
SPLITTING OF PRIMES IN NUMBER FIELDS GENERATED BY POINTS ON

SOME MODULAR CURVES

FILIP NAJMAN AND ANTONELA TRBOVI�

Abstract. We study the splitting of primes in number �elds generated by points on modular curves.
Momose [11] was the �rst to notice that quadratic points on X1(N) generate quadratic �elds over which
certain primes split in a particular way and his results were later expanded upon by Krumm [9]. We
prove results about the splitting behaviour of primes in quadratic �elds generated by points on the
modular curves X0(N) which are hyperelliptic (except for N = 37) and in cubic �elds generated by
points on X1(2, 14).

1. Introduction

A famous and much-studied problem in the theory of elliptic curves, going back to Mazur's torsion
theorem [10], is to determine the possible torsion groups of elliptic curves over K, for a given number
�eld K or over all number �elds of degree d. Here we are more interested in the inverse question:

Question 1. For a given torsion group T and a positive integer d, for which and what kind of number
�elds K of degree d do there exist elliptic curves E such that E(K) ' T?

To make Question 1 sensible, one should of course choose the group T in a such a way that the set of
such �elds should be non-empty and preferably in�nite.

It has been noted already by Momose [11] in 1984 (see also [8]) that the existence of speci�c torsion
groups T over a quadratic �eld K forces certain rational primes to split in a particular way in K.
Krumm [9] in his PhD thesis obtained similar results about splitting of primes over quadratic �elds K
with T ' Z/13Z or Z/18Z and it was also proven by Bosman, Bruin, Dujella and Najman [2] and Krumm
[9] independently that all such quadratic �elds must be real.

The �rst such result over cubic �elds was proven by Bruin and Najman [5], where it was shown for
T ' Z/2Z× Z/14Z that all such cubic �elds K must be cyclic. In this paper we explore this particular
case further and prove in Section 3 that in such a �eld 2 always splits, giving the �rst description of
a splitting behaviour forced by the existence of a torsion group of an elliptic curve over a cubic �eld.
Furthermore, we show that all primes q ≡ ±1 (mod 7) of multiplicative reduction for such curves split
in K. The proof of these results turns out to be more intricate than in the quadratic case.

As Question 1 can equivalently be phrased as asking when the modular curveX1(M,N) parameterizing
elliptic curves together with the generators of a torsion subgroup T ' Z/MZ× Z/NZ has non-cuspidal
points over K, one is naturally drawn to ask a more general question by replacing X1(M,N) by any
modular curve X.

Question 2. For a given modular curve X and a positive integer d, for which and what kind of number
�elds K of degree d do there exist non-cuspidal points in X(K)?

The most natural modular curves to consider next are the classical modular curves X0(N) classifying
elliptic curves with cyclic isogenies of degree N . Bruin and Najman [4] proved that quadratic �elds K
over which X0(N) for N = 28 and 40 have non-cuspidal points are always real. In this paper we prove
the �rst results about splitting of certain primes over quadratic �elds where some modular curves X0(N)
have non-cuspidal points. We consider all the N such that X0(N) is hyperelliptic except for N = 37, in
particular

(1) N ∈ {22, 23, 26, 28, 29, 30, 31, 33, 35, 39, 40, 41, 46, 47, 48, 50, 59, 71}.
The reason we exclude N = 37 is that the quadratic points on X0(37) cannot all be described (with
�nitely many exceptions) as inverse images of P1(Q) with respect to the degree 2 hyperelliptic map
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X0(37)→ P1. For more details about quadratic points on X0(37), see [3]. In Section 2 we prove a series
of results about the splitting behaviour of various primes in quadratic �elds generated by quadratic
points on X0(N).

A di�culty in proving these results that one immediately encounters is that the methods of [8] and
[11] cannot be adapted to X0(N) as the existence of a torsion point of large order forces bad reduction
on the elliptic curve (see for example [11, Lemma 1.9]), while the existence of an isogeny does not. Hence
we approach the problem via explicit equations and parameterizations of modular curves, more in the
spirit of [2, 4, 9] instead of moduli-theoretic considerations as in [8, 11].

González [6] proved results about �elds generated by j-invariants of Q-curves. Since for the values N
that we study almost all N -isogenies over quadratic �elds come from Q-curves, our results are reminiscent
of his, but it turns out there is little overlap in the results that are proved. This is perhaps not very
surprising as we do not use the fact that we are looking at Q-curves at all.

The computations in this paper were executed in the computer algebra system Magma [1]. The code
used in this paper can be found at https://web.math.pmf.unizg.hr/~atrbovi/magma/magma2.htm.

2. Splitting of primes in quadratic fields generated by points on X0(N)

In this section we study the splitting behaviour of primes in quadratic �elds over which the modular
curvesX0(N) have non-cuspidal points. Models forX0(N) have been obtained from the SmallModularCurves
database in Magma and can be found in Table 1.

Following [9], on a hyperlliptic curve X with a model y2 = f(x), we say that the quadratic points on

X of the form (x0,
√
f(x0)), where x0 ∈ Q, are obvious. The quadratic points that are not obvious are

called non-obvious. By the results of [4], all non-cuspidal quadratic points on X0(N) are obvious, with
�nitely many explicitly listed exceptions.

Theorem 2.1. Let K = Q(
√
D), where D is squarefree, be a quadratic �eld over which X0(N) has an

obvious non-cuspidal point.

(a) For each N , columns 2-5 in the table below show the splitting behaviour in K of some of the
small primes, as well as some properties of D.

(b) For the pairs of N and a indicated in the table, if a prime p rami�es in K, then a is a square
modulo p.

(c) For the pairs of N and b indicated in the table, if p 6= 2 is a prime such that b is a square modulo
p, then there exist in�nitely many quadratic �elds generated by a point on X0(N) in which p
rami�es.

Remark 1. Before proceeding to prove Theorem 2.1, we mention two papers [6, 13] that have some
overlap with ours and show which of our results can be proved using their methods.

Obvious points on curves X0(N) are of the form (x, y
√
d), where x, y ∈ Q. This gives us the point

(x, y) on the quadratic twist Xd
0 (N)(Q) and hence Xd

0 (N)(Qp) 6= ∅. Now the underlined entries in Table
2 can be alternatively proved using the results of Ozman [13, Theorem 1.1]. Note that the facts in Table 2
which have been marked by ∗ or ∗∗ do not follow from [13, Theorem 1.1].

