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Abstract

In this paper we study the possible torsions of elliptic curves over
Q(i) and Q(

√
−3).

1 Introduction

For an elliptic curve E over a number field K, it is well known, by the
Mordell-Weil theorem, that the set E(K) of K-rational points on E is a
finitely generated abelian group. The group E(K) is isomorphic to T ⊕ Zr,
where r is a non-negative integer and T is the torsion subgroup. When
K = Q, by Mazur’s Theorem, the torsion subgroup is either cyclic of order
m, where 1 ≤ m ≤ 10 or m = 12, or of the form Z2⊕Z2m, where 1 ≤ m ≤ 4.
If K is a quadratic field, then the following theorem classifies the possible
torsions.

Theorem(Kamienny, [5], Kenku and Momose, [6]). Let K be a quadratic
field and E an elliptic curve over K. Then the torsion subgroup E(K)tors

of E(K) is isomorphic to one of the following 26 groups:

Zm, for 1 ≤ m ≤ 18, m 6= 17,

Z2 ⊕ Z2m, for 1 ≤ m ≤ 6,

Z3 ⊕ Z3m, for m = 1, 2

Z4 ⊕ Z4.

Moreover, the only quadratic field over which torsion Z4⊕Z4 appears is
Q(i) and the only quadratic field over which torsions Z3 ⊕ Z3 and Z3 ⊕ Z6

appear is Q(
√
−3).

In [4], Theorem 3.5, it is proved that if we let the quadratic fields vary, then
all of the 26 torsion subgroups appear infinitely often.
In this paper we will take a different approach. We will fix the quadratic
field and then study the possible torsions. The fields that we are going to
study, Q(i) and Q(

√
−3), are somewhat special, as they are the only fields
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containing roots of unity apart from 1 and −1, i.e. they are the only cy-
clotomic quadratic fields. Also, over each of these fields, torsion subgroups
appear that appear over no other fields. Note that the rings of integers of
both these fields are unique factorization domains.
The results obtained for elliptic curves over Q(i) are presented in the fol-
lowing theorem.

Theorem 1. (i) Let E be an elliptic curve with rational coefficients. Then
E(Q(i))tors is either one of the groups from Mazur’s Theorem or Z4⊕
Z4.

(ii) Let E be an elliptic curve defined over Q(i). Then E(Q(i))tors is either
one of the groups from Mazur’s Theorem, Z4 ⊕ Z4 or Z13.

The first part of this theorem is the best possible, while for the second
part we believe that Z13 does not appear as a torsion subgroup, but we were
unable to prove this.
Note that the torsion subgroup Z4 ⊕ Z4 appears infinitely often. Elliptic
curves with this torsion can be written in the form

y2 = x(x+m2)(x+ n2), m, n ∈ Z[i],

where m2 − n2 is a square in Z[i]. This is an easy corollary of the 2-descent
proposition (see [7], Theorem 4.2, p. 85).
The results obtained for elliptic curves over Q(

√
−3) are presented in the

following theorem.

Theorem 2. (i) Let E be an elliptic curve with rational coefficients. Then
E(Q(

√
−3))tors is either one of the groups from Mazur’s Theorem,

Z3 ⊕ Z3 or Z3 ⊕ Z6.

(ii) Let E be an elliptic curve defined over Q(
√
−3). Then E(Q(

√
−3))tors

is either one of the groups from Mazur’s Theorem, Z3 ⊕ Z3, Z3 ⊕ Z6,
Z13 or Z18.

Again, the first part of this theorem is the best possible(Z3 ⊕ Z3 and
Z3 ⊕ Z6 appear infinitely often), while for the second part we believe that
Z13 and Z18 do not appear as torsion subgroups, but we were unable to
prove this.

2 Torsion over Q(i)

Throughout this chapter, the following extension of the Lutz-Nagell The-
orem is used to compute torsion groups of elliptic curves.

Theorem (Extended Lutz-Nagell Theorem). Let E : y2 = x3 +Ax+B
with A,B ∈ Z[i]. If a point (x, y) ∈ E(Q(i)) has finite order, then
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1. x, y ∈ Z[i].

2. Either y = 0 or y2|4A3 + 27B2.

The proof of the Lutz-Nagell Theorem can easily be extended to elliptic
curves over Q(i). Details of the proof can be found in [12], Chapter 3. An
implementation in Maple can be found in [12], Appendix A.
Next, we give a result that applies to elliptic curves over all quadratic fields
and that is an immediate corollary of the main result of [8] (see also [2]).

Lemma 3. Let E be an elliptic curve with rational coefficients and d a
square-free integer. Then E(Q(

√
d))tors cannot be Z11,Z13 or Z14.

Next we give a series of lemmas that will prove Theorem 1.

Lemma 4. E(Q(i))tors cannot be Z11,Z18 or Z2 ⊕ Z10.

Proof:
It is proved in [6], Example 3.2 that the torsion of an elliptic curve over Q(i)
cannot be Z2 ⊕ Z10.
It is proved in [10], Theorem 2 that the torsion cannot be Z11.
Since the rational prime 3 remains prime in Z[i], condition i) of Proposition
2.4 from [6] is satisfied and hence, the torsion cannot be Z18.

