q/50a1
http://www.lmfdb.org/EllipticCurve/Q/50a2
http://www.lmfdb.org/EllipticCurve/Q/50a3
http://www.lmfdb.org/EllipticCurve/Q/50a4
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We now suppose that F(Q)[2] is trivial. Then E(Q(2%)) is trivial and E(Q(3%)) = E[2] or E[4],
by Lemma 5.10. Lemma 6.1 implies that the latter holds only when —A(FE) is a rational square. We
claim that this cannot occur. From [22, Table 3], we see that since F admits a rational 5-isogeny,
its j-invariant must lie in the image of the rational map

. t2 + 10t + 5)3

j(t) — (t)

Neither 0 nor 1728 lie in the image of this map, so by (2), the discriminant A(¢) of an elliptic curve
over Q with j-invariant j(¢) must satisfy

A(t) = (j(t) — 1728)3 = t(t? + 22t +125)  (in Q% /Q*?),

with ¢ # 0. Finding t € Q* for which —A(t) is a square is equivalent to finding rational points P
on the elliptic curve

En: y? = 2(x? — 222 + 125)
that do not lie in EA(Q)[2]. But we find that FA(Q) ~ Z/27Z, so no such P exist. Thus we must
have E(Q(3%))(2) = E[2], and therefore E(Q(3%))tors ~ Z/2Z & Z/10Z. O

6.4. When only 2 and 3 divide #E(Q(3*)). We now consider the case where #FE(Q(3%))¢ors is
divisible by 3 but not 5, 7, or 13. Lemmas 5.9 and 5.16 imply E(Q(3°))[6] = E[6], thus if E(Q(3*))
does not cannot contain any points of order 24 or 36, then Theorem 5.1 implies that E(Q(3°))tors
must be isomorphic to one of the five groups

(3) Z/6Z&®ZL[6Z, LI6L&ZL/12Z, L)6Z&L/18Z, L)12Z& Z/12Z, 7.)18Z & 7./18L.

As shown by the examples in Remark 1.9, these cases all occur for some E/Q, so it suffices to show
that F(Q(3%°)) cannot contain any points of order 24 or 36.

Proposition 6.10. Let E/Q be an elliptic curve. There are no points of order 24 in E(Q(3%)).

Proof. Suppose E(Q(3°)) contains a point of order 24; then it contains both a point of order 3 and a
point of order 8. Lemma 5.16 implies that £ admits a rational 3-isogeny, and the points in the kernel
of this 3-isogeny are defined over a quadratic extension (by Lemma 4.8), so E(Q(2°)) contains a
point of order 3. Lemma 5.10 implies that E(Q)[2] is non-trivial and E(Q(3%*°))(2) = E(Q(2%))(2),
so E(Q(2%)) contains a point of order 8. But then E(Q(2%)) contains a point of order 24, which
contradicts Theorem 1.7. O

In order to rule out a point of order 36 in E(Q(3°)) we require the following lemmas.

Lemma 6.11. Let E/Q be an elliptic curve. If E(Q) contains a point of order 2, and E(Q(3°))
contains a point of order 4, then either E(Q)[2] = E[2] or E admits a rational 4-isogeny.

Proof. It suffices to consider the possible images G C GL2(Z/4Z) of pg 4. An enumeration of the
subgroups G of GLy(Z/47Z) finds that whenever the image of G in GL2(Z/2Z) fixes a nonzero element
of Z)2Z&Z /27 (i.e. E(Q) contains a point of order 2) and G contains a normal subgroup N for which
G/N is of generalized Ss-type and N fixes an element of order 4 in Z/47 & Z/4Z (i.e. E(Q(3*))
contains a point of order 4), then either the image of G in GL2(Z/2Z) is trivial (E(Q)[2] = E[2]) or
G stabilizes a cyclic subgroup of Z/4Z @ 7./47Z of order 4 (E admits a rational 4-isogeny). O

Lemma 6.12. Let E/Q be an elliptic curve that admits a rational 9-isogeny. Then E(Q(3%°)) does
not contain a point of order 4.
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Proof. If E(Q)[2] = E[2] then E is isogenous to an elliptic curve that admits a rational 4-isogeny
and a rational 9-isogeny, hence a rational 36-isogeny, which is ruled out by Theorem 4.4. If E(Q)[2]
has order 2 then E(Q(3°°)) cannot contain a point of order 4, because E would then admit a rational
4-isogeny, by Lemma 6.11, hence a rational 36-isogeny, which is again ruled out by Theorem 4.4.