Recall that a Q-curve is an elliptic curve that is isogenous to all its Galois conjugates. The degree of
a Q-curve over a quadratic �eld is the degree of a cyclic isogeny to its Galois conjugate. González proves
the following statement [6, Proposition 1.1]:

Assume that there exists a quadratic Q-curve of degree d de�ned over some quadratic �eld K. Then
every divisor N1 | d such that

N1 ≡ 1 (mod 4) or N1 is even and d/N1 ≡ 3 (mod 4)

is a norm of the �eld K.
For our values of N all but �nitely many known exceptions of elliptic curves with N -isogenies over

quadratic �elds are Q-curves (as proved by Bruin and Najman [4]). Note that we do not use the fact
that the curves we consider are Q-curves in any essential way; we only use the fact that almost all the
quadratic points on the modular curves X0(N) : y2 = fN (x) are of the form (x0,

√
fN (x0) for x0 ∈ Q

(and from this fact Bruin and Najman proved that the corresponding elliptic curves are Q-curves).
After noting that an obvious quadratic point on X0(N) corresponds to a Q-curve of degree d, where

d can be obtained from the tables in [4]), and applying González' proposition, we obtain p is not inert

in a quadratic �eld K := Q(
√
D) generated by an obvious point on X0(N) for the following pairs (N, p):

(N, p) ∈ {(26, 13), (29, 29), (30, 5), (35, 5), (41, 41), (50, 5)} .
In all of the pairs above we have d = N except for N = 30, where d = 15. �

https://web.math.pmf.unizg.hr/~atrbovi/magma/magma2.htm
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N fN (x) from the equation y = fN (x) for X(N) and the factorization in Q[X]

22 x6 − 4x4 + 20x3 − 40x2 + 48x− 32
= (x3 − 2x2 + 4x− 4)(x3 + 2x2 − 4x+ 8)

23 x6 − 8x5 + 2x4 + 2x3 − 11x2 + 10x− 7
= (x3 − 8x2 + 3x− 7)(x3 − x+ 1)

26 x6 − 8x5 + 8x4 − 18x3 + 8x2 − 8x+ 1

28 4x6 − 12x5 + 25x4 − 30x3 + 25x2 − 12x+ 4
= (2x2 − 3x+ 2)(x2 − x+ 2)(2x2 − x+ 1)

29 x6 − 4x5 − 12x4 + 2x3 + 8x2 + 8x− 7

30 x8 + 14x7 + 79x6 + 242x5 + 441x4 + 484x3 + 316x2 + 112x+ 16
= (x2 + 3x+ 1)(x2 + 6x+ 4)(x4 + 5x3 + 11x2 + 10x+ 4)

31 x6 − 8x5 + 6x4 + 18x3 − 11x2 − 14x− 3
= (x3 − 6x2 − 5x− 1)(x3 − 2x2 − x+ 3)

33 x8 + 10x6 − 8x5 + 47x4 − 40x3 + 82x2 − 44x+ 33
= (x2 − x+ 3)(x6 + x5 + 8x4 − 3x3 + 20x2 − 11x+ 11)

35 x8 − 4x7 − 6x6 − 4x5 − 9x4 + 4x3 − 6x2 + 4x+ 1
= (x2 + x− 1)(x6 − 5x5 − 9x3 − 5x− 1)

39 x8 − 6x7 + 3x6 + 12x5 − 23x4 + 12x3 + 3x2 − 6x+ 1
= (x4 − 7x3 + 11x2 − 7x+ 1)(x4 + x3 − x2 + x+ 1)

40 x8 + 8x6 − 2x4 + 8x2 + 1

41 x8 − 4x7 − 8x6 + 10x5 + 20x4 + 8x3 − 15x2 − 20x− 8

46 x12 − 2x11 + 5− x10 + 6x9 − 26x8 + 84x7 − 113x6 + 134x5 − 64x4 + 26x3 + 12x2 + 8x− 7
= (x3 − 2x2 + 3x− 1)(x3 + x2 − x+ 7)(x6 − x5 + 4x4 − x3 + 2x2 + 2x+ 1)

47 x10 − 6x9 + 11x8 − 24x7 + 19x6 − 16x5 − 13x4 + 30x3 − 38x2 + 28x− 11
= (x5 − 5x4 + 5x3 − 15x2 + 6x− 11)(x5 − x4 + x3 + x2 − 2x+ 1)

48 x8 + 14x4 + 1
= (x4 − 2x3 + 2x2 + 2x+ 1)(x4 + 2x3 + 2x2 − 2x+ 1)

50 x6 − 4x5 − 10x3 − 4x+ 1

59 x12 − 8x11 + 22x10 − 28x9 + 3x8 + 40x7 − 62x6 + 40x5 − 3x4 − 24x3 + 20x2 − 4x− 8
= (x3 − x2 − x+ 2)(x9 − 7x8 + 16x7 − 21x6 + 12x5 − x4 − 9x3 + 6x2 − 4x− 4)

71 x14 + 4x13 − 2x12 − 38x11 − 77x10 − 26x9 + 111x8 + 148x7+
+x6 − 122x5 − 70x4 + 30x3 + 40x2 + 4x− 11

= (x7 − 7x5 − 11x4 + 5x3 + 18x2 + 4x− 11)(x7 + 4x6 + 5x5 + x4 − 3x3 − 2x2 + 1)

Table 1. Polynomials fN (x) in the equations y2 = fN (x) for X0(N).

Many proofs will be similar for di�erent values of N and before proceeding to a case-by-case study,
we mention some general results which will be useful.

We �x the following notation throughout this section. Let N be one of the integers from (1) and write

X0(N) : y2 = fN (x) =

deg fN∑
i=0

ai,Nx
i,

with ai,N ∈ Z. Note that in all instances deg fN is even. As already stated, all non-cuspidal quadratic
points on X0(N) are obvious, with �nitely many exceptions. Those exceptions can be found listed in [4,

Tables 1-18]. Let (x0,
√
fN (x0)), for some x0 ∈ Q, be an obvious point on X0(N) and write x0 = m/n,

with m and n coprime integers. Let d := fN (x0), s := ndeg fNd, and let D be the square-free part of d,
i.e. the unique square-free integer such that ndeg fNd = Ds2, for some s ∈ Q. Since deg fN is even, it
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N not inert unrami�ed splits D a b

22 2∗

26 13 odd 13

28 3, 7 3 3 > 0 −7∗∗∗ −7

29 29 odd 29

30 2, 3, 5∗∗ 2, 3 2, 3 odd 5 5

33 2, 11 2 2 > 0
odd

−11 −11

35 5∗∗, 7 2, 7 7 odd 5 5

39 3, 13 2, 13 13 odd 13

40 2, 3, 5 2, 3, 5 2, 3, 5 > 0

odd
−1, 5

41 41 41

46 2 2 2 odd

48 2 2, 3, 5 2, 3, 5 > 0
odd

−1, 3

50 5 odd 5

∗ -even more is true, D ≡ 1, 2, 6 (mod 8)
∗∗ -even more is true, D ≡ 0, 1 (mod 5)
∗∗∗ -the statement of (b) is true with the exception of p = 2
_ -see Remark 1

Table 2.

follows that s ∈ Z. We get the equality

(2) ndeg fNd = Ds2 =

deg fN∑
i=0

ai,Nm
indegfN−i.