Lemma 5. E(Q(i))tors cannot be Z16.

Proof :
By [9], case 2.5.5., page 37, we see that elliptic curves with torsion Z16 over
Q(i) are induced by the solutions of the equation

s2 = t(t2 + 1)(t2 + 2t− 1), s, t ∈ Q(i), (1)

where t satisfies

t(t4 − 1)(t2 + 2t− 1)(t2 − 2t− 1) 6= 0. (2)

It follows that it is enough to prove that this equation has no solutions. Let

t = α�, (3)

t2 + 1 = β� (4)

and
t2 + 2t− 1 = γ�, (5)

where α, β and γ are square-free, nonzero Gaussian integers. Also, let t = u
v ,

where u and v are coprime, nonzero Gaussian integers.
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First, we prove that α is relatively prime to β and γ. Suppose a Gaussian
prime π divides both α and β. From (3) it follows that π divides either u or
v an odd number of times. From (4), it follows that π divides u2 + v2, and
since it divides exactly one of u, v, this is impossible.
Suppose a Gaussian prime π divides both α and γ. Again, π divides exactly
one of u, v. From (5), it follows that π divides u2 + 2uv− v2, which is again
impossible.
Since −1 is a square in Z[i], we conclude that α ∈ {1, i}.
Next, we prove that gcd(β, γ) = 1 or 1+ i. Let π be a Gaussian prime divid-
ing both β and γ. By subtracting (4) from (5), we conclude that π divides
2uv−2v2 = 2v(u−v). As it was already proved, since π divides β, π cannot
divide u, implying π|2(u− v). Suppose π|(u− v), i.e. u ≡ v (mod π). Now,
(4) implies 2u2 ≡ 0 (mod π), again implying π|2. Since 2 = −i(1 + i)2, we
conclude that the only possibilities for β and γ are β, γ ∈ {1, i, 1+i, i(1+i)}.
We assert that none of these are possible.
Suppose β = 1. Since α = 1 or i, we can write t = x2

y2 or t = ix2

y2 , i.e.

t2 = ±x4

y4 . Multiplying (4) by y4 we get x4 ± y4 = ±z2. It was proved
by Hilbert(see [3]) that this equation has only trivial solutions in Gaussian
integers, implying t = 0.
Suppose β = i. Multiplying (3) and (4) we obtain iy2 = t3+t or −y2 = t3+t,
leading to elliptic curves in Weierstrass form y2 = x3 − x and y2 = x3 + x
respectively. Using the program [11], written in PARI, we compute that the
rank of this curve is 0. It is easy to compute, using the Extended Lutz-
Nagell Theorem that the torsion subgroup of both these curves over Q(i) is
Z2 ⊕ Z2. All the torsion points of these curves satisfy t(t4 − 1) = 0.
Suppose β = 1 + i or i(1 + i). Multiplying (3) and (4) we obtain one of
the following three elliptic curves (1 + i)y2 = t3 + t, i(1 + i)y2 = t3 + t and
−(1 + i)y2 = t3 + t. These curves induce the curves y2 = x3 + 2ix and
y2 = x3 − 2ix in Weierstrass form, both of them having rank 0 (again, this
is computed using [11]) and torsion Z2⊕Z2. All of the torsion points induce
t satisfying t(t4− 1) = 0. Hence, the starting equation has no solutions.

Lemma 6. E(Q(i))tors cannot be Z15.

Proof :
By [9], case 2.5.4, pages 34 and 35, elliptic curves with torsion subgroups
isomorphic to Z15 are induced by the solutions over Q(i) of

s2 + st+ s = t3 + t2 (6)

satisfying

t(t+ 1)(t2 + t+ 1)(t4 + 3t3 + 4t2 + 2t+ 1)(t4 − 7t3 − 6t2 + 2t+ 1) 6= 0.
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Using [11], we compute that the rank of (6) over Q(i) is 0 and the torsion
points give t = 0 or −1, implying that the equation has no solutions.

Lemma 7. E(Q(i))tors cannot be Z2 ⊕ Z12.

Proof:
By [9], case 2.5.8, pages 42–44, elliptic curves with torsion Z2 ⊕ Z12 are
induced by the solutions over Q(i) of the equation

s2 = (2t2 − 2t+ 1)(6t2 − 6t+ 1) (7)

satisfying

t(t− 1)(2t− 1)(2t2 − 2t+ 1)(3t2 − 3t− 1)(6t2 − 6t+ 1) 6= 0. (8)

The elliptic curve (7) has the Weirstrass form

y2 = x3 − x2 + x.

This curve has rank 0 and 8 torsion points. They are {O, (0, 0), (1,±1), (±i,±1)}
in Weierstrass form, inducing t = 0, 1, 1

2 or 1±i
2 , none of them satisfying

(8).

Lemma 8. E(Q(i))tors cannot be Z14.

Proof:
By [9], case 2.5.3, page 31, elliptic curves with torsion Z14 are induced by
the solutions over Q(i) of the equation

s2 + st+ s = t3 − t

satisfying
t(t2 − 1)(t3 − 9t2 − t+ 1)(t3 − 2t2 − t+ 1) 6= 0.