We are thus left to consider the possibility that F(Q)[2] is trivial and E(Q(3°)) has a point of
order 4, in which case Lemma 5.10 implies E(Q(3%))[4] = E[4], and Lemma 6.1 implies that —A(E)
is a square. We can assume j(E) # 0 because a direct computation shows that for the curve 27a3
with j(E) = 0 we have E(Q(3%))ors =~ Z/18Z & Z/18Z, which does not contain a point of order 4.
Proposition 5.2 implies that this is true for every F/Q with j(E) = 0.

From [22, Table 3] we see that j(£) must lie in the image of the rational map

, 3 (13 — 24)3
IO ="g57

Having ruled out j(F) = 0, we can assume j(t) # 0 (so t # 0), and 1728 does not lie in the image
of j(t), so by (2), for any ¢t # 0,3 the discriminant A(t) of an elliptic curve with j-invariant j(t)
satisfies

A(t) = (j(t) —1728)3 = (t = 3)(t* + 3t +9) (in Q*/Q"?).
To see whether —A(t) can be square when t # 0,3, we search for nonzero rational points P with
z(P) # 0,3 on the elliptic curve
En:y? = (v +3)(2* =32 +9).
We find that Ea(Q) ~ Z/27Z, and the nonzero rational point has z-coordinate 3. Thus no such P

exist and the lemma follows. O

Lemma 6.13. Suppose that E/Q admits just one rational 3-isogeny and no rational 9-isogenies,
and that E(Q(3%)) contains a point of order 9. Then

(t+3)(t* — 3t + 9)(¢3 + 3)3

](E): 43

for some t € Q*.

Proof. To determine the possible images of the mod-9 Galois representation of an elliptic curve E/Q
satisfying the hypothesis of the proposition, we conducted a search similar to that used in the proof
of Lemma 5.17, using Magma to enumerate the subgroups of GLy(Z/9Z) (up to conjugacy). We
find that pp o(Gal(Q(E[9])/Q) must be conjugate in GL2(Z/9Z) to a subgroup of one of the groups

(396966 D)
(396966 D)

whose intersections with SLy(Z/9Z) yield the congruence subgroups 9C° and 9A!, of genus 0 and 1,
respectively. We will show that Hs cannot occur unless j(E) = 0, which we note is of the form
required by the lemma (take ¢ = —3); in fact, when j(E) = 0 the image of pg g is conjugate to a
subgroup of H; that may also lie in Ho (this depends on F).


http://www.lmfdb.org/EllipticCurve/Q/27a3
http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group9C0
http://www.uncg.edu/mat/faculty/pauli/congruence/csg1.html#group9A1
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The intersection of H; and Hs is the subgroup

me=((o02) (6 1) 1))

which is equal to the image of I'g(3,9) in GL2(Z/9Z); the modular curve Xg, = Xo(3,9) has genus 1
(it corresponds to the congruence subgroup 9A1), and parameterizes elliptic curves that admit a
3-isogeny and a 9-isogeny whose kernels intersect trivially. The index-3 inclusion Hs C Hy gives a
degree-3 map ¢: Xpg, — Xp, of genus 1 curves, and a calculation using [43, Lemma 3.4] shows that
both curves have two rational cusps (X(3,9) has six cusps in all, but only two are rational). We
may thus view the modular curves Xp, and Xp, as elliptic curves over Q, and since ¢ must map
cusps to cusps, we can choose the origins so that ¢ is an isogeny. Both curves are defined over Q
(Hy and Hs both have surjective determinant maps), so ¢ is also defined over QQ; we thus have a
rational 3-isogeny from X¢(3,9) to Xg,.