The point (x0,
√
fN (x0)) will be de�ned over K := Q(

√
D).

We will prove part (a) of the theorem for each N separately. This proof can unfortunately not be
generalized for each collumn of Table 2 as it can be for parts (b) and (c) of the theorem. However, we
do mention a number of lemmas that describe the splitting behaviour of primes in K, which we will be
using throughout. They are well-known or obvious, so we omit the proofs.

Lemma 2.2. An odd prime p rami�es in K if and only if p | D, splits in K if and only if
(
D
p

)
= 1 and

is inert in K if and only if
(
D
p

)
= −1.

Lemma 2.3. Let p be an odd prime and assume that we have Ds2 ≡ apt (mod p`) with p - a and ` > t.

a) If t = 2k for some k ∈ Z+
0 , then vp(s) = k, D ≡ a(pk/s)2 (mod p`−t), and p splits in K if and

only if a is a square modulo p.
b) If t = 2k + 1 for some k ∈ Z+

0 , then p|D and p rami�es in K.

As previous lemmas stated results about splitting for odd primes, we include similar results for the prime
p = 2.

Lemma 2.4. The prime 2 rami�es in K if and only if D 6≡ 1 (mod 4), splits in K if and only if D ≡ 1
(mod 8) and is inert in K if and only if D ≡ 5 (mod 8).

Lemma 2.5. Assume that we have Ds2 ≡ 2ta (mod 2`), with 2 - a and ` > t.

(a) If t = 2k, for some k ∈ Z+
0 , then v2(s) = k and D ≡ a(2k/s)2 (mod 2`−t). If a = 1 and `− t = 3,

then 2 splits in K.
(b) If t = 2k + 1, for some k ∈ Z+

0 , then D ≡ 2a (mod 2`−2k).
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All of the computations done in the following proofs are listed in the accompanying Magma code.

Proof of Theorem 2.1 (a).
N= 22 : In the manner already described above, in (2) we get

n6d = Ds2 = m6 − 4m4n2 + 20m3n3 − 40m2n4 + 48mn5 − 32n6.

Considering all of the possibilities of m and n modulo 512, we have that Ds2 ≡ 1 (mod 8), Ds2 ≡ 32
(mod 64) or Ds2 ≡ 64 (mod 512). Using Lemma 2.5 this becomes D ≡ 1 (mod 8) or D ≡ 2 (mod 4). In
any case we have D ≡ 1, 2, 6 (mod 8), so 2 is not inert, according to Lemma 2.4.

N= 26 : In (2) we get

n6d = Ds2 = m6 − 8m5n+ 8m4n2 − 18m3n3 + 8m2n4 − 8mn5 + n6.

Looking at all the possibilities of m and n modulo 132, we see that Ds2 ≡ 1, 3, 4, 9, 10, 12 (mod 13)
or Ds2 ≡ 4 · 13, 9 · 13 (mod 132). It follows from Lemma 2.3 that D ≡ 0, 1, 3, 4, 9, 10, 12 (mod 13). Using
Lemma 2.2 we immediately get that 13 is not inert.

Considering the possibilities of m and n modulo 128, we have that Ds2 ≡ 1 (mod 2), Ds2 ≡ 4
(mod 16), Ds2 ≡ 16 (mod 32) or Ds2 ≡ 64 (mod 128). Using Lemma 2.5 this becomes D ≡ 1 (mod 2)
or D ≡ 1 (mod 4), so D is always odd.

N= 28 : In (2) we get

n6d = Ds2 = 4m6 − 12m5n+ 25m4n2 − 30m3n3 + 25m2n4 − 12mn5 + 4n6.

Considering the possibilities of m and n modulo 3, we get Ds2 ≡ 1 (mod 3), so from Lemma 2.3 we
have D ≡ 1 (mod 3), and the fact that 3 splits follows from Lemma 2.2.

Looking at all the possibilities of m and n modulo 72, we see that Ds2 ≡ 1, 2, 4 (mod 7) or Ds2 ≡ 14
(mod 72). It follows from Lemma 2.3 that D ≡ 0, 1, 2, 4 (mod 7) and from from Lemma 2.2 that 7 is not
inert.

The proof of the fact that D > 0 can be found in [4, Theorem 4].

N= 29 : In (2) we get

n6d = Ds2 = m6 − 4m5n− 12m4n2 + 2m3n3 + 8m2n4 + 8mn5 − 7n6.

Considering the possibilities of m and n modulo 32, we have that Ds2 ≡ 1 (mod 2), Ds2 ≡ 12
(mod 16) or Ds2 ≡ 16 (mod 32). Using Lemma 2.5 this becomes D ≡ 1 (mod 2) or D ≡ 3 (mod 4), so
D is always odd.

We write D = 29a · p1 · ... · pk, where a ∈ {0, 1} and pi 6= 2, since D is odd. If a = 1, then D ≡ 0
(mod 29). If a = 0, then

(
D
29

)
=
(
p1
29

)
· ... ·

(
pk
29

)
, which is equal to 1 after using the part (b) of this

theorem for N = 29. In this case we have that
(
D
29

)
= 1, and Lemma 2.2 says that 29 is not inert.

N= 30 : In (2) we get

n8d = Ds2 = m8 + 14m7n+ 79m6n2 + 242m5n3 + 441m4n4 + 484m3n5 + 316m2n6 + 112mn7 + 16n8.

Considering the possibilities of m and n modulo 128, we have that Ds2 ≡ 16 (mod 128) or Ds2 ≡ 1
(mod 8). Using Lemma 2.5 we get D ≡ 1 (mod 8), and from Lemma 2.4 we conclude that 2 splits.