The given curve has rank 0 and 6 torsion points over Q(i), all of them sat-
isfying t = 0 or ±1.

Lemmas 4, 5, 6, 7 and 8 prove Theorem 1, (ii). Combining this with Lemma
3, we get Theorem 1, (i).

2 Torsion over Q(
√
−3)

As some of the proofs in this section are similar to the ones in the pre-
vious section, some technical details will be omitted.
Let ω = 1−

√
−3

2 . It is easy to see that ω is a primitive sixth root of unity
and Z[ω] is the ring of integers of Q(

√
−3).
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Lemma 9. E(Q(
√
−3))tors cannot be Z14, Z15, or Z2 ⊕ Z12.

Proof:
It is proved in [6] that the torsion subgroup cannot be Z14(Example 2.5) or
Z2 ⊕ Z12(Example 3.2).
The proof that the torsion cannot be Z15 is completely analogous to the
proof of Lemma 7.

Lemma 10. E(Q(
√
−3))tors cannot be Z11.

Proof:
As can be seen in [9], case 2.5.1, page 25, the solutions s, t ∈ Q(

√
−3) of the

equation
s2 − s = t3 − t2

satisfying
t(t− 1)(t5 − 18t4 + 35t3 − 16t2 − 2t+ 1) 6= 0

induce elliptic curves with torsion Z11 over Q(
√
−3). The rank of this curve

is 0 and there are 5 torsion points, all of them satisfying t = 0 or 1 (see [9],
Lemma 2.1).

Lemma 11. E(Q(
√
−3))tors cannot be Z2 ⊕ Z10.

Proof:
As can be seen in [9], case 2.5.7, pages 39–40, the solutions s, t ∈ Q(

√
−3)

of the equation
s2 = t3 + t2 − t

satisfying
t(t2 − 1)(t2 − 4t− 1)(t2 + t− 1) 6= 0

induce elliptic curves with torsion Z2 ⊕ Z10 over Q(
√
−3). The rank of this

curve is 0 and there are 6 torsion points, all of them satisfying t = 0,−1 or
1 (see [9], Lemma 2.4).

As in the proof of Theorem 1, the hardest part of the proof of Theorem 2 is
eliminating the possibility of the torsion being Z16.

Lemma 12. E(Q(
√
−3))tors cannot be Z16.

Proof:
Again, we have to prove that the equation (1) has no solutions satisfying (2).
We follow the same strategy of the proof of Lemma 6, and define α, β and
γ in the same way. It can be proved in the same way as in Lemma 6 that α
is a unit and that each of β and γ is either a unit or twice a unit. As every
unit is a square or ω times a square, and as γ = αβ (mod (Q(

√
−3)∗)2), we
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see that we have 8 possibilities for the triples (α, β, γ). If t is a solution of
(1), then t has to be the first coordinate of a point on both curves

E1 : αβy2 = t3 + t

and
E2 : αγy2 = t3 + 2t2 − t.

In the following table we give the ranks of these curves depending on α and
β.

α β γ rank(E1(Q(
√
−3)) rank(E2(Q(

√
−3))

1 1 1 1 0
1 ω ω 1 0
1 2 2 0 2
1 2ω 2ω 0 0
ω 1 ω 1 0
ω ω 1 1 0
ω 2ω 2 0 0
ω 2 2ω 0 2

As it can be seen, for each case there either E1 or E2 has rank 0, and thus
only the torsion points are possible solutions. It remains to check the torsion
points of the following four curves:

y2 = x3 + 2x2 − x, (9)

y2 = x3 + 2ωx2 − ω2x, (10)

y2 = x3 + 4x, (11)

y2 = x3 + 4ω2x. (12)

The torsion groups were now computed in APECS([1]). The torsion of the
curves (11) and (12) is Z4, corresponding to t = 0,±1 on the curve E1. The
torsion of the curves (9) and (10) is Z2, corresponing to t = 0 on the curve
E2.
We obtain that none of the t induced by the torsion points satisfies (2). We
conclude that the torsion Z16 is impossible.

Lemmas 9, 10, 11 and 12 combined with Lemma 3 prove Theorem 2.

Remark
In order to prove that there are no elliptic curves with torsion Z13 over Q(i)
and Q(

√
−3), one would have to prove that there are no solutions in the

respective quadratic field of the equation

s2 = t6 − 2t5 + t4 − 2t3 + 6t2 − 4t+ 1 (13)
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satisfying
t(t− 1)(t3 − 4t2 + t+ 1) 6= 0.

Similarly, to prove that there are no elliptic curves with torsion Z18 over
Q(
√
−3) one would have to prove that there do not exist s, t ∈ Q(

√
−3)

satisfying
s2 = t6 + 2t5 + 5t4 + 10t3 + 10t2 + 4t+ 1 (14)

and
t(t+ 1)(t2 + t+ 1)(t3 − 3t− 1) 6= 0.

Note that (13) and (14) are both hyperelliptic curves of genus 2.
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