The elliptic curve corresponding to X, = Xo(3,9) has Cremona label 27a1, and an examination
of its isogeny class 27a shows that X, is isomorphic to either 27a2 or 27a3, and it must be the
latter, since 27a2 has only one rational point but Xpg, has two rational cusps. The curve 27a3
isomorphic to Xp, has three rational points, so Xp, has exactly one noncuspidal rational point,
corresponding to the Q-isomorphism class of an elliptic curve F/Q with im pPE9 C Ho.

To determine this Q-isomorphism class it suffice to find one representative. The curve 27a1 itself
admits a rational 3-isogeny and a rational 9-isogeny with distinct kernels and thus corresponds to a
non-cuspidal rational point on X((3,9), and its image under ¢ is a non-cuspidal rational point on
Xg,.2 Tt follows that if j(E) # 0 then its mod-9 image must be conjugate to a subgroup of Hj.

From the tables in [39] we see that for the genus 0 curve Xp, the map to the j-line is given by

2 3 3
i) = (t+3)(t 3tt3+ 9)(t3 + 3) ,

which is the function appearing in the statement of the lemma. O

Example 6.14. The elliptic curve 722a1 satisfies the hypothesis of Lemma 6.13: it admits a single
rational 3-isogeny but not a 9-isogeny, and has a point of order 9 over the compositum of the cubic
fields of discriminant 361 and —1083, hence over Q(3°°). The image of pg g is conjugate to G, and
we note that j(E) = 2375/8 is of the form required by the lemma if we take ¢t = —2.

Lemma 6.15. Let E/Q be an elliptic curve. If E admits more than one rational 3-isogeny then
E(Q(3%°)) does not contain a point of order 4.

Proof. If E admits more than one rational 3-isogeny then it is related by a rational 3-isogeny ¢ to
an elliptic curve E'/Q that admits a rational 9-isogeny. The 3-isogeny ¢: F — E’ will map any
point of order 4 in E(Q(3°)) to a point of order 4 in E’(Q(3°)), but no such point can exist, by
Lemma 6.12. O

Proposition 6.16. Let E/Q be an elliptic curve. Then E(Q(3%)) contains no points of order 36.

Proof. Suppose for the sake of contradiction that E(Q(3°°)) does contain a point of order 36. It
follows from Lemmas 5.16, 6.12 and 6.15 that E admits exactly one rational 3-isogeny and no
rational 9-isogenies. We now consider two cases.

3This does not contradict the fact that 27al does not satisfy the hypothesis of Lemma 6.13; elliptic curves whose
mod-9 image is properly contained in H2 may admit more than one rational 3-isogeny and/or a rational 9-isogeny.


http://www.uncg.edu/mat/faculty/pauli/congruence/csg1.html#group9A1
http://www.lmfdb.org/EllipticCurve/Q/27a1
http://www.lmfdb.org/EllipticCurve/Q/27/a
http://www.lmfdb.org/EllipticCurve/Q/27a2
http://www.lmfdb.org/EllipticCurve/Q/27a3
http://www.lmfdb.org/EllipticCurve/Q/27a2
http://www.lmfdb.org/EllipticCurve/Q/27a3
http://www.lmfdb.org/EllipticCurve/Q/27a1
http://www.lmfdb.org/EllipticCurve/Q/722a1
http://www.lmfdb.org/EllipticCurve/Q/27a1
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Let us first suppose that F(Q)[2] is trivial. Since Q(3°°) contains a point of order 36, it contains
a point of order 4, and Lemma 6.1 implies that

_ —4(t2 = 3)3(t% — 8t — 11)

J(E)

(t+1)* ’
for some t € Q\{—1}. Since E admits a rational 3-isogeny, its j-invariant must also satisfy
, s+ 27)(s + 3)*
iy (e

for some s € Q* (see [22, Table 3], for example). The valid pairs (¢, s) lie on the (singular) curve
Cp:—4s(t> =332 =8t —11) — (s + 27)(s + 3)>(t + 1)* = 0,

which has genus 1 and the rational point (0, —1). Its normalization is isomorphic to the elliptic curve
48a3, which has 8 rational points and is a smooth model for the modular curve X4 obtained by
taking the fiber product over X (1) of the two maps above from the genus zero curves Xz and X(3)
to X (1); here H is the group in the proof of Lemma 6.1 and G is the intersection in GLy(Z/127Z) of
the inverse images of H C GLg(Z/47Z) and the Borel group in GLy(Z/37Z). A calculation in Magma
shows that X has four rational cusps, and that the points

(—5,-36),(7,—81/4),(—5/4,—-81/4),(—1/2,-36) € C1(Q),

are valid solutions (¢,s) corresponding to the four non-cuspidal rational points on Xg. These
solutions yield two distinct j-invariants: —35937/4 and 109503/64. Taking the curves 162al and
162d1 as representatives of these Q-isomorphism classes, we find that neither has a point of order 36
defined over Q(3°°), and by Proposition 5.2, this applies to every E/Q in these two classes.