Considering the possibilities ofm and nmodulo 3, we have thatDs2 ≡ 1 (mod 3), and from Lemma 2.3
we conclude that D ≡ 1 (mod 3). The fact that 3 splits follows from Lemma 2.2.

Looking at all the possibilities of m and n modulo 25, we see that Ds2 ≡ 1 (mod 5) or Ds2 ≡ 5
(mod 25). Using Lemma 2.3 we get D ≡ 0, 1, 4 (mod 5) and from Lemma 2.2 we see that 5 is not inert.
Furthermore, we want to eliminate the possibility D ≡ 4 (mod 5). If it were true, then for s in n8d = Ds2

it holds s2 ≡ 4 (mod 5), so s would be divisible by a prime p such that p ≡ 2, 3 (mod 5), i.e.
(

5
p

)
= −1.

The expression n8d = Ds2 above factorizes as

n8d = Ds2 =
(
m2 + 6nm+ 4n2

) (
m2 + 3nm+ n2

) (
m4 + 5m3n+ 11m2n2 + 10mn3 + 4n4

)
,

so p has to divide one of the 3 factors on the right.

• If p divides m2 + 6nm+ 4n2 = (m+ 3n)2 − 5n2, then
(

5
p

)
= 1, so p 6≡ 2, 3 (mod 5).

• If p divides the second factor, it also divides 4(m2 +3nm+n2) = (2m+3n)2−5n2, then
(

5
p

)
= 1,

so p 6≡ 2, 3 (mod 5).
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• If p divides m4 +5m3n+11m2n2 +10mn3 +4n4 = (2m2 +5mn+4n2)2 +3m2n2, then
(
−3
p

)
= 1.

The third factor can also be written as (2m2 + 5mn + m2)2 + 15(n2 + mn)2, so we alse have(
−15
p

)
= 1. Combining these two facts, we get

(
5
p

)
= 1, which is also a contradiction.

N= 33 : In (2) we get

n8d = Ds2 = m8 + 10m6n2 − 8m5n3 + 47m4n4 − 40m3n5 + 82m2n6 − 44mn7 + 33n8.

Considering the possibilities of m and n modulo 8, we have that Ds2 ≡ 1 (mod 8), so from Lemma 2.5
we conclude that D ≡ 1 (mod 8) and from Lemma 2.4 that the prime 2 splits.

We write D = 11a · p1 · ... · pk, where a ∈ {0, 1} and pi 6= 2, since D ≡ 1 (mod 8). If a = 1, then
D ≡ 0 (mod 11). If a = 0, then

(
D
11

)
=
(
p1
11

)
· ... ·

(
pk
11

)
, which is equal to 1 after using the part (b) of

this theorem for N = 33. In this case we have that
(
D
11

)
= 1, therefore 11 is not inert in K.

A point of the form (x0,
√
f33(x0)) with x0 ∈ Q is clearly de�ned over a real quadratic �eld, since

f33(x0) = x8
0 + 10x6

0 − 8x5
0 + 47x4

0 − 40x3
0 + 82x2

0 − 44x0 + 33 > 0, for every x0. Therefore, D > 0.

N= 35 : In (2) we get

n8d = Ds2 = m8 − 4m7n− 6m6n2 − 4m5n3 − 9m4n4 + 4m3n5 − 6m2n6 + 4mn7 + n8.

Considering the possibilities ofm and nmodulo 4, we have thatDs2 ≡ 1 (mod 4) and from Lemma 2.5
we conclude D ≡ 1 (mod 4). The fact that 2 is unrami�ed now follows from Lemma 2.4.

Looking at all the possibilities of m and n modulo 25, we see that Ds2 ≡ 1 (mod 5) or Ds2 ≡ 5
(mod 25). It follows from Lemma 2.3 that D ≡ 0, 1, 4 (mod 5) and from Lemma 2.2 that 5 is not inert.
Now want to eliminate the possibility D ≡ 4 (mod 5). If it were true, then for s in n8d = Ds2 it holds

s2 ≡ 4 (mod 5), so s would be divisible by a prime p such that p ≡ 2, 3 (mod 5), i.e.
(

5
p

)
= −1.

The expression n8d = Ds2 above factorizes as

n8d = Ds2 =
(
−m2 −mn+ n2

) (
−m6 + 5m5n+ 9m3n3 + 5mn5 + n6

)
,

so p has to divide one of the 2 factors on the right.

• If p divides the �rst factor, it also divides 4(−m2−nm+n2) = (2m−n)2− 5m2, then
(

5
p

)
= 1,

so p 6≡ 2, 3 (mod 5).
• If p divides the second factor, it also divides 4(−m6 + 5m5n + 9m3n3 + 5mn5 + n6) = (2n3 +

5n2m+ 5nm2 + 4m3)2 − 5(3n2m+ nm2 + 2m3)2, then
(

5
p

)
= 1, so p 6≡ 2, 3 (mod 5).

And in the end, considering the possibilities of m and n modulo 7, we have that Ds2 ≡ 1, 2, 4 (mod 7).
It follows from Lemma 2.3 that D ≡ 1, 2, 4 (mod 7) and from Lemma 2.2 that 7 splits.

N= 39 : In (2) we get

n8d = Ds2 = m8 − 6m7n+ 3m6n2 + 12m5n3 − 23m4n4 + 12m3n5 + 3m2n6 − 6mn7 + n8.

Considering the possibilities ofm and nmodulo 4, we have thatDs2 ≡ 1 (mod 4) and from Lemma 2.5
we conclude D ≡ 1 (mod 4). The fact that 2 is unrami�ed now follows from Lemma 2.4.

We have that the right side of n8d = Ds2 above is congruent to m8 − 2m4n4 + n8 = (m4 − n4)2

modulo 3.
Suppose �rst that m 6≡ n (mod 3). If n 6≡ 0 (mod 3) then D is a square modulo 3 and if n ≡ 0 (mod 3)
then it follows that D ≡ 1 (mod 3) so D is again a square modulo 3.
Suppose now that m ≡ n (mod 3). Then we run through all the possibilities of m and n modulo 81
and note that either Ds2 is divisible by an odd power of 3, so D ≡ 0 (mod 3), or Ds2 ≡ 9k (mod 81),
where k 6≡ 0 (mod 81) and k is a square modulo 9. Using the Lemma 2.3 we get that D ≡ k (mod 9),
where k is a square modulo 9. Hence, in all cases we have D ≡ 0, 1 (mod 3) and from Lemma 2.4 we
immediately see that 3 is not inert.

Considering the possibilities of m and n modulo 13, we have that Ds2 ≡ 1, 3, 4, 9, 10, 12 (mod 13),
and from Lemma 2.3 we conclude D ≡ 1, 3, 4, 9, 10, 12 (mod 13). The fact that 13 splits now follows from
Lemma 2.2.

N= 40 : In (2) we get

n8d = Ds2 = m8 + 8m6n2 − 2m4n4 + 8m2n6 + n8.
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We write n8d = Ds2 as

n8d = Ds2 = (m4 − n4)2 + 8m2n2(m4 + n4).

The integer n has to be odd (otherwise m and n would both be even), and if m is even, then Ds2 is an
odd square modulo 8. It follows from Lemma 2.5 that D ≡ 1 (mod 8) and from Lemma 2.4 that 2 splits.

If m and n are both odd, then Ds2 ≡ 16m2n2 (mod 128). From Lemma 2.5 we get that D is an odd
square modulo 8, i.e. D ≡ 1 (mod 8). The fact that 2 splits now follows from Lemma 2.4.

Considering the possibilities of m and n modulo 3, we have that Ds2 ≡ 1 (mod 3). Using Lemma 2.3
we get D ≡ 1 (mod 3), and from Lemma 2.2 we conclude that 3 splits.

Looking at all the possibilities ofm and nmodulo 5, we see thatDs2 ≡ 1, 4 (mod 5). Using Lemma 2.3
we get D ≡ 1, 4 (mod 5), and from Lemma 2.2 we conclude that 5 splits.

The proof of the fact that D > 0 can be found in [4, Theorem 4].

N= 41 : In (2) we get

n8d = Ds2 = m8 − 4m7n− 8m6n2 + 10m5n3 + 20m4n4 + 8m3n5 − 15m2n6 − 20mn7 − 8n8.

We write D = 41a · p1 · ... · pk, where a ∈ {0, 1}. If a = 0, then D ≡ 0 (mod 41). If a = 1, then(
D
41

)
=
(
p1
41

)
· ... ·

(
pk
41

)
, which is equal to 1 after using the part (b) of this theorem, and the fact that(

2
41

)
= 1, in case one of the pi is 2. In this case we have that

(
D
41

)
= 1, and Lemma 2.2 says that 41 is

not inert.

N= 46 : In (2) we get

n12d = Ds2 =m12 − 2m11n+ 5m10n2 + 6m9n3 − 26m8n4+

+ 84m7n5 − 113m6n6 + 134m5n7 − 64m4n8 + 26m3n9 + 12m2n10 + 8mn11 − 7n12.

Considering the possibilities of m and n modulo 512, we have that Ds2 ≡ 64 (mod 512) or Ds2 ≡ 1
(mod 8). Using Lemma 2.5, in both cases we get D ≡ 1 (mod 8), and from Lemma 2.4 we conclude that
2 splits.

N= 48 : In (2) we get
n8d = Ds2 = m8 + 14m4n4 + n8.

We write n8d = Ds2 as
n8d = Ds2 = (m4 + n4)2 + 12m4n4.

If either m or n is even (forcing the other to be odd), then Ds2 is an odd square modulo 8. It follows
from Lemma 2.5 that D ≡ 1 (mod 8) and from Lemma 2.4 that 2 splits.
If m and n are both odd, then Ds2 ≡ 16 (mod 128). It follows from Lemma 2.5 that D ≡ 1 (mod 8)
and from Lemma 2.4 that 2 splits.

Considering the possibilities of m and n modulo 3, we have that Ds2 ≡ 1 (mod 3). Using Lemma 2.3,
we get D ≡ 1 (mod 3), and from Lemma 2.2 we conclude that 3 splits.

Looking at all the possibilities of m and n modulo 5, we see that Ds2 ≡ 1 (mod 5). Using Lemma 2.3,
we get D ≡ 1, 4 (mod 5), and from Lemma 2.2 we conclude that 5 splits.

A point of the form (x0,
√
f48(x0)) with x0 ∈ Q is clearly de�ned over a real quadratic �eld, since

f48(x0) = x8
0 + 14x4

0 + 1 > 0, for every x0. Therefore, D > 0.

N= 50 : In (2) we get

n6d = Ds2 = m6 − 4m5n− 10m3n3 − 4mn5 + n6.

Considering the possibilities of m and n modulo 5, we have that Ds2 ≡ 0, 1, 4 (mod 5). Using
Lemma 2.3, we get D ≡ 0, 1, 4 (mod 5), and from Lemma 2.2 we conclude that 5 is not inert.

We have
n6d = Ds2 ≡ (m3 − n3)2 (mod 4).

If either m or n is even it follows that D is odd. If m and n are both odd, we have Ds2 ≡ 4
(mod 16), Ds2 ≡ 16 (mod 32) or Ds2 ≡ 64 (mod 128). Using Lemma 2.5, in all cases we get that
D is odd. �

We now prove two lemmas that will be useful in the proof of part (b) of the theorem.

Lemma 2.6. Suppose fN factorizes as fN =
∏
i∈I fN,i, where fN,i ∈ Z[x] are irreducible factors of

degree 2 or 3 and p - a0,N . If p rami�es in K, then there exists an i ∈ I such that ∆(fN,i) is a square
modulo p.
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Proof. Assume that p rami�es in K; then by Lemma 2.2 it follows that p|D. If p|n, then it would follow
that p|m, which is a contradiction, so we conclude that p - n. Dividing out (2) by n, we see that m/n is
a root of fN modulo p and hence there exists an i ∈ I such that m/n is a root of fN,i modulo p.

If fN,i is of degree 2 or 3, the formulas for the roots of quadratic and cubic polynomials imply that√
∆(fN,i) is de�ned over Fp, which proves the statement. �

Remark 2. Note that the statement of part (b) of the theorem can be proved with the previous lemma
only for (N, a) = (28,−7). We have f28(x) = (2x2− 3x+ 2)(x2− x+ 2)(2x2− x+ 1) and ∆(f28,i) = −7,
for each i.

As mentioned in the remark, Lemma 2.6 is not enough to prove all of the statements in (b), so we
provide a generalization.

Lemma 2.7. Let fN =
∏
i∈I fN,i be the decomposition into irreducible factors, with fN,i ∈ Z[x]. Assume

that there exists a quadratic �eld K0 such that each fN,i becomes reducible in K0[x] and let p be an odd
prime such that (p,∆(fN,i)) = 1 for all i. Then if p rami�es in K it follows that ∆(K0) is a square
modulo p, i.e. p is not inert in K0.