We now suppose that F(Q)[2] is non-trivial and proceed similarly. Now FE has a rational point of
order 2, so its j-invariant has the form

s 3
j() = B0

s
for some s € Q* (see [22, Table 3.], for example). By Lemma 6.13, the j-invariant j(E) also satisfies
(t+3)(t? — 3t +9)(t3 + 3)3

t3 ’

J(E) =
for some t € Q*. The possible solutions (¢, s) lie on the genus 2 curve
Cy: (t+3)(t* =3t +9)(t3 + 3)3s% — t3(s + 256)3 = 0,
which has the hyperelliptic model
Cs:y? = a® — 3423 + 1.
The Jacobian of C3 has rank 0, and using Chabauty’s method we find that
C3(Q) = {£o0,(—1,£6),(0,£1)}.

There are thus six rational points on the modular curve X corresponding to the fiber product over
X (1) of the two rational maps from the genus zero curves X;(2) = Xo(2) and Xp,, where H; is
the group in the proof of 6.13 and G is the intersection in GLy(Z/18Z) of the inverse images of the


http://www.lmfdb.org/EllipticCurve/Q/48a3
http://www.lmfdb.org/EllipticCurve/Q/162a1
http://www.lmfdb.org/EllipticCurve/Q/162d1

26 HARRIS B. DANIELS, ALVARO LOZANO-ROBLEDO, FILIP NAJMAN, AND ANDREW V. SUTHERLAND

Borel group in GLy(Z/27Z) and H; C GLy(Z/9Z). A calculation in Magma shows that X« has four
rational cusps, and that the points

(3,-16), (—3,—256) € C2(Q)

are valid solutions (¢, s) corresponding to the two non-cuspidal rational points on X, which yield
the j-invariants 0 and 54000. Taking the elliptic curves 27al and 36a2 as representatives of these
Q-isomorphism classes, we find that neither has a point of order 36 defined over Q(3°). O

Corollary 6.17. Let E/Q be an elliptic curve. If 3 is the largest prime divisor of #E(Q(3%))tors
then E(Q(3%))tors s isomorphic to one of the five groups listed in (3).

Proof. As argued at the start of this subsection, this now follows from Propositions 6.10 and 6.16. [

6.5. When only 2 divides #E(Q(3°°))tors. If #E(Q(3*°)) is a power of 2 then Lemmas 5.9
and 5.10 imply that

727 ®7)27 j=1,2,3,4, or
E(Q(3®) ~( Z/AZL S Z)PT j=2,3,4, or
Z/8Z & 7/8Z.

The examples listed in Remark 1.9 show that these cases all occur. In conjunction with Proposi-
tions 6.2, 6.7, 6.9 and Corollary 6.17, this proves the first statement in Theorem 1.8.

7. EXPLICIT PARAMETERIZATIONS FOR EACH TORSION STRUCTURE

In this section we complete the proof of Theorem 1.8 by giving an explicit description of the sets
St = {j(E) : B(QB™))tors = T,

where T' ranges over the set T of 20 possible torsion structures for E(Q(3°°)) determined in the
previous section. It follows from Proposition 5.2 that the sets Sp partition Q\{1728}. As noted in
Remark 5.3, the j-invariant 1728 lies in two of the sets Sp, namely, the sets for T' = Z/27 & Z./27
and T = Z/AZ & Z/AZ.

We will determine the sets S in terms of sets Fr of (possibly constant) rationals functions j(t)
that parameterize the j-invariants j(E) of elliptic curves E/Q for which E(Q(3%))ors ~ T. These
appear in Table 1 on the next page, which lists a set Fr of functions j(t) for each T" € T. Let us
partially order the set 7 by inclusion (so T} < Ty whenever Tj is isomorphic to a subgroup of Ts).