Proof. Let σ be the generator of Gal(K0/Q) and fN,i,K0
∈ K0[x] an irreducible factor of fN,i. Then we

obviously have

(3) fN,i,K0(fN,i,K0)σ = fN,i.

Assume that p rami�es in K. We will prove the lemma by contradiction, so we assume that p is inert
in K0. As in the proof of Lemma 2.6 we conclude that fN,i has a root a in Fp for some i. Hence a is a
root of one of the factors on the left in (3). Assume without loss of generality that a is a root of fN,i in
Fp.

Let p be the prime of K above p and denote by Fp := OK0/p the residue �eld of p. Let τ = Gal(Fp/Fp)
and denote by f the reduction of a polynomial f ∈ K0[x] modulo p; then we have fσ = f

τ
. Hence aτ is

a root of f
τ

N,i. But since a ∈ Fp, it follows that a = aτ and hence from (3) it follows that a is a double
root of fN,i over Fp and hence ∆(fN,i) is divisible by p, which is in contradiction with the assumption
(p,∆(fN,i)) = 1. �

Proof of Theorem 2.1 (b). Let fN = ΠifN,i be the factorization of fN in Z [X] , as in Table 1. Table 3,
which can be computed with the accompanying Magma code, contains for each N the number a such
that every fN,i becomes reducible in Q(

√
a), the factorization in Q(

√
a) and discriminants of each fN,i.

Using the Lemma 2.7 we immediately get that if an odd prime p such that (p,∆(fN,i)) = 1 rami�es
in K, then a is a square modulo p. For p = 2 and p that are not coprime to every ∆(fN,i) and can
ramify (this can be checked in Theorem 2.8, which is proved independently) we can explicitly verify that(
a
p

)
6= −1. �

Proof of Theorem 2.1 (c). For all pairs of N and b, in Table 3 we have the factorizations of fN where

some of the factors are linear over Q(
√
b). Therefore, fN has a root over each Fp such that

√
b is de�ned

modulo p, i.e. such that b is a square modulo p.
If x0 ∈ Z is a root of fN such that fN (x0) ≡ 0 (mod p), then fN (x0 + kp) ≡ 0 (mod p), k = 0, ..., p− 1.
If p > deg fN , we have fN (x0 + kp) 6≡ 0 (mod p2) for at least one value of k. Now we know that for
p > deg fN there exists a ∈ Z be such that fN (a) ≡ 0 (mod p) and fN (a) 6≡ 0 (mod p2). For smaller
values of p, with exception of p = 2, one can explicitly check that this claim remains true. Therefore, p
rami�es in Q(

√
fN (a)).

It remains to show that there are in�nitely many quadratic �elds such that p rami�es. Let S = {u ∈ Z :
u ≡ a (mod p2)}. Obviously fN (u) ≡ 0 (mod p) and fN (u) 6≡ 0 (mod p2) for all u ∈ S. Let du be the

squarefree part of fN (u); the quadratic point (u,
√
fN (u)) will be de�ned over Q(

√
du). After writing

fN (u) = dus
2
u for some su ∈ Z, we observe that (u, su) is a rational point on the quadratic twists CduN of

X0(N),

CduN : duy
2 = fN (x).

Since each CduN is of genus ≥ 2, by Faltings' theorem it follows that CduN (Q) is �nite and hence {du : u ∈ S}
is in�nite, proving the claim. �

https://web.math.pmf.unizg.hr/~atrbovi/magma/magma2/Table3
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N a factorization of fN in Q(
√
a) ∆(fN ,i)

26 13

(
(x3 + (−

√
13− 4)x2 + 1

2
(
√
13 + 5)x+ 1

2
(−3
√
13− 11)

)
×

×
(
x3 + (

√
13− 4)x2 + 1

2
(−
√
13 + 5)x+ 1

2
(3
√
13− 11)

) 220 · 133

28 −7

(
x+ 1

2
(−
√
−7− 1)

) (
x+ 1

4
(−
√
−7− 3

)
×

×
(
x+ 1

4
(−
√
−7− 1)

) (
x+ 1

4
(
√
−7− 3)

)
×

×
(
x+ 1

4
(−
√
−7− 1)

) (
x+ 1

2
(
√
−7− 1)

) −7
−7
−7

29 29

(
x3 + (−

√
29− 2)x2 + 1

2
(
√
29 + 13)x+ 1

2
(−
√
29− 1)

)
×

×
(
x3 + (

√
29− 2)x2 + 1

2
(−
√
29 + 13)x+ 1

2
(
√
29− 1)

) 212 · 295

30 5

(
x−
√
5 + 3

)(
x+ 1

2
(−
√
5 + 3)

)
×

×
(
x+ 1

2
(
√
5 + 3)

)(
x+
√
5 + 3

)
×

×
(
x2 + 1

2
(−
√
5 + 5)x−

√
5 + 3

)(
x2 + 1

2
(
√
5 + 5)x+

√
5 + 3

)
5

22 · 5
22 · 32 · 52

33 −11

(
x+ 1

2
(−
√
−11− 1)

) (
x+ 1

2
(
√
−11− 1)

)
×

×
(
x3 + 1

2
(−
√
−11 + 1)x2 + 1

2
(
√
−11 + 5)x−

√
−11

)
×

×
(
x3 + 1

2
(
√
−11 + 1)x2 + 1

2
(−
√
−11 + 5)x+

√
−11

) −11
−28 · 36 · 115

35 5

(
x+ 1

2
(−
√
5 + 1)

)(
x+ 1

2
(
√
5 + 1)

)
×

×
(
x3 + 1

2
(−3
√
5− 5)x2 + 1

2
(
√
5 + 5)x−

√
5− 2

)
×

×
(
x3 + 1

2
(3
√
5− 5)x2 + 1

2
(−
√
5 + 5)x+

√
5− 2

) 5

28 · 57 · 72

39 13

(
x2 + 1

2
(−
√
13− 7)x+ 1

)(
x2 + 1

2
(−
√
13 + 1)x+ 1

)
×

×
(
x2 + 1

2
(
√
13− 7)x+ 1

)(
x2 + 1

2
(
√
13 + 1)x+ 1

) −33 · 132
−3 · 132

40

−1

5

(
x4 − 2

√
−1x3 + 2x2 + 2

√
−1x+ 1

)
×

×
(
x4 + 2

√
−1x3 + 2x2 − 2

√
−1x+ 1

)
(
x4 + (−2

√
5 + 4)x2 + 1

)(
x4 + (2

√
5 + 4)x2 + 1

) 240 · 54

41 41

(
x4 − 2x3 + (−

√
41− 6)x2 + (−

√
41− 7)x+ 1

2
(−
√
41− 3)

)
×

×
(
x4 − 2x3 + (

√
41− 6)x2 + (

√
41− 7)x+ 1

2
(
√
41− 3)

) −216 · 416

48

−1

3

(
x2 + (−

√
−1− 1)x−

√
−1

) (
x2 + (−

√
−1 + 1)x+

√
−1

)
×

×
(
x2 + (

√
−1− 1)x+

√
−1

) (
x2 + (

√
−1 + 1)x−

√
−1

)
(
x2 + (−

√
3− 1)x+

√
3 + 2

)(
x2 + (−

√
3 + 1)x−

√
3 + 2

)
×

×
(
x2 + (+

√
3− 1)x−

√
3 + 2

)(
x2 + (

√
3 + 1)x+

√
3 + 2

)
28 · 32
28 · 32

50 5

(
x3 + (−

√
5− 2)x2 + 1

2
(−
√
5 + 1)x+ 1

2
(−
√
5− 3)

)
×

×
(
x3 + (

√
5− 2)x2 + 1

2
(
√
5 + 1)x+ 1

2
(
√
5− 3)

) 216 · 55

Table 3. Factorizations of fN in Q(
√
a), and the discriminants of fN ,i de�ned in the

statement of Lemma 2.7.
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Theorem 2.8. In Table 4 below, we list the primes p ≤ 100 which are unrami�ed for all quadratic �elds
generated by quadratic points X0(N), for N ∈ {22, 23, 26, 29, 30, 31, 33, 35, 39, 40, 41, 46, 47, 48, 50, 59, 71}.

N unrami�ed primes

22 3, 5, 23, 31, 37, 59, 67, 71, 89, 97

23 2, 3, 13, 29, 31, 41, 47, 71, 73

26 3, 5, 7, 11, 17, 19, 31, 37, 41, 43, 47, 59, 67, 71, 73, 83, 89, 97

28 3, 5, 13, 17, 19, 31, 41, 47, 59, 61, 73, 83, 89, 97

29 3, 5, 11, 13, 17, 19, 31, 37, 41, 43, 47, 53, 61, 73, 79, 89, 97

30 2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97

31 2, 5, 7, 19, 41, 59, 71, 97

33 2, 7, 13, 17, 19, 29, 41, 43, 61, 73, 79, 83

35 2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97

39 2, 5, 7, 11, 13, 19, 31, 37, 41, 47, 59, 61, 67, 71, 73, 79, 83, 89, 97

40 2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 97

41 3, 5, 7, 11, 13, 17, 19, 29, 37, 47, 53, 61, 67, 71, 73, 79, 89, 97

46 2, 3, 13, 29, 31, 41, 47, 71, 73

47 2, 3, 7, 17, 37, 53, 59, 61, 71, 79, 89, 97

48 2, 3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 43, 47, 53, 59, 67, 71, 79, 83, 89

50 3, 7, 11, 13, 17, 19, 23, 37, 41, 43, 47, 53, 67, 73, 83, 89, 97

59 3, 5, 7, 19, 29, 41, 53, 79

71 2, 3, 5, 19, 29, 37, 43, 73, 79, 83, 89

Table 4. Primes up to 100 that do not ramify in quadratic �elds over which X0(N) has a point.

Proof. The proofs of all the facts listed are easy and all basically the same; take some prime p in the
table above. Using the notation as in 2, we run through all m and n in the appropriate equation modulo
p and we get that n2kd 6≡ 0 (mod p) for some positive integer k, which gives us that D 6≡ 0 (mod p) and
hence p is unrami�ed. �

3. Splitting of 2 in cubic fields generated by cubic points of X1(2, 14)

Let us �x the following notation for the remainder of this section. Denote X := X1(2, 14) and
Y := Y1(2, 14). Let φ : X1(2, 14) → X1(14) be the forgetful map sending (E,P,Q,R) ∈ X with P and
Q of order 2 and R of order 7 to (E,P,R) ∈ X1(14). Let K be a cubic number �eld over which X has
a non-cuspidal point x = (E,P,Q,R) and let P be a prime above p. By [5, Theorem 1.2], K is a cyclic
cubic �eld. Denote by x the reduction of x mod P.

In this section we are going to prove that the prime 2 always splits in a cubic �eld over which X has
a non-cuspidal point. Furthermore, we will show the same statement for all primes p ≡ ±1 (mod 7) for
which E has multiplicative reduction.

The curve X has the following model [5, Proposition 3.7] in P1
Q × P1

Q:

(4) X : f(u, v) = (u3 + u2 − 2u− 1)v(v + 1) + (v3 + v2 − 2v − 1)u(u+ 1) = 0.

The curve X has 18 cusps, 9 of which are de�ned over Q and 9 over Q(ζ7)+, forming 3 Galois orbits.
Let τ and ω be automorphisms of X, where the moduli interpretation of τ is that it acts as a

permutation of order 3 on the points of order 2 of E and trivially on the point of order 7, and where the
moduli interpretation of ω is that it acts trivially on the points of order 2 and as multiplication by 2 on
the point of order 7. Let α := ωτ and β := ωτ2.

From [5, Chapter 3] it follows that the only maps of degree 3 from X to P1 are quotienting out by
subgroups generated by α and β (an automorphism of X interchanges these two maps) and that all
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non-cuspidal cubic points on X are inverse images of P1(Q) with respect to these maps. Also, both α
and β act without �xed points on the cusps.

As it has already been mentioned, the results of [5] tell us that elliptic curves with Z/2Z × Z/14Z
torsion over a cubic �eld are parameterized by P1(Q), so one can write every such curve as Eu for some
u ∈ Q. We do not display the model for Eu as it contains huge coe�cients, but it can be found in the
accompanying Magma code. In [5] it is proved that the curve E := Eu is a base change of an elliptic
curve de�ned over Q.