Theorem 7.1. Let E/Q be an elliptic curve with j(E) # 1728. Let T(E) C T be the set of groups T
for which j(E) lies in the image of some j(t) € Fr. Then T (E) contains a unique mazximal element
T(E), and it is isomorphic to E(Q(3%)); equivalently, j(E) € St if and only if T = T(E).

Remark 7.2. The set T(E) need not contain every T' < T(E). The curve 15al is an example:
T(E) =7Z/8Z®Z/8Z but j(F) is not in the image of the unique function j(t) for T'= Z /27 ® 7 /8.

Corollary 7.3. Of the 20 groups T listed in Theorem 1.8, the following 4 arise as E(Q(3°))tors for
only a finite set of Q-isomorphism classes of elliptic curves E/Q:

ZJAT. x 7J28Z,  LJ6Z x ZJ30Z,  TJ6Z x ZJA2Z,  Z.J14Z x Z/14Z.

The remaining 16 arise for infinitely many Q-isomorphism classes of elliptic curves E/Q.


http://www.lmfdb.org/EllipticCurve/Q/27a
http://www.lmfdb.org/EllipticCurve/Q/36a2
http://www.lmfdb.org/EllipticCurve/Q/15a1
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T j(t)
7)27 ® 1.)27 t
(t2+16t+16)3
7/27 & 7.]AZ THiri0)
(t*—16t2+16)3
Z/QZ ) Z/SZ TE@—16)
(t*—1263+14¢2+12¢+1)3
Z/QZEBZ/lOZ BZ—11t—1)
(t2+13t+49) (12 +5t+1)3
Z/QZ EB Z/14Z 16 14 ¢ 12 10 8 6 4 2 3
(16 —8t11 412412 4-8¢10—10¢34-8t6 +12¢1 —8t2+1)
L/22 & L/16Z ST 62T D) (D2 (@)
(t*— 3452 +t+1) (18 —5¢ 7+ 7¢5 —5¢5 4+ 5¢3 4+ 742+ 5¢+1)3
7]27 & 7]267Z (2311
124+192)3
z/azez/n G
—16(t*—14¢2+1)3
ERZICES
—4(t2+2t—2)3 (2 +10t—2)
t4
16(t* +4t34-20t2+32t416)3
LZAL & L/8L D)2 (1+2)7
—4(t®8—60t°+134t* —60t2+1)3
2(t2—1)2(t241)8
(t16—8t14 412412+ 8¢104-230¢84-8¢6 +12¢4 —8t2 +1)3
Z/4Z ) Z/].GZ ts(t2—1)8(t2+1)4(t4—6t2+1)2
351 —38575685889
ZIAZLSZ/28Z  {*], 16334
27)(t+3
Z/GZ @ Z/GZ % 4 2 3
(t2—3)3 (15 —9t1+3t2—3)
LZ[6L & L/12Z BEZ—0)(12—1)
(t+3)3 (¢34+9t2+27t+3)3
Z/GZ ® Z/18Z t(t2+9t427)
(t43) (t2—3t4-9)(t3+3)°
+3
—121945 46969655
ZIGZOLI30L  {=55 T5ores
3375 —140625 —1159088625 —189613868625
Z[6Z & L/42Z {STv L8 2007152 o 128
224144256
Z/8LoT/8n  CER”
(t2+3)3(t6—15¢*+75t2+3)3
Z/12Z EB Z/].QZ t2(t2—9)2(t2—1)6
{—35937 109503
4 0 64
Z/1AZ © 7147 {228894
2713 (8—t%)3
Z/18Z & 2/187 LS

432t(t2—9)(t2+3)3 (+3 —9t4+-12)3 (3 +9t2 427t +3)3 (5t3 —9t2 -9t —3)3
(t3—3t2—9t+3)9(t343t2—9t—3)3

TABLE 1. Parameterizations j(t) of the Q-isomorphism classes of elliptic curves E/Q
according to the isomorphism type of E(Q(3°)).
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Proof of Theorem 7.1. For each group T' € T we enumerate subgroups G of GLa(Z/nZ), where n is
the exponent of T', and determine the G that are maximal with respect to the following properties:

(i) the determinant map G — (Z/nZ)* is surjective and G contains an element of trace 0 and
determinant —1 that acts trivially on a maximal cyclic Z/nZ-submodule of Z/nZ & Z/nZ;

(ii) the submodule of Z/nZ & Z/nZ on which the minimal normal subgroup N of G for which G/N
is of generalized Ss-type acts trivially is isomorphic to T'.