We have

j(u) =
(u2 + u+ 1)3(u6 + u5 + 2u4 + 9u3 + 12u2 + 5u+ 1)f12(u)3

u14(u+ 1)14(u3 + u2 − 2u− 1)2
,

where

f12(u) = u12 + 4u11 + 3u10 − 4u9 + 6u7 − 17u6 − 30u5 + 6u4 + 34u3 + 25u2 + 8u+ 1,

and

∆(u) =
u14(u+ 1)14(u3 + u2 − 2u− 1)2

h12(u)12
,

c4(u) =
g2(u)g6(u)g12(u)

h12(u)4
,

where gi are polynomials in u of degree i, for i = 2, 6, 12, and h12 is of degree 12.
Let res(f, g) denote the resultant of the polynomials f and g. If vp(h12(u)) > 0, then E does not

have multiplicative reduction at p, since res (h12(u), g∆(u)) = res (h12(u), gc4(u)) = 1, where g∆ is the
numerator of ∆(u) and gc4 is the numerator of c4(u), and therefore vp(j(u)) = 0. There are several
possibilities for the elliptic curve E to have multiplicative reduction:

• If vp(u) =: k > 0, then using the fact that

res

(
u,

∆(u)

u14

)
= res (u, c4(u)) = 1,

we conclude that reduction mod p will be of type I14k.
• If vp(u) =: −k < 0, with the change of variables v := 1

u we get a similar situation as above, with

res

(
v,

∆(v)

v14

)
= res (v, c4(v)) = 1,

so the reduction mod p will be of type I14k.
• If vp(u) = 0 and vp(u+ 1) := k > 0, then using the fact that

res

(
u+ 1,

∆(u)

(u+ 1)14

)
= res (u+ 1, c4(u)) = 1,

we conclude that the reduction mod p is of type I14k.
• The only other possibility for multiplicative reduction is vp(u

3 + u2 − 2u − 1) =: k > 0. Note
that a root α of f(u) := u3 + u2 − 2u− 1 generates the ring of integers Z[α] of Q(ζ7)+. The fact
that p|f(u) implies that f(u) has a root in Fp and hence p splits in Q(ζ7)+, implying p ≡ ±1
(mod 7) or p = 7. Since

res

(
u3 + u2 − 2u− 1,

∆(u)

(u3 + u2 − 2u− 1)2

)
= 730

and
res
(
u3 + u2 − 2u− 1, c4(u)

)
= 712,

it follows that there can be cancellation with the numerator only in the case p = 7.
• Suppose p = 7, v7(u) = 0 and v7(u3 + u2 − 2u − 1) = k > 0. An easy computation shows that
u ≡ 2 (mod 7) and k = 1, and that the numerator will be divisible by a higher power of 7 than
u3 + u2 − 2u− 1, which show that the reduction will not be multiplicative.

In the discussion above we have proved the following two results:

Proposition 3.1. Suppose E has multiplicative reduction at a rational prime p. Then either the reduc-
tion is of type I14k for some k, or p ≡ ±1 (mod 7), in which case the reduction is I2k.

Remark 3. As it has been mentioned, E is a base change of an elliptic curve over Q, so in Proposition 3.1
and in the remainder of the section, when we consider the reduction of E (and alsoX andX1(14)) modulo
a rational prime, we will consider E to be de�ned over Q and when we consider it modulo a prime of K
we consider its base change to K.

https://web.math.pmf.unizg.hr/~atrbovi/magma/magma2/X1(2,14)
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Proposition 3.2. The curve E has multiplicative reduction of type I14k at 2.

Proof. This follows from the observation that v2(u) 6= 0 or both v2(u) = 0 and v2(u+1) > 0, from which
it follows, by what we have already proved, that in both cases the reduction type of Eu at 2 is I14k. �

We now prove 3 useful lemmas.

Lemma 3.3. Let x ∈ Y (K) and let P be a prime of K over 2. Then x modulo P is de�ned over F2.

Proof. As mentioned above, the results of [5] imply that a non-cuspidal cubic point on x ∈ X given by
the equation f(u, v) = 0 in (4) satis�es either u ∈ P1(Q) or v ∈ P1(Q). Over F2, the polynomial f factors
as

f(u, v) = (u+ v)(uv + v + 1)(uv + v + 1),

which implies that if one of u or v is ∈ P1(F2), then so is the other. This implies that the reduction of
x modulo P is de�ned over F2. �

Lemma 3.4. Let F = Q(ζ7)+, let C be a cusp of X whose �eld of de�nition is F and let q be a rational

prime. Then the �eld of de�nition of the reduction of C in Fq is Fq3 if q 6≡ ±1 (mod 7) and Fq if q ≡ ±1
(mod 7).

Proof. We have [k(C) : Fq] = [Qq(ζ7 + ζ−1
7 ) : Qq] from which the claim follows. �

Lemma 3.5. Let q ≡ ±1 (mod 7) be a rational prime such that E has multiplicative reduction over q
and let P be a prime of K over q. Then the reduction of x ∈ X modulo P corresponding to the curve E
is Fq.

Proof. Since x modulo P is a cusp, the statement follows from Lemma 3.4. �

Proposition 3.6. Let q = 2 or q ≡ ±1 (mod 7) be a rational prime such that E has multiplicative
reduction in q. Then q splits in K.

Proof. Let σ be a generator of Gal(K/Q) (recall that K is Galois over Q) and suppose q is inert in K.
As the degree 3 map X → P1 is quotienting by α, it follows that{

x, xσ, xσ
2
}

=
{
x, α(x), α2(x)

}
,

so we can suppose without loss of generality that xσ = α(x) and xσ
2

= α2(x). Let x = C0, for some cusp

C0 ∈ X. It follows that α(x) = α(C0) and α2(x) = α2(C0). Denote by C1 := α(C0) and by C2 := α2(C0);
all Ci are distinct as α acts without �xed points on the cusps. By Lemma 3.3 and Lemma 3.5, all Ci
are de�ned over Fq.

Denote by Ki := φ(Ci) and by y = φ(x) ∈ Y1(14). Descending everything to X1(14), we have y = K0,

yσ = K1, yσ
2 = K2. By Lemma 3.3 and Lemma 3.5, all Ci and hence all Ki are de�ned over Fq.

Using the same arguments as in [12, Proposition 3.1] we get that K0 = K1 = K2. Reduction modulo
q is injective on the torsion of X1(14) by [7, Appendix] for q > 2 and by explicitly checking injectivity
for q = 2. Now from the fact that the rank of X1(14)(Q(ζ7)+) is 0, we conclude K0 = K1 = K2. This is
impossible since C0, C1, C2 are distinct and φ is a degree 2 map. �
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