Note that the minimal N is unique, since if N7 and Ny are two normal subgroups of G for
which G/N; and G/N3 are both of generalized Ss-type, then for N = N N Ny the quotient G/N
is isomorphic to a subgroup of the direct product of G/N; and G/Na, hence also of generalized
Ss-type. We recall that (i) is necessarily satisfied by any subgroup G of GLy(Z/nZ) that arises
as the image of pg, for an elliptic curve E/Q, and (ii) implies that if G ~ pg ,(Gal(Q(E[n])/Q))
for some E/Q, then G/N ~ Gal((Q(E[n]) N Q(3*°))/Q) and N ~ Gal(Q(E[n])/(Q(E[n] NQ(3%)).
The n-torsion points of E fixed by Gal(Q/Q(3°°)) must then form a subgroup isomorphic to T,
equivalently, F(Q(3°°))tors contains a subgroup isomorphic to 7. The existence of the examples in
Remark 1.9 ensures that we get at least one maximal G for each T

Our maximality condition ensures that G always contains —1 (otherwise we can add —1 to both
G and N). The corresponding modular curve X has a rational model (because the determinant
map of G is surjective), and each non-cuspidal rational point on X¢ determines a Q-isomorphism
class that contains an elliptic curve E/Q for which im pg ,, is conjugate in GL2(Z/nZ) to a subgroup
of G. For j(FE) # 1728 the group E(Q(3%))tors depends only on j(E), by Proposition 5.2, thus we
may restrict our attention to the image Jg of the non-cuspidal points in X (Q) under the map
to X (1); if j(E) lies in this image then there is an elliptic curve E’ in this Q-isomorphism class
for which im pgy ,, is conjugate to a subgroup of G, and it follows that E'(Q(3°))¢ors, and therefore
E(Q(3%))tors, must contain a subgroup isomorphic to 7. In the other direction, if E(Q(3°))ors ~ T,
then im pg , must be conjugate to a subgroup of one of the maximal groups G for this 7', and j(E)
must lie the Jg. The set T (F) thus contains a unique maximal element, namely, T'(E) ~ E(Q(3*)),
since if T" € T(F) then E(Q(3%))ors ~ T must contain a subgroup isomorphic to 7. The theorem
then follows, provided that for each T € 7 we can determine a set of rational functions Frp for which
the union of the images of these functions is equal to the union of the image Jg over the maximal
groups G for T'. This amounts to explicitly expressing each of the images Jg as the union of the
images of a set of (possibly constant) rational functions j(¢). We turn now to this problem.

We first note that it may happen that G is the full inverse image of the reduction map from
GL2(Z/nZ) to GLa(Z/mZ) for some m dividing n; in this case we reduce G modulo the largest such
m and call m the level of G. For example, when T' = Z /27 & Z/2Z we have G = GLo(Z/2Z) and
can reduce G to the trivial group of level 1 corresponding to X (1); this is consistent with the fact
that F(Q(3*))[2] = E[2] holds for all E/Q. Similar remarks apply whenever n = 2m with m odd.

A Magma script to enumerate the maximal groups G for each torsion structure T can be found
at [4]; for each G we may determine the genus of X by taking the intersection of G with SLa(Z/nZ)
(all the cases of interest are already listed in the tables of Cummins and Pauli [3]), and we use [43,
Lemma 3.4] to determine the number of rational cusps on X. There are a total of 33 maximal
groups G for the 20 groups 7', and we find that for each of these G, one of the following holds: (1)
X has genus 0 and rational point, in which case X is isomorphic to P! and the map Xg — X (1) is
given by a rational function j(t), or (2) X¢ is isomorphic to either a genus 1 curve with no rational



points,
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an elliptic curve of rank 0, or a curve of genus greater than 1, and in every case the image

of X¢(Q) in X (1) is finite (by Faltings’ Theorem [5]).

For the first five groups T listed in Table 7.1, there is a unique maximal G and X has genus 0
and is of prime-power level; for these G we may take j(t) from [39] (for the 2-power levels, maps
that are equivalent up to an automorphism of P! (hence have the same image) can also be found in
the tables of [34]). The same applies to the groups Z/2Z &7 /267, Z/6Z &7 /6Z, and Z/8Z & L /8Z.
We now briefly discuss each of the remaining 12 groups 7"

7.)27 @ Z/16Z: There are two maximal G, both of level 16; for the first, X has genus 0
and the corresponding map j(t) from [39] is listed in Table 1. For the second X¢ is a genus
1 curve with no rational points (the curve X335 in [34]).

ZJAZ @ 7Z./AZ: There are three maximal G, one of level 2 and two of level 4, all of genus 0;
the corresponding maps j(t) from [39] are listed in Table 1.

ZJAZ @& Z./8Z: There are two maximal GG, one of level 4 and one of level 8, both of genus 0;
the corresponding maps j(t) from [39] are listed in Table 1.

ZJAZ & Z/16Z: There are two maximal G, one of level 8 and one of level 16. The level 8
curve has genus 0 and the corresponding map j(t) from [39] is listed in Table 1, while the
level 16 curve is a genus 1 curve with no rational points (the curve X478 in [34]).

ZJAZ & 7./287Z: There are three maximal G, one of level 14 and two of level 28, all of which
have genus greater than 2. Two are ruled out by the fact that any F/Q with this image
would be isogenous to an E’/Q admitting a rational 28-isogeny, but no such E’ exist, by
Theorem 4.4. The remaining G of level 28 corresponds to a modular curve X¢ of of genus 3
with congruence subgroup 28E?. This curve admits a degree-2 map to a genus 2 curve Xy,
where G C H, with congruence subgroup 28A2. The curve Xy has a hyperelliptic model

Xpg:y?=a%—22° — 42 — 423 —42® — 22+ 1

whose Jacobian has rank 1. Chabauty’s method finds that Xz has 4 rational points, two
of which are the image of known non-cuspidal rational points on X¢ (the corresponding
j-invariants are listed in Table 1), while the other two are cusps.

Z/6Z&Z/12Z: There is one maximal G and it is conjugate to the Borel group in GL2(Z/127Z),
and Xg = Xo(12) has genus 0; the map to the j-line is taken from [22, Table 3].

Z/6Z & Z/18Z: There are three maximal G, all of level 9, two of genus 0 and one of genus 1.
The corresponding maps j(t) for the genus 0 curves form [39] are listed in Table 1. As shown

in the proof of 5.21, the genus 1 curve has only one non-cuspidal rational point corresponding
to j-invariant 0, but for j(E) = 0 we have E(Q(3%))tors ~ Z/18Z & Z/18Z.

Z/6Z & Z/30Z: There is one maximal G, of level 15 and genus 1 and X admits a map to
Xo(15) whose rational points give four distinct j-invariants; see [22, Table 4]. Of these, two
correspond to elliptic curves whose mod-15 Galois image is isomorphic to a subgroup of G
(of index 2 but yielding the same E(Q(3%))tors structure); these are listed in Table 1.

Z/6Z®Z/427: There is one maximal G, of level 21 and genus 1, and X is the curve X (21)
whose rational points give rise to four the j-invariants listed in Table 1; see [22, Table 4].

ZJ12Z.&7Z/127Z: There are three maximal G, one of level 6 and genus 0 whose corresponding
map j(t) can be computed as a fiber product of maps in [39]; this map appears in Table 1.
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The other two have level 12 and genus 1, and the X are isomorphic to 48al and 48a3
respectively. The first has four rational points, all cuspidal, and the second has eight rational
points, four of which are non-cuspidal and yield the two j-invariants listed in Table 1.

o 7/18Z @ Z/18Z: There are two maximal G, one of level 3 and one of level 9 and both of
genus 0; the corresponding maps j(t) from [39] appear in Table 1.

Further details of these computations can be found in [4]. O
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